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Dual Reduction and Elementary Bayesian Games 
See GEB 21:183-202 (1997): https://doi.org/10.1006/game.1997.0573  
https://home.uchicago.edu/~rmyerson/research/eldual2023notes.pdf 
https://home.uchicago.edu/~rmyerson/research/eldual2025bayes.pdf 

Here we extend dual reduction from my 1997 GEB paper to general Bayesian games. 
Bottom line: 
Dual reduction generalizes dominated-strategy elimination: "imperfect" equilibria are 

eliminated by reducing the game, not by testing each equilibrium separately. 
With dual reduction, any Bayesian game can be represented by a reduced model where 

all incentive constraints are satisfied strictly in almost all incentive-compatible 
mechanisms, so that the weak incentives of "imperfect" equilibria do not appear. 

But this may involve some reinterpretation of Harsanyi's Bayesian model, where a 
(reduced) type may represent a player's socially accessible private information, and a 
player's action may represent a randomized strategy that can be conditioned on any 
parts of the player's private information that are not socially accessible. 

A finite Bayesian game is any   = (I, (Ti)iI, (Ci)iI, p, (ui)iI)  with  
   nonempty finite sets:  I={players},  Ti={i's types} iI,  Ci(ti)={i's actions if ti} tiTi, 
   T = iI Ti,  p(T)  probability distribution of the set of type profiles, and  
   ui(c,t)ℝ  utility payoffs  iI, tT, cC(t) ={c=(cj)jI: cjCj(tj) jI}. 

We may write  t = (tj)jI = (ti,ti)  T,  c = (ci)iI = (cj,cj)  C(t),   
 Ti = ji Tj,  Ci(ti) = {c=(cj)ji: cjCj(tj) ji}.   
Unlike Harsanyi (1967), we allow a player's action set to depend on the player's type. 
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Let M() denote the set of direct coordination mechanisms  that specify probabilities 
(c|t)0  cC(t), tT,  such that  cC(t) (c|t) = 1 tT. 

For any player i and any type ti in Ti, let 
   Ui(,ti) = tiTi cC(t) (c|t)p(t)ui(c,t),   [terms in prior EUi from when i's type is ti] 
   Ûi(,ci,di,si,ti) = tiTi ciCi(ti) (ci,di|ti,si)p(t)ui(c,t)  ciCi(ti), diCi(si), siTi. 
        [...altered terms where ti reports si and then does ci when di is recommended] 

Any  in M() is incentive compatible (IC) iff it satisfies the incentive constraints: 
   Ui(,ti)  diCi(si) Ûi(,i(di),di,si,ti)  i:Ci(si)Ci(ti), siTi, tiTi, iI. 
Any equilibrium of any communication system is equivalent to an IC mechanism.  [Rev P] 

The above incentive constraints are trivial when si=ti & i(di)=di di, because any 
mechanism  always satisfies  Ui(,ti) = diCi(ti) Ûi(,di,di,ti,ti) ti i.  

A Bayesian game  is an elementary game iff there exists some 0 in M that satisfies all 
nontrivial incentive constraints as strict inequalities (>).  So i, ti, si, i, ci, ei: 

   Ui(0,ti) > diCi(si) Ûi(0,i(di),di,si,ti) if siti, &  Ûi(0,ci,ci,ti,ti) > Ûi(0,ei,ci,ti,ti) if eici. 
Fact 1:  If  is elementary, then almost all IC mechanisms satisfy all nontrivial incentive 

constraints strictly.  (If  does not then (1)+0 does.)  
(Then problems of weak incentives in "imperfect" equilibria can be avoided.) 

A mechanism  in M() is incentive compatible if and only if, for some vector , 
   Ui(,ti)  diCi(si) i(di,si|ti)  siTi, tiTi, iI; and 

   i(di,si|ti)  Ûi(,ci,di,si,ti)  ciCi(ti), diCi(si), siTi, tiTi, iI.  
If  is IC, these constraints can be satisfied with  i(di,si|ti) = maxeiCi(ti) Ûi(,ei,di,si,ti). 
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Consider this primal linear programming problem:  (with artificial variables )  
minimize  i ti i(ti)  over  0 &  &  such that 
   i(ti) + ti c (c|t)p(t)ui(c,t)  diCi(si) i(di,si|ti)  0  siTi, tiTi, iI;  [i(si|ti)] 
   i(di,si|ti)  ti ci (ci,di|ti,si)p(t)ui(c,t)  0  ciCi(ti), diCi(si), si ti i;  [i(ci|di,si|ti)]  
   cC(t) (c|t) = 1  tT.  [(t)]  
The solutions to this LP are the incentive-compatible mechanisms , which exist (Nash) 

and yield optimal value 0, with =0  and  i(di,si|ti) = maxciCi(ti) Ûi(,ci,di,si,ti).   
(Trivial constraints with si=ti & di=ci imply i(ti)  diCi(ti) Ûi(,di,di,ti,ti)  Ui(,ti) = 0.) 

The dual LP problem is:  maximize  t (t)  over  0 &   such that 
   (t) + iI siTi i(si|ti)p(t)ui(c,t) +  
       iI siTi diC(si) i(di|ci,ti|si)p(ti,si)ui((ci,di),(ti,si))  0  cC(t), tT;  [(c|t)] 
   ciCi(ti) i(ci|di,si|ti)  i(si|ti) = 0  diCi(si), siTi, tiTi, iI;  [i(di,si|ti)] 
   siTi i(si|ti) = 1  tiTi,  iI.  [i(ti)]  
Let Ā() denote the set of all vectors  that are optimal dual solutions, with some .  

We may define the aggregate -deviation value at (c,t) to be 
   D(c,t,) = iI siTi diC(si) i(di|ci,ti|si)p(ti,si)ui((ci,di),(ti,si))  iI p(t)ui(c,t). 
Then the first dual constraint is equivalent to:  (t)  D(c,t,)  cC(t), tT. 
Any optimal dual solution has  (t) = mincC(t) D(c,t,) tT,  and  tT (t) = 0.  
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Fact 2:  Given any dual solution  in Ā(), for any mechanism  in M(): 
   iI tiTi siTi diCi(si) ciCi(ti) i(ci|di,si|ti)(Ûi(,ci,di,si,ti)  maxeiCi(ti) Ûi(,ei,di,si,ti)) 
         + iI tiTi siTi i(si|ti)(diCi(si) maxeiCi(ti) Ûi(,ei,di,si,ti)  Ui(,ti))  
      = iI tiTi (siTi diCi(si) ciCi(ti) i(ci|di,si|ti)Ûi(,ci,di,si,ti)  Ui(,ti)) 
      = tT cC(t) (c|t)D(c,t,)  tT (t) = 0. 
The inequality  above must become equality = when  is incentive compatible. 
(Expected net gains of unilateral -deviations from  must have a nonnegative sum.) 

Fact 3: A dual solution  with i(ci|di,si|ti)>0 exists if & only if there exists some 
i:Ci(si)Ci(ti) such that i(di)=ci and every incentive-compatible  satisfies:  

    Ui(,ti) = diCi(si) Ûi(,i(di),di,si,ti)  
         = Ûi(,ci,di,si,ti) + biCi(si),bidi maxaiCi(ti) Ûi(,ai,bi,si,ti). 
(Follows from strict complementary of linear programming solutions.) 
A trivial dual solution has, i ti ci, i(ci|ci,ti|ti)=1 and all other i(ci|di,si|ti)=0. 
Fact 4: Nontrivial dual solutions in Ā() exist if and only if  is not elementary. 

Given any dual solution Ā() and any iI, let *i denote the mechanism such that,  
   (*i)(c|t) = siTi diCi(si) i(ci|di,si|ti) (ci,di|ti,si)  cC(t), tT. 
Then  siTi diCi(si) ciCi(ti) i(ci|di,si|ti)Ûi(,ci,di,si,ti) = Ui(*i,ti). 
So by Fact 2, for any mechanism  in M(),  jI tjTj (Uj(*j,tj)  Uj(,tj))  0. 
But if  is an incentive-compatible mechanism  then  Ui(*i,ti) = Ui(,ti)  tiTi. 
In this sense, i defines a strategy for (mis)reporting i's type and then reacting to any 

recommended action that player i would be willing to apply with any IC mechanism. 
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In this i-manipulative strategy, i(ci|di,si|ti) denotes the probability that i's type ti would 
imitate si with a plan to do ci if di is subsequently recommended, and the overall 
probability of ti imitating si would be  i(si|ti) = ciCi(ti) i(ci|di,si|ti)  diCi(si). 

In any incentive-compatible mechanism, each tiTi is willing to imitate other types si 
with probabilities i(si|ti); but these imitated types might similarly i-imitate others...  

Consider the Markov chain on Ti with transition probabilities i(si|ti) from tiTi to siTi, 
and let Ti/i denote the set of minimal nonempty absorbing sets for this Markov chain. 

These minimal absorbing sets will be i's "reduced-types" in our -reduced game.  

Then for any ti in Ti and any i in Ti/i, let i(i|ti,i) denote the probability that the 
Markov chain ends in the absorbing set i from an initial condition ti.  

These i probabilities are the unique solution to the equations: 
   i(i|ti,i) = siTi i(si|ti)i(i|si,i) tiTi;   
   if tii then i(i|ti,i)=1  ti;  and  
   if iTi/i but ii and sii then i(i|si,i)=0  si, i. 
So a plan for each type ti to report reduced-types i with probabilities i(i|ti,i) would be 

invariant under i-imitations.   
We will interpret i(i|ti,i) as the probability of type ti reporting reduced-type i in the 
-reduced game. 
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Given any reduced-type iTi/i, let  Ω(i) = {tiTi| i(i|ti,i)>0}. 
Let [i|i] denote the i probabilities conditioned on the Markov chain converging to i: 
 [i|i](ci|di,si|ti) = i(ci|di,si|ti)i(i|si,i)/i(i|ti,i)  tiΩ(i). 

When i imitations imply that a reduced-type report i could come from any ti in Ω(i), 
a mediator can only recommend a behavioral strategy i in tiΩ(i) (Ci(ti)). 

A recommendation is invariant under the i manipulation leading to i only if it satisfies 
[i|i]-stationarity:  i(ci|ti) = siΩ(i) diCi(si) i(di|si)[i|i](ci|di,si|ti)  ci, tiΩ(i). 

The support of such an invariant behavioral strategy must be absorbing for [i|i], in the 
sense that: if i(di|si)>0 and [i|i](ci|di,si|ti)>0 then i(ci|ti)>0  tiΩ(i), siΩ(i). 

So we say that a function i is an action subspace on Ω(i) iff  i(ti)Ci(ti)  tiΩ(i).   
We say that an action subspace i is absorbing for [i|i] iff,  
 if dii(si) and [i|i](ci|di,si|ti)>0 then cii(ti) tiΩ(i), siΩ(i). 
An intersection of absorbing subspaces is absorbing,  on all Ω(i) if  on any in i. 

So the minimal absorbing action subspaces select disjoint sets of actions for each ti in i. 
Let Ci/[i|i] denote the set of minimal absorbing action subspaces for [i|i]. 
Ci/[i|i] will be the set of reduced-actions for reduced-type i in our -reduced game.  

Given any i Ci/[i|i], let {i(|i,i,ti,i)}tiΩ(i) be the probability distributions on the 
sets {i(ti)}tiΩ(i) that uniquely satisfy the [i|i]-stationarity equations: 

      i(ci|i,i,ti,i) = siΩ(i) dii(si) i(di|i,i,si,i)i(ci|di,si|ti)i(i|si,i)/i(i|ti,i) 
                    cii(ti), tiΩ(i); 
      cii(ti) i(ci|i,i,ti,i) = 1  tiΩ(i).   
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Interpret i(ci|i,i,ti,i) as probability of action ci for type ti in reduced-action i for i. 

Given any dual solution  for the game , let us define the -reduced game / such 
that the set of players is still I, the set of reduced-types for each player i is Ti/i, the set 
of reduced-actions for any reduced-type i in Ti/i is Ci/[i|i], the probability 
distribution over reduced-types is q such that  

 q() = tT p(t)(jI j(j|tj,j))  jI Tj/j,   and 
   the utility function for each player i is vi such that, jI Tj/j, jI Cj/[j|j]:  
 vi(,) q() = tT cC(t) p(t)(jI j(j|tj,j))(jI j(cj|j,j,tj,j))ui(c,t). 

Any coordination mechanism  for the reduced game / induces a mechanism  for 
the original game such that  

      (c|t) =   (|)(jI j(j|tj,j) j(cj|j,j,tj,j))  cC(t), tT. 
(Here  is summed over the set of reduced-type profiles iI Ti/Ci, and then  is summed 

over the set of reduced-action profiles iI Ci/[i|i] for the reduced-types in .) 

Theorem 1:  If  is a dual solution for , then any incentive-compatible mechanism  for 
the -reduced game / induces an incentive-compatible mechanism  for . 

(By Fact 2, a player in  expects no loss from -deviations when others act as in /...) 

Theorem 2:  For any finite , iterative dual reduction yields an elementary reduced game.   
   (Proof: Use Fact 4...) 
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We let *i denote the mechanism such that, tT, cC(t),  
   (*i)(c|t) = siTi diCi(si) i(ci|di,si|ti)(ci,di|ti,si). 

Then we get  *i =   for all iI.  The proof is as follows: 
   (*i)(c|t) = siTi diCi(si) i(ci|di,si|ti)(ci,di|ti,si) 
      = siTi diCi(si) i(ci|di,si|ti)   (|)i(di|i,i,si,i)i(i|si,i)  
      (ji j(j|tj,i)j(cj|j,j,tj,i))   
      =   (|) siΩ(i) diCi(si) i(di|i,i,si,i)i(ci|di,si|ti)i(i|si,i) 
      (ji j(j|tj,i)j(cj|j,j,tj,i))  
      =   (|)i(ci|i,i,ti,i)i(i|ti,i)(ji j(j|tj,i)j(cj|j,j,tj,i))  
      = (c|t).  

More generally, a mechanism  for  is strategically measurable for player i in the 
reduced game / iff there is some (|) such that  can be written 

      (c|t) = iTi/i iCi/[i|i] (ci,i|ti,i) i(ci|i,i,ti,i) i(i|ti,i)  cC(t), tT. 
Fact 5:  Given Ā(), if M() is strategically measurable for i in / then *i = . 
Proof:   (*i)(c|t) = siTi diCi(si) i(ci|di,si|ti)(ci,di|ti,si) 
        = siTi diCi(si) i i i(ci|di,si|ti)(ci,i|ti,i)i(di|i,i,si,i)i(i|si,i) 
       = i i (ci,i|ti,i) siΩ(i) diCi(si) i(ci|di,si|ti)i(di|i,i,si,i)i(i|si,i)  
      = i i (ci,i|ti,i) i(ci|i,i,ti,i)i(i|ti,i) = (c|t). 
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Proof sketch for Theorem 1: 
We are given  as an incentive-compatible mechanism for the -reduced game /. 
If  were not incentive-compatible for , then there would be some player i who could 

gain by manipulating reports or reactions in some way. 
Let ̃ be a mechanism for  that is induced when everyone other than i is expected to 

behave according to  in the reduced game but player i uses a -optimal strategy for 
reporting and reacting to the -mediator. 

By the Fact 2,  jI tjTj (Uj(*j,tj)  Uj(,tj))  0  for any mechanism .  
But for every player j who acts according to the reduced game, we have ̃*j = ̃. 
Thus, for the deviating player i alone, we have  tiTi (Ui(̃*i,ti)  Ui(̃,ti))  0. 
So ̃*i is also a mechanism in which player i uses a -optimal strategy for reporting and 

reacting, while everyone else still behaves according to  in the reduced game. 
That is, the -optimality of i's behavior is preserved by the i transformation, as long as 

everyone else behaves according to the strategic restrictions of the reduced game /. 
But iterative transformation by i would make i's reporting & reacting strategies 

approach behavior that is feasible in the -reduced game, where honesty and obedience 
to  are optimal for j (as  is IC for all players in the reduced game). 

 
For more proof details, see also:  
https://home.uchicago.edu/~rmyerson/research/eldual2025more.pdf 
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Density of games with transitive dual solutions. 
For any game , we say that a dual solution  is maximal iff its set of strictly positive 

nontrivial components i(ci|di,si|ti)>0 is maximal among all dual solutions in Ā(). 
(The trivial components of  are the components i(ci|ci,ti|ti) for any iI, tiTi, ciCi(ti).)  
We may define the dual magnitude of a game to be the number of nonzero nontrivial 

components in a maximal dual solution for the game.  (So it is 0 if  is elementary.) 

We say that the game  has transitive dual solutions iff, in a maximal dual solution ,  
   iI, {ti,si,ri}Ti, ciCi(ti), diCi(si), eiCi(ri):  
   if i(ci|di,si|ti)>0 & i(di|ei,ri|si)>0 then i(ci|ei,ri|ti)>0. 

Any (I, (Ti)iI, (Ci)iI, p) as above may be called a framework for Bayesian games, which 
can then be defined by specifying a vector of utilities for all players in all outcomes.   

Given this framework, the game defined by a utilities vector u may be denoted (u). 

We say that the type distribution p has full support iff p(t) > 0 for all tT.  

Theorem 3:  Given any framework (I, (Ti)iI, (Ci)iI, p) for Bayesian games, suppose that 
the type distribution p has full support.  Then the set of utility functions u such that 
(u) has transitive dual solutions is dense in the utility space.  

Proof: Given any nonempty open set in the utility space, we can select u in this set so 
that (u) has a dual magnitude (a nonnegative integer) that is minimal in the set.   

Then we can show that this (u) with locally minimal dual magnitude will have transitive 
dual solutions... 
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Let  be any maximal dual solution for (u), which has locally minimal dual magnitude.   
(u) also has an IC mechanism  that is maximally incentive compatible, satisfying with 

strict inequalities all incentive constraints that are strict in any IC mechanism for (u), 
including all incentive constraints from Fact 3 for the zero components in . 

If (u) did not have transitive dual solutions, then we could find some iI and nontrivial 
strictly positive components i(ci|di,si|ti)>0 and i(di|ei,ri|si)>0 such that i(ci|ei,ri|ti)=0. 

(If either of these positive components was trivial, they could not violate transitivity.)  
With Fact 3, the two positive dual variables would give us: 
 Ui(,ti) = Ûi(,ci,di,si,ti) + biCi(si),bidi maxaiCi(ti) Ûi(,ai,bi,si,ti), 
 Ui(,si) = Ûi(,di,ei,ri,si) + biCi(ri),biei maxaiCi(si) Ûi(,ai,bi,ri,si). 
But with i(ci|ei,ri|ti)=0 and  maximally incentive compatible, we would get 

 Ui(,ti) > Ûi(,ci,ei,ri,ti) + biCi(ri),biei maxaiCi(ti) Ûi(,ai,bi,ri,ti). 

Let i:Ci(si)Ci(ti) be such that i(di)=ci and i(bi)argmaxaiCi(ti) Ûi(,ai,bi,si,ti) bidi.   
For any small >0, let us construct ũ to be the same as u except that, ti, bC(ti,si): 
 p(ti,si)ũi(b,(ti,si)) = (1)p(ti,si)ui(b,(ti,si)) +  p(ti,ti)ui((bi,i(bi))),(ti,ti)). 
Then any  that is maximally incentive compatible for (u) would also be incentive 

compatible for (ũ), but its set of strictly satisfied incentive constraints would expand 
in (ũ) to include all constraints that could justify positivity of i(di|ei,ri|si) in Fact 3. 

(In the  term:  ti would strictly lose by reporting ri & planning reaction ci=i(di) to ei.) 
So this construction would yield utility vectors ũ that are in the open set but give (ũ) a 

strictly smaller dual magnitude than (u), contradicting the selection of u.  
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Corollary: We can show that such dual transitivity implies also that: 
   if i(ri|si)>0 and i(si|ti)>0 then i(ri|ti)>0. 

Proof: By the "if" part, for any ei in Ci(ri), we can find diCi(si) and ciCi(ti) such that 
   i(di|ei,ri|si)>0 and i(ci|di,si|ti)>0. 
Then dual transitivity implies i(ci|ei,ri|ti)>0, and so  
   i(ri|ti) = biCi(ti) i(bi|ei,ri|ti) > 0. 
 
Concluding note: 
Dual reduction identifies incentive constraints that are hard to satisfy with strict 

perfection, and it models them as inseparable alternatives in a reduced game. 
A reduced-type may represent a pooling of inseparable types, omitting aspects of the 

player's private information that are socially inaccessible. 
A reduced-action may randomize over inseparable actions in way that is strategically 

conditioned on this socially-inaccessible information. 
Iterative dual reduction of all such inseparable actions and inseparable types yields an 

elementary reduced game where all incentive constraints can be satisfied strictly. 
Thus, dual reduction allows us to analyze games without any knife-edge imperfection 

issues, because any such issues in the original game have been identified and embedded 
into the structure of the reduced game. 

 
https://home.uchicago.edu/~rmyerson/research/eldual2025bayes.pdf 
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Examples with no private information, strategic-form games (as in the 1997 paper): 

 C1: \ C2:     c2    d2 
 c1   3, 2  0, 0 
 d1   0, 0  2, 3 
All incentive constraints can be satisfied strictly with (c1,c2)=0.5=(d1,d2). 
So this game is elementary, and it has no nontrivial dual solutions. 

 C1: \ C2:     c2    d2 
 c1   5, 5  0, 5 
 d1   5, 0  1, 1 
Dual solutions include 1(d1|c1)=1, 1(c1|d1)=0, 2(d2|c2)=1, 2(c2|d2)=0. 
Ci/i = {{di}}.  In the reduced game, the dominated actions c1 and c2 are eliminated. 

 C1: \ C2:     c2    d2   
 c1   7, 0  2, 5     
 d1   4, 3  6, 1 
Dual solutions include  1(d1|c1)=1, 1(c1|d1)=0.4, 2(d2|c2)=0.6, 2(c2|d2)=0.8,  
    and the reduced game has one absorbing set of actions {ci,di} for each player i. 
The -stationary strategies are the unique Nash equilibrium strategies:  
    (2/7)[c1]+(5/7)[d1], (4/7)[c2]+(3/7)[d2].   
The reduced game is 11 with the equilibrium payoffs (4.857, 2.143). 
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Example of a 33 strategic-form game (rock, scissors, paper): 

 C1: \ C2:     c2    d2    e2 
 c1   0, 0  1, 0  0, 1 
 d1   0, 1  0, 0  1, 0 
 e1   1, 0  0, 1  0, 0 

This game has a correlated equilibrium that randomizes uniformly over the six 
nondiagonal outcomes of the game, which satisfies strictly six incentive constraints 
and so implies that every dual solution must have:  

    1(e1|c1)=0, 1(c1|d1)=0, 1(d1|e1)=0, 2(e2|c2)=0, 2(c2|d2)=0, 2(d2|e2)=0. 
But this game is not elementary.  There is a dual solution with:  
    1(d1|c1)=1, 1(e1|d1)=1, 1(c1|e1)=1, 2(d2|c2)=1, 1(e2|d2)=1, 2(c2|e2)=1. 
The dual reduction is the 11 game where each player j's only option is to randomize 

uniformly over {cj,dj,ej}, yielding expected payoffs (1/3, 1/3). 
Thus, dual reduction suggests that the correlated equilibrium that we described above 

may be imperfect in some sense. 
Sensitivity analysis:  Suppose that we change the diagonal payoffs from (0,0) to (,) for some number .   
If  < 0, the game is elementary, as the above correlated equilibrium satisfies all incentive constraints strictly.   
If  > 1, the game is elementary, as (c1,c2)=(d1,d2)=(e1,e2)=1/3 satisfies all incentive constraints strictly.  
If  0 <  < 1,  no incentive constraint can be satisfied strictly, and a dual solution where all nontrivial 

dual variables are strictly positive is:  1(e1|c1)=1(c1|d1)=1(d1|e1)=2(e2|c2)=2(c2|d2)=2(d2|e2)=,  
1(d1|c1)=1(e1|d1)=1(c1|e1)=2(d2|c2)=1(e2|d2)=2(c2|e2)=1. 

These games have nontransitive dual solutions only in two cases: when =0, and when =1. 
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A similar 33 sender-receiver game (one sender with types, one receiver with actions): 
p:   T1:  \  C2:     a2    b2     c2  
1/3    r1    0, 0  1, 0  0, 1   
1/3    s1   0, 1  0, 0  1, 0   
1/3    t1   1, 0  0, 1  0, 0   

An IC  has (b2|r1)=(c2|r1)=0.5, (a2|s1)=(c2|s1)=0.5, (a2|t1)=(b2|t1)=0.5. 
Its six strictly satisfied constraints imply that any dual solution has  
   1(s1|r1)=1(t1|s1)=1(r1|t1)=0 and 2(c2|a2)=2(a2|b2)=2(b2|c2)=0. 

But this game is not elementary.  A dual solution has   
   1(t1|r1)=1(r1|s1)=1(s1|t1)=1 and 2(b2|a2)=2(c2|b2)=2(a2|c2)=1. 
In the reduced game, the sender has one reduced-type (equally likely to be r1, s1, or t1), 

and the receiver has one reduced-action (randomizing uniformly over {a2,b2,c2}). 
Thus, dual reduction suggests that the incentive-compatible mechanism  that we 

described above may be imperfect in some sense. 

Sensitivity analysis: Suppose we change the diagonal elements from (0,0) to (,), for some number . 
If <0, the game is elementary, as the above IC  then satisfies strictly all nontrivial incentive constraints.   
If >1, it is elementary, with '(a2|r1)='(b2|s1)='(c2|t1)=1 satisfying strictly all nontrivial incentive constraints. 
If 0<<1, no incentive constraint can be satisfied strictly, and a dual solution where all nontrivial incentive 

constraints have strictly positive dual variables is: 
    1(s1|r1)=1(t1|s1)=1(r1|t1)=2(c2|a2)=2(a2|b2)=2(b2|c2)=, 
    1(t1|r1)=1(r1|s1)=1(s1|t1)=2(b2|a2)=1(c2|b2)=2(a2|c2)=1. 
These games have nontransitive dual solutions only in two cases: when =0, and when =1. 
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A 34 example with one sender and one receiver: 
   p:    T1:  \  C2:     a2    b2     c2    d2  
  1/3     r1   3, 0  0, 3  0, 3  3, 0   [bad type]  
  1/3     s1   9, 9  8, 8  0, 0  0, 0   [left good type]  
  1/3     t1   0, 0  0, 0  8, 8  9, 9   [right good type]  

Dual solutions include  1(s1|r1) = ,  1(t1|r1) = 1  for  1/3    2/3, 
    2(b2|a2) = 1,  2(c2|d2) = 1,  with all other nontrivial components of  being 0. 

For the symmetric solution =1/2, the reduced game looks like: 
    q:     1's reduced-type:       {b2}      {c2}   
  0.5   {s1}~(2/3)[s1]+(1/3)[r1]  5.33, 6.33      0, 1  
  0.5   {t1}~(2/3)[t1]+(1/3)[r1]       0, 1  5.33, 6.33  

With =1/3, an asymmetric reduced game on one end would be 
   q:     1's reduced-type:     {b2}     {c2}   
  4/9   {s1}~0.75[s1]+0.25[r1]   6, 6.75    0, 0.75  
  5/9   {t1}~0.6[t1]+0.4[r1]    0, 1.2  4.8, 6  

With =2/3, an asymmetric reduced game on the other end would be 
   q:     1's reduced-type:      {b2}     {c2}   
  5/9   {s1}~0.6[s1]+0.4[r1]         4.8, 6     0, 1.2  
  4/9   {t1}~0.75[t1]+0.25[r1]   0, 0.75     6, 6.75  
All these reduced games are elementary, with strict mechanism ({s1}{b2},{t1}{c2}). 
The belief probability of r1 given {1} is  (1/3)1(1|r1)/((1/3)1(1|r1)+(1/3)(1)). 
Belief probabilities of the bad type r1 must be 0.25 to deter a2 & d2.  


