
Optimizing Resource Sharing Systems

VARUN GUPTA

Carnegie Mellon University

Based on papers co-authored with:

JIM DAI
Georgia Tech

MOR HARCHOL-BALTER
Carnegie Mellon

KARL SIGMAN, WARD WHITT
Columbia University

BERT ZWART
CWI, Netherlands

2

Resource sharing systems are everywhere…

CPU cycles by
OS task scheduler

I/O+CPU+Bandwidth
by Web servers

Wireless channel
by WAPs

…and you!

Benefits of
resource sharing?

3

Why resource sharing: A queueing theory primer

First-Come-First-Served
(FCFS)

Processor Sharing
(PS)

arrivals
arrivals

Earliest job to arrive is served until completed n jobs each job gets 1/n capacity

Which has smaller mean response time?

 PS FCFS

3+3+6=12 4+5+6=15

4

Why resource sharing: A queueing theory primer

First-Come-First-Served
(FCFS)

Processor Sharing
(PS)

arrivals
arrivals

Earliest job to arrive is served until completed n jobs each job gets 1/n capacity

Now which has smaller mean response time?

 PS FCFS

6+6+6=18 2+4+6=12

5

Why resource sharing: A queueing theory primer

First-Come-First-Served
(FCFS)

Processor Sharing
(PS)

arrivals
arrivals

Earliest job to arrive is served until completed n jobs each job gets 1/n capacity

 Good for high job-size variability Good for low job-size variability

6

Why resource sharing: A queueing theory primer

First-Come-First-Served
(M/G/1/FCFS)

Processor Sharing
(M/G/1/PS)

Poisson arrivals

Earliest job to arrive is served until completed n jobs each job gets 1/n capacity

 Good for high job-size variability Good for low job-size variability

Job sizes i.i.d. X

Poisson arrivals

Job sizes i.i.d. X

measure of system utilization measure of job size variability

UNIX process lifetimes: C2 > 40

Files transferred over Internet: C2 > 25 Variability matters! }

8

Real world ≠ Ideal theoretical policies

Reality check 1: Context-switch overheads

 Quantum-based Round-Robin

 How to choose the optimal quantum size?

Reality check 2: Thrashing

 Impose a Multi-Programming-Limit (MPL)

 How to choose the optimal MPL?

Reality check 3: Load balancing in server farms

 How do load-balancing algorithms interact with servers?

 What are good load-balancing algorithms?

!

?

!

?

?

?

9

Quantum-based Round-Robin (RR)

External
arrivals

Incomplete
jobs

Completed
jobs

Jobs served for q units at a
time

h units of context-switch

overhead after every quantum

10

Quantum-based Round-Robin (RR)

External
arrivals

Incomplete
jobs

Completed
jobs

Jobs served for q units at a
time

h units of context-switch

overhead after every quantum

11

M/G/1/RR

M/G/1/PS M/G/1/FCFS

q,h
q → 0
h = 0

q =
h = 0

 Context-switches cause overhead Variable job sizes cause long delays

small q large q

12

A hammer for most occasions,

- Exp(γ) Exponential distribution

- easy to analyze Markov chains

- H* captures the key phenomenon of (frequent) small vs. (rare) big jobs

...the H* job-size distribution

- 2 degrees of freedom

- Can match any E[X] and C2 ≥ 1

For many systems (all cases in this talk), H* provides a good
approximation for mean response time.

14

 For high C2: E[TRR] ≈ E[TPS](1+ ρq/E[X])

Step 1: M/G/1/RR with no overheads

q

C2

0 ∞

∞ 1

15

Step 2: Optimizing q

1. System with context-switch overhead h → a system with no overheads

• New quantum size = q+h

• Stretch job sizes by a factor (1+h/q)

2. OPT quantum

Common case: h E[X]

q* is a simple function
of h, E[X] and

utilization

EXAMPLE: Linux context switch time ≈ 5 microseconds

Assume: mean job size = 5 sec, 80% utilization
q* ≈ 15 msec

Actual Linux quantum size = between 10 and 200 msec

16

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

service quantum (q)

M
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

E[X] = 1, C2 = 19, = 0.8

h=0

approximation q*

 optimum q

17

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

service quantum (q)

M
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

E[X] = 1, C2 = 19, = 0.8

1%

h=0

approximation q*

 optimum q

18

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

service quantum (q)

M
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

E[X] = 1, C2 = 19, = 0.8

1%

5%

h=0

approximation q*

 optimum q

19

service quantum (q)

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

M
e
a
n

 r
e
s
p

o
n

s
e
 t

im
e

1%

5%

10%

h=0

approximation q*

 optimum q

E[X] = 1, C2 = 19, = 0.8

1. Effect of context-switch overheads can be significant
- performance quite far from ideal PS

2. Choosing too small a q is very bad, OK to err towards larger q
3. Performance of q* close to OPT

20

Real world ≠ Ideal theoretical policies

Reality check 1: Context-switch overheads

 Quantum-based Round-Robin

 How to choose the optimal quantum size?

Reality check 2: Thrashing

 Impose a Multi-Programming-Limit (MPL)

 How to choose the optimal MPL?

Reality check 3: Load balancing in server farms

 How do load-balancing algorithms interact with servers?

 What are good load-balancing algorithms?

!

?

!

?

?

?

21

Real world ≠ Ideal theoretical policies

Reality check 1: Context-switch overheads

 Quantum-based Round-Robin

 How to choose the optimal quantum size?

Reality check 2: Thrashing

 Impose a Multi-Programming-Limit (MPL)

 How to choose the optimal MPL?

Reality check 3: Load balancing in server farms

 How do load-balancing algorithms interact with servers?

 What are good load-balancing algorithms?

!

?

!

?

?

?

Tale of a typical server

concurrent threads/txns

Efficiency

(useful work
per second)

thrashing

Server Active
tasks

Tasks not-yet-started

Q: Max number of tasks allowed to share server?

Admission
Control

K*

Common solution: K*

23

A Queueing-theoretic model

PS
server

jobs at server (n)

Speed
(n)

K*

24

A Queueing-theoretic model

PS
server

1

2

K

K = MPL

jobs at server (n)

Speed
(n)

K*

FCFS buffer

The M/G/PS-MPL model

• Poisson(λ) arrival process
• Job sizes i.i.d. ~ X

• Sizes unknown, distribution of X known

GOAL: Find MPL (i.e. K) to minimize mean response time

:

Optimal MPL= K* ?

0.25

0.5

0.75

1

1.25

0 5 10 15 20 25

jobs at server (n)

speed
(n)

K*=5

Exponential job sizes (C2 = 1)

Weibull job sizes (C2 = 19)

3

4

5

6

7

4 6 8 10 12 14 16

2.75

3

3.25

4 6 8 10 12 14 16

M
ea

n
 r

es
p

o
n

se
 t

im
e

MPL

MPL

M
ea

n
 r

es
p

o
n

se
 t

im
e

K*

K*

OPT MPL

OPT MPL

Example

Poisson(0.8) arrival process

45%
improvement

Optimal MPL= K* ?

0.25

0.5

0.75

1

1.25

0 5 10 15 20 25

jobs at server (n)

speed
(n)

K*=5

Exponential job sizes (C2 = 1)

Weibull job sizes (C2 = 19)

3

4

5

6

7

4 6 8 10 12 14 16

2.75

3

3.25

4 6 8 10 12 14 16

M
ea

n
 r

es
p

o
n

se
 t

im
e

MPL

MPL

M
ea

n
 r

es
p

o
n

se
 t

im
e

K*

K*

OPT MPL

Example

Poisson(0.8) arrival process

DEPENDS!

OPT MPL

45%
improvement

27

Intuition for the effect of MPL

server

FCFS
Processor

Sharing (PS)
Increasing

MPL

High job-size variability
(C2)

High arrival rate
()

0.25

0.5

0.75

1

1.25

0 5 10 15 20 25

jobs at server (n)

speed
(n)

K*

28

Intuition for the effect of MPL

server

FCFS
Processor

Sharing (PS)
Increasing

MPL

High job-size variability
(C2)

High arrival rate
()

Optimal MPL ↑ C2 ↑

Arrival rate ↑ Optimal MPL → K*

29

Step 1: M/G/PS-MPL approximation

Approximation assumption:

Job size distribution ~ H*

PS
(n)

1

2

K

FCFS buffer

30

Step 2: Optimizing MPL

Set MPL = MPL*, where:

31

3

4

5

6

7

8

4 6 8 10 12 14 16 18

7

9

11

13

4 6 8 10 12 14 16

• Our approx accurately predicts
the behavior of the curve, and
hence the correct MPL

• Higher arrival rate MPL*
decreases

Poisson(0.8) arrivals

Poisson(0.9) arrivals

0.25

0.5

0.75

1

1.25

0 5 10 15 20 25

jobs at server (n)

speed
(n)

MPL

MPL

M
ea

n
 R

es
p

. T
im

e

M
ea

n
 R

es
p

. T
im

e

Weibull (C2=19)

Weibull (C2=19)

K*

K*

MPL*

MPL*

K* gives 25% worse performance than MPL*

K* gives 45% worse performance than MPL*

Our approx.

Our approx.

32

Going even further…

• Straw man proposal 1: Choose a “robust” static MPL

– Must choose MPL=K* : but suboptimal in light/moderate traffic

• Straw man proposal 2: Learn the arrival rate

– Can’t adapt to changes on small scale/correlations

We Demonstrate: A Dynamic MPL control policy which is

 1. Traffic-oblivious: self-adapts to variations in the arrival process

 2. Light-weight: makes decisions based only on current queue length, Q(t),
and current MPL, K(t)

I don’t know the arrival rate!!

My arrivals are not Poisson!!

33

Structure of our dynamic policy

• obtained by combining policy iteration with some new tricks (happy to
discuss offline)

• robust to unknown and non-Poisson arrival processes
– 20% performance loss in the worst case (compared to the optimal traffic-

aware MPL)
– MPL=K* becomes worse under non-Poisson arrivals

0

5

10

15

20

25

0 10 20 30 40 50

Current Queue Length

Current MPL MPL ↓

MPL ↑ K*=

34

What we’ve learnt…

• Running the system at maximum efficiency is not optimal for
mean response time
– At moderate arrival rate: MPL > K* can result in more than 45%

smaller mean response time

• If don’t know arrival process: a dynamic policy can self-adapt
while only knowing current queue length and MPL

Job-size
variability

Loss in efficiency
at high MPL

large MPL
(PS)

small MPL
(FCFS)

PS

M/G/PS-MPL

MPL

35

Real world ≠ Ideal theoretical policies

Reality check 1: Context-switch overheads

 Quantum-based Round-Robin

 How to choose the optimal quantum size?

Reality check 2: Thrashing

 Impose a Multi-Programming-Limit (MPL)

 How to choose the optimal MPL?

Reality check 3: Load balancing in server farms

 How do load-balancing algorithms interact with servers?

 What are good load-balancing algorithms?

!

?

!

?

?

?

36

Real world ≠ Ideal theoretical policies

Reality check 1: Context-switch overheads

 Quantum-based Round-Robin

 How to choose the optimal quantum size?

Reality check 2: Thrashing

 Impose a Multi-Programming-Limit (MPL)

 How to choose the optimal MPL?

Reality check 3: Load balancing in server farms

 How do load-balancing algorithms interact with servers?

 What are good load-balancing algorithms?

!

?

!

?

?

?

37

A typical Web server farm

Commodity servers

Load Balancer
(Immediate Dispatch)

Timeshare service
among current

requests

38

Model: PS server farm

Commodity servers

(Immediate Dispatch)

Load Balancer

Timeshare service
among current

requests

39

Model: PS server farm

(Immediate Dispatch)

PS

PS

PS

• K homogeneous, PS servers

Load Balancer

40

Model: PS server farm

PS

PS

PS

Immediate
Dispatch

Poisson

Rate

• K homogeneous, PS servers
• Poisson arrivals
• Job sizes i.i.d. ~ X

41

Model: PS server farm

PS

PS

PS

Immediate
Dispatch

Poisson

Rate

GOAL
 Good Load balancing algorithms for PS server farms

42

arrivals Load
Balancer

arrivals Load
Balancer

Which is a good FCFS load balancer?
(Hint: your local supermarket)

 Random
 Round-Robin
 Least-Work-Left
 Size-based-splitting
 Shortest Queue

PS server farms FCFS server farms vs.

43

PS server farms

arrivals Load
Balancer

arrivals Load
Balancer

Which is a good FCFS load balancer?
(Hint: your local supermarket)

 Random
 Round-Robin
 Least-Work-Left
 Size-based-splitting
 Shortest Queue

Why?

Which is a good PS load balancer?

 Random
 Round-Robin
 Least-Work-Left
 Size-based-splitting
 Shortest Queue

 reduces C2

 greedy!

same
perf.

 greedy!

FCFS server farms vs.

44

10

12

14

16

18

20

M
e

an
 R

e
sp

o
n

se
 T

im
e

SQ

???
PS

PS

Increasing variability

C2=0 C2=25

45

10

12

14

16

18

20
RANDOM/
Size-Based

SQ

???
PS

PS

Increasing variability

E[T] under SQ/PS is “nearly insensitive” to
the variability of job size distribution

M
e

an
 R

e
sp

o
n

se
 T

im
e

C2=0 C2=25

46

10

12

14

16

18

20
RANDOM/
Size-Based

R-R

SQ

???
PS

PS

Increasing variability

E[T] under SQ/PS is “nearly insensitive” to
the variability of job size distribution

M
e

an
 R

e
sp

o
n

se
 T

im
e

C2=0 C2=25

47

10

12

14

16

18

20
RANDOM/
Size-Based

R-R

LWL

SQ

???
PS

PS

Increasing variability

E[T] under SQ/PS is “nearly insensitive” to
the variability of job size distribution

M
e

an
 R

e
sp

o
n

se
 T

im
e

C2=0 C2=25 CONJECTURE: SQ load balancer is “nearly optimal” for PS servers

48

What we’ve learnt…

• Good load balancers for FCFS and PS servers are different!
– Least-Work-Left and Size-based-splitting are bad for PS !

• Shortest Queue (SQ) load balancing is ‘near-optimal’ for PS
servers
– Independent of job size distribution

• Shortest Queue (SQ) load balancing ‘preserves’ insensitivity of
PS to job-size variability

???
PS

PS

49

Bridging the gap between practice and theory

1: Quantum-based Round-
Robin

2: Systems with thrashing

3: Load balancing for PS
server farms

- Overheads matter – Ideal PS a bad
model
- Right quantum size is important
- We give expression for OPT quantum

- Running system at max efficiency not
always optimal
- We find OPT MPL
- Dynamic policies can self-adapt to
unknown arrival processes

- Scheduling policy of backend servers
is integral for choosing load balancer

- Shortest Queue (SQ) is near optimal
for PS servers – independent of job size
distribution

