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Borel's fundamental insights in the theory of games  

 Nineteenth-century economic theorists used mathematical optimization models to 

develop a deeper understanding of the rational determinants of supply and demand in markets, 

and game theory follows naturally from such rational choice theory.  In 1838, Augustin Cournot 

studied competitive supply decisions by modeling firms as profit maximizers; and to analyze a 

market with a small number of profit-maximizing suppliers, he developed models which 

introduced game-theoretic analysis into the literature of modern economic theory.  In the decades 

after Cournot, other economists developed models of utility-maximizing consumers to explain 

demand, but the application of these rational-maximizer models was generally limited to the 

analysis of supply and demand in markets.  When economists studied Cournot's oligopoly game, 

its assumption of simultaneous independent decision-making was viewed as a seriously 

restrictive theoretical assumption, because real oligopolists might consider how their actions 

could influence their competitors' future behavior.  So Cournot and his successors did not 

perceive, as we do now, that such game-theoretic models could provide a general theoretical 

framework for analyzing competitive behavior, not only in markets but also in any kind of 

economic, political, or social institutions. 

 The breakthrough came with a paper that Emile Borel presented to the French Académie 

des Sciences a century ago, on December 19, 1921.  Borel approached the study of games with a 

mathematician's instinct for generalization and with a particular focus on questions of probability 

theory.  In the first few paragraphs of this short paper, Borel provided three fundamental insights 

that have been essential to the development of modern game theory. 

 First, Borel introduced the basic concept of strategic normalization of extensive games, 

which enables us to interpret one-stage simultaneous-move strategic-form games as general 

models for any kind of competitive interaction.  The key idea was the modern game-theoretic 

concept of strategy, which was introduced by Borel almost too quickly.  In his first paragraph, 

Borel tells us that, in his game model, each of the given alternatives that a player can choose is to 

be interpreted as a "method of play" or "a code that determines for every possible circumstance 
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what the person should do."  Thus, when we assume that the players will make independent 

choices among their given alternatives, that does not mean that the game does not involve 

opportunities for players to influence each other, because a player's alternatives in our analysis 

could represent strategic plans that could include the player's plans for observable actions that 

might influence others' subsequent behavior and also could include the player's plans for his own 

subsequent responses to observed prior actions of others.  John von Neumann began his 1928 

paper by developing this idea more fully, with an explicit definition of extensive-form games 

which can then be reduced to strategic form, but the basic idea was right there in the first 

paragraph of Borel (1921). 

 In his second paragraph, Borel introduced the idea of a randomized strategy, because he 

understood that there are games where a rational player should not behave in a way that is 

perfectly predictable by others.  Probability theory had developed from the analysis of games 

where uncertainty is generated by dice and cards.  But Borel recognized that, in competitive 

games, a significant component of a player's uncertainty could also be generated by the strategic 

behavior of other players.  Borel introduced randomized strategies as a basic model of how a 

player could create uncertainty about his behavior. 

 In his third paragraph, Borel applied the criterion of expected payoff maximization to 

analyze each player's optimal response to his opponent's randomized strategy.  Borel was able to 

completely justify this criterion, decades before von Neumann and Morgenstern published their 

axiomatic derivation of expected utility, because he assumed that a player's payoff for any 

strategy pair was measured in terms of the player's probability of winning the game, so that the 

expected payoff from a randomized strategy would correspond to the player's ex-ante probability 

of winning.  This idea is actually implicit in our standard justification of expected-payoff 

maximization for general von Neumann-Morgenstern utility scales, where an individual's utility 

for any given outcome can be quantified as the probability p such that the individual would be 

indifferent between this outcome and a simple lottery that gives probability p of the best possible 

outcome and probability 1-p of the worst possible outcome. 

 Using a linear transformation of such win-probability payoffs in a symmetric two-player 

game that will have one winner, Borel (1921) analyzed symmetric two-person zero-sum games.  

He suggested that our analysis should began by iteratively eliminating certain "bad" strategies, 

which were weakly dominated in the game.  He then asserted that, for any symmetric two-person 

zero-sum game where each player has 3 undominated strategies, we can find a randomized 
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strategy such that each player can guarantee himself the fair expected payoff of 0.  In the same 

paragraph, however, Borel also claimed that this result could not be generalized to larger games 

where players have more than 3 strategies.1  So in 1921, Borel correctly asserted that the 

minimax theorem, which von Neumann would prove in 1928, was true for 3x3 symmetric 

games, but Borel also wrongly claimed that this theorem was false for larger games.2  

 

Further development of these insights by von Neumann and Nash   

 In von Neumann's 1928 paper, before proving the minimax theorem, he began by 

formally developing the idea of strategic normalization that Borel had sketched in 1921. 

Von Neumann explicitly developed a general mathematical notation for describing multi-stage 

games in extensive form, and then he showed how any such game can be represented within the 

simpler class of models that we now call strategic-form games, where the players' alternatives 

are strategies for how to play the multi-stage extensive game.  Because these strategies could be 

chosen by the players before they begin their interactions, there is no loss of generality in 

assuming that the players make their strategic choices independently.  Thus, a reader of von 

Neumann's paper could not miss the point that Borel made almost too quickly in 1921: that the 

analysis of one-stage games where players act independently can offer a general framework for 

analyzing rational behavior in any kind of competitive interactions.  But this argument for the 

general assumption of independent strategic decisions was later obscured by von Neumann's 

subsequent emphasis on coalitional analysis for games with more than two players; and so it 

remained for John Nash (1950, 1951) to formulate the basic principles of equilibrium analysis 

for general games. 

 The fact that ex-ante strategic optimization imposes no conditions on a player's responses 

to zero-probability events means that some Nash equilibria of the strategic-form game might 

involve behavior that is recognizably irrational in the extensive form, and so game theorists 

                                                 
1 In the 1953 English translation of Borel (1921) by Leonard J. Savage, the impossibility claim is misprinted as 
being for games with more than 7 strategies.  Perhaps Savage was influenced by his reading of Borel's subsequent 
1927 paper, but the reference to 7x7 games has no precedent in Borel's 1921 paper. 
2 Both claims were asserted without proof in 1921.  In a subsequent 1924 paper, Borel gave a proof of his correct 
assertion about 3x3 games and was more careful to indicate the hypothetical nature of his claim about larger games.  
Weinstein (2022) insightfully analyzes what Borel might have been thinking when he claimed that it seemed easy to 
disprove the minimax theorem.  Weinstein observes that, in a subsequent 1926 paper, Borel explicitly considered a 
conjecture that every symmetric two-person zero-sum game would have a randomized equilibrium in which all pure 
strategies yield the expected payoff 0, but counterexamples to this conjecture can indeed be found even among 4x4 
games with no dominated strategies.  
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subsequently developed refined equilibrium concepts for analysis of dynamic games in extensive 

form.3  But Borel's mathematical ability to see great potential generality in the simple structure 

of one-stage strategic-form games was essential to the development of game theory.  We had to 

understand equilibrium analysis in strategic form before we could develop other refinements and 

generalizations in the much more complicated structures of extensive-form games. 

 From von Neumann's proof of the minimax theorem for two-person zero-sum games and 

Nash's subsequent proof of equilibrium existence for general games, we know that, for any finite 

game, it is possible to make probabilistic predictions about the players' behavior such that each 

player can know what is predicted for others and rationally behave according to prediction 

himself.  As remarked by von Neumann in 1953, Borel's conjecture that many finite games 

would not have such probabilistic equilibria would have meant the impossibility of game theory 

as we know it.  In his pioneering work to demonstrate the power of admitting probabilities into 

our descriptions of rational competitive behavior, Borel nonetheless believed that there would be 

some games where even the mathematics of probability would be inadequate to describe the 

degree of unpredictability that rational behavior would require.   

 This belief was based on Borel's perception that, in many real games, misleading others 

about one's strategy can be an essential component of skillful play.  The best poker players may 

be particularly good at deceiving others when they bluff, but modern game-theoretic analysis has 

generally avoided any assumption that one player can systematically fool the others.  If game 

theory taught that one player should bluff in some manner X when he has a weak hand, then the 

teachings of game theory would equally warn others of the possibility that this action X might 

indicate a weak hand.  A general theory of games that is applicable to all players' decision 

problems cannot promise special analytical advantages to any one player. 

 In essence, the successful development of game theory for social science has been based 

on two fundamental assumptions: that players are rational agents who act to maximize their 

expected payoff given their information, and that players are intelligent enough to know 

everything about their situation that the game theorist knows.4  To satisfy this intelligence 

assumption, game theorists must assume that their model of a game is common knowledge 

                                                 
3 A key advance was the introduction of sequential equilibrium by Kreps and Wilson (1982).   
4 One can argue that, in biological applications, a human game theorist could have a more sophisticated 
understanding of a game than the animals or genes that play it.  But in social science, game theory models are 
formulated by academic theorists to describe the behavior of practical men and women of the world.  People tend to 
be appropriately skeptical of theoretical arguments about markets or politics that depend on the professional experts 
missing something about their business which is supposedly clear to academic theorists. 
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among its players.  These assumptions of rationality and intelligence together lead us to Nash's 

concept of equilibrium.  A complete probabilistic prediction about how the players should 

behave in a game could be rationally fulfilled by each player, when he intelligently understands 

the predicted behavior of others, only if the prediction is a Nash equilibrium.5 

 With this analytical methodology, even if it cannot suggest how a skillful player could 

fool others, game theory has substantial value for helping people to understand how a change in 

the rules of a game could cause the players' behavior to change when they have learned how to 

compete under the new rules.  Much work in social science is aimed at helping us to better 

understand the institutions of our society, so that we can better evaluate proposals for 

institutional reform, but reforming an institution means changing the rules of the game that 

people in the institution will play.  Before the rules have changed, when nobody has had any 

experience with the proposed new rules, it may be unclear how the players' strategies might 

change, and game theory gives us tools to probe these questions.  We want to predict how 

individuals may behave in the institution when the reformed rules have become familiar to them 

and they have an intelligent understanding of their new competitive environment.  When the goal 

of our analysis is to identify institutional reforms that could increase people's welfare, it is 

helpful to assume that each individual always acts rationally to maximize his or her own welfare, 

so that we can separate arguments for reforming the institution from arguments for better 

education of individuals.  Thus, the fundamental assumptions of game theory are well suited to 

such questions, and the generality of game theory's mathematical framework has meant that it 

can be applied to help analyze proposals for reforming the rules of any kind of institution or 

organization in society. 

 

Understanding the equilibrium coordination problem after Nash  

 The early work of Borel and von Neumann focused on two-person zero-sum games, 

where one player's gain would always equal the other player's loss.  In a two-person zero-sum 

game, a player's equilibrium strategies are also maximin strategies which guarantee that this 

player's expected payoff could not be less than his expected payoff in equilibrium, even if the 

other player did not act according to the equilibrium.  In a two-person zero-sum game, if (a1,a2) 

                                                 
5 Aumann (1987) has cogently argued for the more general concept of correlated equilibrium as a fundamental 
implication of Bayesian rationality.  The argument for Nash equilibrium depends on the assumption that all 
opportunities for the players to communicate or share information have been included in the extensive game model, 
so that their pre-play strategic decisions must be independent.  
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and (b1,b2) are two different Nash equilibria, then these equilibria must be equivalent (in the 

sense that each player i gets the same expected payoff ui(a1,a2)=ui(b1,b2) in both equilibria), and 

these equilibria will also be interchangeable (in the sense that (a1,b2) and (b1,a2) are also Nash 

equilibria).  However, these properties do not hold in more general games.   

 In general, a game could have many different equilibria that would yield different payoffs 

for the players.  Such multiplicity of equilibria was initially seen as a disadvantage of Nash's 

solution concept, because it implies that rational players' behavior may not be uniquely 

determined by the economic structure of the game.6  But Thomas Schelling (1960) suggested that 

the existence of games with multiple equilibria is a pervasive fact of life that needs to be studied 

and understood.  In many games, there may be Nash equilibria that yield strictly lower expected 

payoffs for all players than other Pareto-superior Nash equilibria, and then all players would 

prefer to coordinate on one of these Pareto-superior equilibria.  So games with multiple 

equilibria can be useful models for analyzing a society's need for coordination.  This 

fundamental coordination problem could not be recognized as long as game theorists only 

studied two-person zero-sum games.  

 Thus, Schelling taught game theorists to see commitment and coordination as 

fundamental social problems.  Here the commitment problem is that people cannot be expected 

to behave in ways that are not part of a Nash equilibrium, and the coordination problem is that 

people may need guidance in focusing on an equilibrium that is better for them.  Schelling 

argued that such coordination can be provided by any publicly-observed aspect of the social or 

physical environment that tends to focus people's attention on one particular equilibrium.  So 

Nash's theory of equilibria can be a framework for understanding the vital role of culture, 

tradition, and leadership in coordinating people's strategic expectations.7  

 In particular, the basis of power in society may be found in a socially recognized leader's 

ability to designate focal equilibria which then become self-fulfilling directives.  The leader's 

basic choice set is among alternative equilibria in games that have multiple equilibria.  Benefits 

of holding such focal power can be derived from the leader's ability to induce social coordination 

                                                 
6 At one point, Luce and Raiffa (1957, p 104) even suggested that the multiplicity of equilibria in games like the 
Battle of Sexes game, along with the uniqueness of a noncooperative equilibrium for finitely repeated Prisoners' 
Dilemma games, might "sound a death knell" for Nash equilibrium as a principal solution concept for general 
games.  Their concerns about how to interpret the multiplicity of equilibria in coordination games were answered by 
Schelling (1960), and their concerns about the equilibrium analysis of finitely repeated Prisoners' Dilemma games 
were answered by Kreps, Milgrom, Roberts, and Wilson (1982). 
7 An extensive review of these points is in Myerson (2009). 
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on equilibria that are more favorable to the interests of the leader or the leader's clients. 

 Game theorists generally assume that players have consistent strategic expectations, 

because intelligent players should understand any predictions that we make about behavior in 

their game.  Although methodological concerns may have led us to this assumption, it is often 

reasonable to assume such consistency of beliefs in a well-ordered society that has coordinating 

leadership, where people can expect each other to comply with strategic norms that have been 

designated by recognized leaders in their domain of authority.  But this argument suggests 

questions about whether perhaps we should admit a possibility of finding some inconsistency of 

beliefs in divided societies where rival groups are fighting for supreme power.   

 Borel's 1921 paper was written in the aftermath of the First World War, and he expressed 

some hope that game-theoretic analysis could contribute to our understanding of the problems of 

war.  Today there is an extensive literature on game theory and armed conflict, which is 

reviewed in this volume by James Fearon.  Here we may just observe that, when we understand 

war as a struggle for power over the designation of focal equilibria, then game-theoretic 

principles of equilibrium selection may differ depending on whether the players begin the game 

in a state of war or peace.8  Peace is a relationship between nations that have a mutually accepted 

framework for resolving disputes and maintaining consistent strategic expectations in 

transactions between them; but war means that the adversaries cannot agree about how to 

coordinate on equilibria that might be better for them all.  So Pareto-inferior equilibria may be 

more tenable predictions in game models about the potential duration of a war, which is assumed 

to exist at the start of the game, than in game models about the onset of war, where it is assumed 

that the players start with peaceful leadership. 
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