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1 Motivation

There appears to be some confusion as to the nature of the Nash bargaining solution in
models with on-the-job search.1 Nash posited four axioms that a bargaining solution should
have. Applying those axioms to a bilateral bargaining problem between a worker and a firm,
this implies the pair should choose a wage to maximize the Nash product,

(E(w)− U)(J(w)− V ),

where E(w) is the value of the worker if matched at a wage w, J(w) is the value of the firm
if matched at that wage, U is the worker’s threat point (unemployment) and V is the firm’s
threat point (vacancy). If the derivative of E and J with respect to w is the same, as is the
case in many search models without on-the-job search and with risk-neutral workers, then
maximization of the Nash product leads to the first order condition

E(w)− U = J(w)− V.

The purpose of this note is to argue that introducing on-the-job search breaks that equiva-
lence. Imposing the (incorrect) first order condition may lead to the possibility of a Pareto
improvement, i.e. an increase in both E(w) and J(w). This is because a firm may prefer
to pay a higher wage, raising E(w), that reduces worker turnover, raising J(w) (but by less
than the increase in E(w)). Even if the Nash bargaining solution is not Pareto superior to
the linear sharing rule, the two are not always equivalent.

2 Model

I establish this in a particular economy, but it should be clear that the example extends
easily to many other scenarios.2 The economy is composed of two types of agents, risk-

1A noteworthy example is Pissarides’s (2000) Equilibrium Unemployment Theory. See equation (4.23).
2The assumption in Pissarides (2000) that all new jobs start with productivity 1 and then productivity

follows a stochastic process in which future values of p < 1 would simplify the analysis considerably since all
searchers would quit at any opportunity.
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neutral workers and risk-neutral firms, both infinitely lived with discount rate r. Workers
get z while unemployed and receive an endogenous wage w while employed. In addition,
an employed worker may choose to pay a search cost σ which allows her to search with the
same efficiency as an unemployed worker. A firm produces a stochastic amount of output
p when employing a worker and pays the bargained wage w. This is a model with ex post
heterogeneity: when a worker and firm meet, they realize their productivity p, drawn from a
known cumulative distribution F with support [0, p̄]. This realization is independent across
workers and firms.

A searching worker, employed or unemployed, finds a job at rate λ. When an employed
worker searches and meets another firm, she realizes the productivity p and then must reject
one job and bargain with the other employer. Because of the preceding assumption, the
worker’s threat point is always unemployment, with value U . The firms’ threat point is to
end the job, with value 0. Jobs end exogenously at rate δ.

I assume that search effort is unobservable, and hence a worker and a firm only bargain
over the wage. However, the pair recognizes the dependence of search effort on the wage,
and this has a significant effect on the bargaining solution.

I look for an equilibrium in which a worker in a match with productivity p receives a wage
W (p), nondecreasing in p, and strictly increasing over the range for which workers search on
the job. As a result, searching workers always move to more productive jobs. I conjecture
that there is no other equilibrium.

3 Bellman Equations

Let E(p, w) denote the expected present value of income for a worker employed in a job with
productivity p and paid a wage w:

rE(p, w) = w + δ(U − E(p, w))

+ max

〈
−σ + λ

∫
max

〈
E(p′, W (p′))− E(p, w), 0

〉
dF (p′) , 0

〉
.

The outer maximization reflects the binary search decision. The inner maximization reflects
the decision to accept the alternative job. It should be clear that E(p, w) is independent of
productivity but is an increasing function of the bargained wage w. This implies there is
an endogenous threshold w∗ such that the worker searches if w < w∗ and does not search if
w ≥ w∗. This allows me to rewrite the worker’s Bellman equation more compactly as

rE(p, w) =


w + δ(U − E(p, w)) if w ≥ w∗

w + δ(U − E(p, w))− σ

+λ

∫ p̄

W−1(w)

(E(p′, W (p′))− E(p, w))dF (p′) if w < w∗

, (1)

where I use the assumption that w = W (p) is strictly increasing and hence invertible when
w < w∗. The lower bound in the integral reflects the fact that by varying the wage, the
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firm can affect the turnover rate even if the worker searches. This implies that, even though
E(p, w) is linear in w when w ≥ w∗, it is non-linear (actually convex) at smaller values of w.

The threshold w∗ is defined by the condition that the worker prefers to search at any
lower wage and weakly prefers not to search at a higher wage:

σ < λ

∫ p̄

W−1(w)

(E(p′, W (p′))− E(p, w))dF (p′) (2)

if and only if w < w∗.
Using this same logic, the value of a firm is

rJ(p, w) =


p− w − δJ(p, w) if w ≥ w∗

p− w −
(
δ + λ

(
1− F (W−1(w))

))
J(p, w) if w < w∗

. (3)

Note that as long as F (W−1(w∗)) < 1, the firm’s value drops discontinuously as the wage
falls below w∗, whereas the worker’s value is continuous. The firm’s value function is also
linear in w ≥ w∗ but globally convex.

Finally, I follow much of the search literature and relax Nash’s symmetry axiom. The
asymmetric Nash bargaining solution requires that the wage maximize a weighted Nash
product,

W (p) = arg max
w

(E(p, w)− U)βJ(p, w)1−β, (4)

where β ∈ (0, 1) is the worker’s ‘bargaining power’. It is important to note that the results
presented below do not hold in the two extremes, β = 0 or β = 1. In the former case the
worker always gets paid her reservation wage and so never incurs a positive search cost. In
the latter case, the worker receives her full productivity and so correctly internalizes the
search decision.

I do not endogenize the value of an unemployed worker, but it is clear how to do this.
In particular, by manipulating the flow payoff to an unemployed worker z, it is possible to
obtain any desired value for U .

4 Equilibrium

I claim that there are three intervals of p that characterize the solution to this problem:

• If p ≥ p2, the firm pays a wage of W (p) = βp + (1 − β)rU and the worker chooses
not to engage in on-the-job search. Moreover, in this parameter range the Nash
bargaining solution is equivalent to the linear version of the first order condition,
(1− β)

(
E(p, W (p))− U

)
= βJ(p, W (p)).

• If p2 > p > p1, the firm pays a wage of W (p2) = βp2 + (1− β)rU ≡ w∗. This is like an
efficiency wage, in the sense that it induces the worker not to search, but at the cost of
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reducing the firm’s surplus below the workers, (1−β)
(
E(p, W (p))−U

)
> βJ(p, W (p)).

Note that in this region, the worker is indifferent about searching on the job, but in
equilibrium chooses not to search.

• If p1 > p, the worker searches on-the-job. The surplus is again divided according to
a linear version of the first order condition, (1 − β)

(
E(p, W (p)) − U

)
= βJ(p, W (p)).

While in the middle region the worker received a high wage as an inducement not
to search, in this region the worker receives a lower wage than she would if she could
somehow commit not to search on-the-job (conditional on the value of unemployment).

I prove this by starting with the highest productivity matches, p ≥ p2 and working down
to less productive matches. Substituting the Bellman equations (1) and (3) into the Nash
bargaining solution (4) gives

W (p) = arg max
w

(
w − rU

r + δ

)β (
p− w

r + δ

)1−β

.

Taking logs of the objective function and differentiating gives the necessary and sufficient
first order condition, which can be manipulated to get

W (p) = βp + (1− β)rU.

Substituting this back into the Bellman equations (1) and (3) gives

(r + δ)
(
E(p, W (p))− U

)
= β(p− rU) (5)

(r + δ)J(p, W (p)) = (1− β)(p− rU),

consistent with the standard linear relationship between the worker’s and firm’s thresholds.
Next I solve for the threshold p2. This is defined by the point where a worker who is paid

W (p2) is indifferent about searching, and may be expressed using (2) as

σ = λ

∫ p̄

p2

(
E(p′, W (p′))− E(p2, W (p2))

)
dF (p′) =

λβ

r + δ

∫ p̄

p2

(p′ − p2)dF (p′). (6)

This uniquely defines p2 as a decreasing function of σ. For the model to be interesting, I
assume that p2 > rU , so workers are willing to accept jobs at this threshold. For parameter
values that failed this condition, perhaps because σ is too large, there would be no on-the-job
search. In addition, the on-the-job search threshold satisfies w∗ = W (p2). A slight drop in
the wage below w∗ does not hurt the worker by much — she simply begins to search for a
job — but results in a discrete loss of surplus to the firm. This suggests that for values of p
slightly below p2, the Nash product is maximized by paying an ‘efficiency’ wage W (p2).

Formally, I claim that when p ∈ (p1, p2), a non-empty interval, W (p) = βp2 + rU , so the
firm absorbs all the cost of lower productivity. Since this induces the worker not to search,
the Bellman equations (1) and (3) satisfy

(r + δ)
(
E(p, W (p))− U

)
= β(p2 − rU)

(r + δ)J(p, W (p)) = p− βp2 − (1− β)rU.
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One can easily show that further wage increases reduce the Nash product, while a slight wage
reduction leads to a jump down in the Nash product because of the discrete loss suffered by
the firm. Note also that since p < p2, (1− β)

(
E(p, W (p))− U

)
> βJ(p, W (p)).

To prove that the Nash bargaining solution leads to an efficiency wage, I compare the
Nash product under the efficiency wage,(

β(p2 − rU)
)β(

p1 − βp2 − (1− β)rU
)1−β

r + δ
, (7)

to the Nash product under a ‘searching wage’, a lower wage that induces the worker to search
and that satisfies the first order condition from the maximization of the Nash product. More
precisely, I characterize the productivity level p1 at which the Nash product is bimodal with
the two local maxima taking on a common value. At higher values, p ∈ (p1, p2), the Nash
product is maximized by paying the efficiency wage, while at lower values, p < p1, it is
maximized by paying the searching wage.

Since p1 ≤ p2, the Bellman equation (1) for a searching worker with productivity p1

reduces to

rE(p1, w) = w + δ(U − E(p1, w))− σ + λ

∫ p̄

p1

(E(p′, W (p′))− E(p1, w))dF (p′),

since the worker quits for any job with p′ > p1. Now replace the search cost σ using the
indifference condition (6) and simplify:

rE(p1, w) = w + δ(U − E(p1, w))− λ

∫ p̄

p2

(
E(p′, W (p′))− E(p2, W (p2))

)
dF (p′)

+ λ

∫ p̄

p1

(E(p′, W (p′))− E(p1, w))dF (p′),

= w + δ(U − E(p1, w)) + λ

∫ p̄

p2

(
E(p2, W (p2))− E(p1, w)

)
dF (p′)

+ λ

∫ p2

p1

(E(p′, W (p′))− E(p1, w))dF (p′)

= w + δ(U − E(p1, w)) + λ
(
1− F (p1)

)(
E(p2, W (p2))− E(p1, w)

)
.

The second equality breaks the second integral into two parts, while the third equality uses
W (p′) = W (p2) for p′ ∈ (p1, p2) and then solves the integral. Equivalently, using the Bellman
equation (5) for E(p2, W (p2)) given above,(

r + δ + λ(1− F (p1))
)
(E(p1, w)− U) = w − rU + λ

(
1− F (p1)

)(
E(p2, W (p2))− U

)
= w − rU +

λβ

r + δ

(
1− F (p1)

)(
p2 − rU

)
The Bellman equation for a filled job with productivity p1 can be derived directly from
equation (3): (

r + δ + λ(1− F (p1))
)
J(p1, w) = p1 − w,
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since the worker quits for any job with p′ > p1. Then the Nash bargaining solution with a
searching wage at productivity p1 is

W (p1) = arg max
w<w∗

(
w − rU + λβ

r+δ

(
1− F (p1)

)(
p2 − rU

))β(
p1 − w

)1−β

r + δ + λ
(
1− F (p1)

) ,

which gives the necessary and sufficient first order condition

W (p1) = βp1 + (1− β)

(
rU − λβ

r + δ

(
1− F (p1)

)(
p2 − rU

))
.

Note that this is lower than the wage the worker would get if she could not search, βp1 +
(1− β)rU . The value of the Nash product at the highest searching wage is then given by

ββ(1− β)1−β

(
p1 − rU + λβ

r+δ

(
1− F (p1)

)(
p2 − rU

)
r + δ + λ

(
1− F (p1)

) )
. (8)

When p1 = p2, the two expressions for the Nash wage (7) and (8) are equal. It is easy to verify
that p1 < p2 when β < 1, i.e. when the worker cannot unilaterally set the wage. This follows
because (7) strictly exceeds (8) at p1 = p2. Conversely, when p1 = βp2 + (1 − β)rU ,3 (7)
evaluates to zero while (8) is strictly positive. By continuity, the crossing-point, where (7) is
equal to (8), lies somewhere in between these two values, which determines the equilibrium
value of p1 ∈ (βp2 + (1− β)rU, p2).

4

Finally, for values of p ≤ p1, the worker searches while employed. The Bellman equa-
tions (1) and (3) are

(
r + δ + λ(1− F (p))

)
(E(p, w)− U) = w − rU − σ + λ

∫ p̄

p

(E(p′, W (p′))− U)dF (p′)(
r + δ + λ(1− F (p))

)
J(p, w) = p− w.

The Nash bargaining solution (4) then gives

W (p) = βp + (1− β)

(
rU + σ − λ

∫ p̄

p

(E(p′, W (p′))− U)dF (p′)

)
,

which is again a lower wage than the worker would get in the absence of on-the-job search.
Substituting this back into the Bellman equations, we get

(1− β)(E(p, W (p))− U) = βJ(p, W (p)),

the usual linear sharing rule.

3Recall that p2 > rU or there would be no on-the-job search in equilibrium.
4I have not yet proven that there is a unique such p1.
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The Nash bargaining assumption has some surprising implications in this framework. For
example, in the Burdett-Mortensen model, firms optimally post wages and so, by definition,
can never gain from posting a different wage. A simple revealed preference argument then
establishes that more productive firms earn more profits. That is no longer true in the
bargaining model; a job producing slightly more than p1 yields less profit than a job producing
slightly less. The proof is straightforward. By construction, the value of the Nash product
is equal at the efficiency and searching wages when productivity equals p1. But the wage
increases discontinuously when productivity rises from below p1 to above p1, and so must
the workers’ surplus. For the Nash product to be the same at the two modes, it follows
that firms’ surplus must fall discontinuously. If a firm could somehow unilaterally reduce
the productivity of the match in order to raise its value, this could make it better off (but
of course would hurt workers).

The final, and perhaps most important, point is that a näıve imposition of the linear
sharing rule, as in Pissarides (2000), precludes some possible Pareto improvements, a clear
violation of Nash’s efficiency axiom. Take p ∈ (p1, p2), so the Nash bargaining solution
requires a wage of W (p2). This gives the worker and firm surpluses respectively equal to

E(p, W (p))− U =
β(p2 − rU)

r + δ

J(p, W (p)) =
p− βp2 − (1− β)rU

r + δ
.

If instead a worker-firm pair unilaterally agreed to a wage that satisfies the linear sharing
rule, the arguments used to derive p1 ensure that surpluses would equal

E(p, w)− U =
β
(
p− rU + λβ

r+δ

(
1− F (p1)

)(
p2 − rU

))
r + δ + λ(1− F (p1))

J(p, w) =
(1− β)

(
p− rU + λβ

r+δ

(
1− F (p1)

)(
p2 − rU

))
r + δ + λ(1− F (p1))

,

since the worker would search and accept any job producing at least p1, i.e. paying at least
w∗. Clearly the linear sharing rule makes the worker worse off since it results in a lower wage;
this can be confirmed algebraically. The firm faces a tradeoff between lower wage payments
and less turnover, but a little algebra shows that the linear sharing rule reduces firm profits
if and only if

p2 − p <
λ(1− β)2

(
1− F (p1)

)
(p2 − rU)

β(r + δ) + λ(1− F (p1))
.

This defines another critical threshold p∗ ∈ (p1, p2),
5 where the Nash bargaining solution is

Pareto superior to the linear sharing rule if p ∈ [p∗, p2) and not comparable using the Pareto
criterion if p ∈ (p1, p

∗).

5It is straightforward to show from this equation that p∗ < p2. I have already proved that p∗ > p1 in
the previous paragraph: at p1, the firm makes strictly less profit from the efficiency wage than from the
searching wage.
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