Stochastic Models and Analysis for Resource Management in Server Farms

Thesis Oral

VARUN GUPTA

Advantages of server farm architecture

Data center pods

- + high compute capacity
- + incremental growth
- + fault-tolerance
- + efficient resource utilization

OPIO OPI1 OPI2 OPI3

Multi-core chips

Core4

Corel Core7

- + energy efficiency
- + high parallelism

Supercomputers

Amazon's Cloud

Cloud computing

Array-of-Wimpy-Nodes

Design Choice 2: Which server to assign jobs to?

Front-end load balancer/dispatcher

Back-end servers

Design Choice 3: Scheduling policy for backend servers?

Design Choice 4: When to turn servers on/off for energyefficiency?

Design Choice 1: How many servers to buy? Of what capacity?

Design Choice 2: Load Balancing policy

Front-end load balancer/dispatcher

<u>]</u>

]

Design Choice 4: Dynamic capacity scaling

Design Choice 3:

Scheduling policy

Back-end servers

Design Choice 1: Provisioning/Dimensioning

Design Choice 2: Load Balancing policy

OPTION 1: Trial and error/Simulations

OPTION 2: Worst-case analysis

OPTION 3: Stochastic Modeling

- have estimates for real workloads
- understanding of *"what-if"* scenarios

Design Choice 3: Scheduling policy

Design Choice 4: Dynamic capacity scaling

Design Choice 1: Provisioning/Dimensioning

Manual telephone exchange (< 1900)

Automatic telephone exchange (~1910)

Q: Use observed demand to dimension tel. exchanges

Congestion ⇐ stochastic demand

Manual telephone exchange (< 1900)

Automatic telephone exchange (~1910)

Q: Use observed demand to dimension tel. exchanges

Assumption 1: Call durations are i.i.d. Exponentially distributed random variables

Assumption 2 (Poisson arrivals): Inter-call arrival times are i.i.d. Exponentially distributed

Q: Use observed demand to dimension tel. exchanges

 A_{i+1}

BUT existing queueing models are lacking for computing server farms

- I. Workloads
 - Classic models assume low variability in workload
- II. Architectures
 - Assume First-Come-First-Served servers
 - Scale of traditional applications much smaller than data centers
 - Dynamic capacity scaling not feasible

NEED new analysis and new models

Outline

Part I. Impact of new workloads

- New analysis for a classical multi-server model
- Broader applications of analysis technique

Part II. Impact of new architectures on:

- Concurrency control for servers
- Server management policies for energy-efficiency
- Load balancing

A classic multi-server model

- λ = arrival rate
- job sizes $(S_1, S_2, ...)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda E[S]$

$GOAL: E[W^{M/G/k}]$

k=1

Case : S ~ Exponential (M/M/1) Analyze E[W^{M/M/1}] via Markov chain (easy)

Case: *S* ~ **General** (*M/G/1*) $E[W^{M/G/1}] = \frac{C^2+1}{2}E[W^{M/M/1}]$

 $C^2 = \frac{var(S)}{E[S]^2}$

Sq. Coeff. of Variation (SCV) > 20 for computing workloads

k>1

Case : S ~ Exponential (*M/M/k*) E[*W*^{*M/M/k*}] via Markov chain

Case: S ~ General (*M/G/k*) No exact analysis known

The Gold-standard approximation:

Lee, Longton (1959) $\mathbf{E}[W^{M/G/k}] \approx \frac{C^2 + 1}{2} \mathbf{E}[W^{M/M/k}]$

Outline: Part I

2 moments not enough for $E[W^{M/G/k}]$

Tighter bounds via higher moments of job size distribution

Lee, Longton approximation: $\mathbf{E}[W^{M/G/k}] \approx \frac{C^2 + 1}{2} \mathbf{E}[W^{M/M/k}]$

GOAL: Bounds on approximation ratio

COR.: No approx. for $E[W^{M/G/k}]$ based on first two moments of job sizes can be accurate for all distributions when C^2 is large

PROOF: Analyze limit distributions in $D_2 \equiv$ mixture of 2 points

Approximations using higher moments?

Outline: Part I

2 moments not enough for $E[W^{M/G/k}]$

Tighter bounds via higher moments of job size distribution

GOAL: Identify the "extremal" distributions with given moments

RELAXED GOAL: Extremal distributions in some "non-trivial" asymptotic regime **IDEA:** Light-traffic asymptotics ($\lambda \rightarrow 0$)

GOAL: Tight bounds on E[*W*^{*M*/*G*/*k*}] given *n* moments of *S* **IDEA:** Identify extremal distributions

RELAXATION: Light Traffic

 $\lambda \rightarrow 0$

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable X with support [0,B] $E[X^{0}] = m_{0}$ $E[X^{1}] = m_{1}$ \dots $E[X^{n}] = m_{n}$

Principal Representations (p.r.) on [0,B] are distributions satisfying the moment conditions, and the following constraints on the support

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable X with support [0,B]

Want to bound: E[g(X)]

 $E[X^{0}]=m_{0}$ $E[X^{1}]=m_{1}$ \dots $E[X^{n}]=m_{n}$

THEOREM [Markov-Krein]:

If $\{x^0,...,x^n,g(x)\}$ is a Tchebycheff-system on [0,B], then E[g(X)] is extremized by the unique lower and upper principal representations of the moment sequence $\{m_0,...,m_n\}$.

Simulation Results (k=4, ρ =2.4,)

Approximation Schema:

Refine lower bound via an additional odd moment, Upper bound via even moment until gap is acceptable

Outline: Part I

2 moments not enough for $E[W^{M/G/k}]$

Tighter bounds via higher moments of job size distribution

Many other "hard" queueing systems fit the approximation schema

Other queuing systems exhibiting Markov-Krein characterization

Example 1: M/G/1 Round-robin queue

Need analysis to find q that balance overheads/performance

THEOREM: Upper and lower p.r. extremize mean response time under $\lambda \rightarrow 0$, when S is a mixture of Exponentials.

Other queuing systems exhibiting Markov-Krein characterization

Example 2: Systems with fluctuating load

THEOREM: Upper and lower p.r. extremize mean waiting time under $\alpha \rightarrow 0$, when T_{μ} , T_{L} are mixtures of Exponentials.

Outline

Part I. Impact of new workloads

- New analysis for a classical multi-server model
- Broader applications of analysis technique

Part II. Impact of new architectures on:

- Concurrency control for servers
- Dynamic server management for energy-efficiency
- Load balancing

Application: Concurrency control in database servers

Contribution 1: Heuristic concurrency control algorithm under static arrival rate

Contribution 2: A simple traffic-oblivious heuristic

Application: Load Balancing in web server farms

Contribution 1: Join-the-Shortest-Queue (JSQ) near optimal for homogeneous servers

Contribution 2: JSQ is optimal for heterogeneous servers as size $\rightarrow \infty$

Contribution 3: First closed-form approximation for JSQ in many-servers regime

Application: Dynamic capacity scaling for enery-efficiency

No existing analysis for multi-server systems with setup delays

Contribution: A new traffic-oblivious policy **DELAYEDOFF**

DELAYEDOFF also extends to

- Heterogeneous servers
- •Virtual Machine management

Stochastic modeling a powerful tool to analyze and optimize computer systems...

...but need new techniques to handle the new applications

• New workloads \Rightarrow new analysis

• New architectures \Rightarrow new models

References V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. Analysis of join-the-shortest-queue routing for web server [Performance'07] farms. PERFORMANCE 2007 [Performance'10] V. Gupta, A. Gandhi, M. Harchol-Balter, and M. Kozuch. Optimality analysis of energy-performance trade-off for server farm management. PERFORMANCE 2010. [QUESTA'10] V. Gupta, J. Dai, M. Harchol-Balter, and B. Zwart. On the inapproximability of M/G/K: why two moments of job size distribution are not enough. Queueing Systems, Vol 64, 2010. [TR'08] V. Gupta, J. Dai, M. Harchol-Balter, and B. Zwart. The effect of higher moments of job size distribution on the performance of an M/G/K queueing system. Technical Report ,CMU, 2008. V. Gupta and M. Harchol-Balter. Self-adaptive admission control policies for resource-sharing systems. SIGMETRICS [Sigmetrics'09] 2009. V. Gupta and T. Osogami, On Markov-Krein characterization of mean sojourn time in M/G/K. [QUESTA'11]

Other Work

Time-varying systems	[Sigmetrics'06]	V. Gupta, M. Harchol-Balter, A. Scheller-Wolf, and U. Yechiali. Fundamental characteristics of queue with fluctuating load. Sigmetrics 2006	es
	[MAMA'08a]	V. Gupta, and P. Harrison. Fluid level in a reservoir with ON-OFF source. MAMA 2008.	
Single Server Scheduling	[MAMA'08b]	V. Gupta. Finding the optimal quantum size: Sensitivity analysis of the M/G/1 round-robin queue. MAMA 2008.	
	[Performance'10b]	V. Gupta, M. Burroughs, and M. Harchol-Balter. Analysis of scheduling policies under correlated job sizes. Performance 2010.	
Distributed Data placement	[INFOCOM'10]	S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for Content Distribution Networks. INFOCOM 2010.	
	[SOCC'10]	H. Amur, J. Cipar, V. Gupta, M. Kozuch, G.Ganger, and K. Schwan, Robust and flexible power- proportional storage. Symposium on Cloud Computing, 2010.	
Epidemics	[INFOCOM'08]	M. Vojnovic, V. Gupta, T. Karagiannis, and C. Gkantsidis. Sampling strategies for epidemic-style information dissemination. INFOCOM 2008.	
Stability analysis		A. Busic, V.Gupta, and J. Mairesse. Stability of the bipartite matching model. Under Submission	3