Analysis of Scheduling Policies Under Correlated Job Sizes

VARUN GUPTA

Carnegie Mellon University

With:

Michelle Burroughs (CMU)

Mor Harchol-Balter (CMU)

- Mean response time
- Tail of response time
- Buffer overflow prob.
- Prioritized service

· . . .

Scheduling = which job to serve to optimize performance

A typical paper:

We analyze [the metric] under [the scheduling policy]. We assume that the job sizes are i.i.d. and find that [the scheduling policy is good].

Our Message:

size-independent

Correlation in sizes hugely impacts "qualitative properties" of policies

Optimality

Effect of job size distribution

Correlation in sizes is important!

auto-correlation functions from traces

Recall:

correlation(X,Y) = 0 \Rightarrow X,Y are *linearly independent* correlation(X,Y) = 1 \Rightarrow X = cY

Correlation in sizes is important!

Recall:

correlation(X,Y) = 0 \Rightarrow X,Y are *linearly independent* correlation(X,Y) = 1 \Rightarrow X = cY

Most of existing scheduling theory

This talk

- Analysis of common policies (mean response time)
 - Impact of correlation on qualitative properties

i.i.d. high correlation

1. Scheduling theory refresher

3. Analysis of common scheduling policies

4. Simulation results

2. Analytically tractable correlation model

Scheduling refresher for *i.i.d.* job sizes (and Poisson arrivals)

1. Scheduling theory refresher

3. Analysis of common scheduling policies

4. Simulation results

2. Analytically tractable correlation model

A Markov-Modulated correlation model

this talk:
$$\frac{\lambda}{\mu_H} > 1 > \frac{\lambda}{\mu_L}$$

lag *n* correlation =
$$\frac{var(X)}{2E[X^2]} \left(\frac{\lambda}{\lambda + \alpha}\right)^n$$

1. Scheduling theory refresher

3. Analysis of common size-independent scheduling policies

4. Simulation results

Analysis Roadmap

- Warm-up: Analysis of workload
 - FCFS

A hypothetical OPT policy

Preemptive LCFS

Least-Attained-Service

Warm-up: fluid analysis of workload

$$\left(\frac{\lambda}{\mu_H} > 1 > \frac{\lambda}{\mu_L}\right)$$

Warm-up: fluid analysis of workload

$$\left(\frac{\lambda}{\mu_H} > 1 > \frac{\lambda}{\mu_L}\right)$$

Warm-up: fluid analysis of workload

For all policies, workload

$$\mathrm{E}[W] \sim \frac{w}{\alpha}$$

For policy π :

$$\mathrm{E}[T^{\pi}] \sim \frac{K^{\pi}}{\alpha}$$

For FCFS (by PASTA): $\mathrm{E}[T^{\scriptscriptstyle\mathrm{FCFS}}] \sim \frac{w}{lpha}$

Analysis Roadmap

- Warm-up: Workload analysis
 - FCFS

$$\mathrm{E}[T^{\pi}] \sim \frac{K^{\pi}}{\alpha}$$
 $\mathrm{E}[T^{\mathrm{FCFS}}] \sim \mathrm{E}[W] \sim \frac{w}{\alpha}$

A hypothetical OPT policy

Preemptive LCFS

Least-Attained-Service

A hypothetical OPT policy

OPT: preemptive priority to (little) L jobs

Lower bound on the best "predictive" policy

For L jobs: $E[T_L^{OPT}] = O(1)$

 $E[T_L^{OPT}]$ is bounded as $\alpha \rightarrow 0$

- ⇒ Workload almost entirely from H jobs
- $\Rightarrow E[\# \text{ of jobs}] \sim \mu_H \cdot E[W]$
- $\Rightarrow \mathrm{E}[T^{\mathrm{OPT}}] \sim \mu_H \cdot \mathrm{E}[W]/\lambda$

Analysis Roadmap

- Warm-up: Workload analysis
 - FCFS

A hypothetical OPT policy

$$\mathrm{E}[T^{\pi}] \sim \frac{K^{\pi}}{\alpha}$$
 $\mathrm{E}[T^{\mathrm{FCFS}}] \sim \mathrm{E}[W] \sim \frac{w}{\alpha}$

$$\mathrm{E}[T_L^{\mathrm{OPT}}] = O(1)$$

 $\mathrm{E}[T^{\mathrm{OPT}}] \sim \frac{\mu_H}{\lambda} \cdot \frac{w}{\alpha}$

Preemptive LCFS

Least-Attained-Service

Preemptive Last-Come-First-Served

THEOREM: $E[T_L^{PLCFS}]=O(1)$ **COR:** $E[T^{PLCFS}] \sim E[T^{OPT}]$

 $\overline{E[T_1]} = \overline{O(1/\alpha)}$

19

Analysis Roadmap

- Warm-up: Workload analysis
 - FCFS

$$\mathrm{E}[T^{\pi}] \sim \frac{K^{\pi}}{\alpha}$$
 $\mathrm{E}[T^{\mathrm{FCFS}}] \sim \mathrm{E}[W] \sim \frac{w}{\alpha}$

A hypothetical OPT policy

$$\mathrm{E}[T_L^{\mathrm{OPT}}] = O(1)$$

$$E[T^{OPT}] \sim \frac{\mu_H}{\lambda} \cdot \frac{w}{\alpha}$$

Preemptive LCFS

$$E[T_L^{\text{\tiny PLCFS}}] = O(1)$$

PLCFS is asymptotically OPT

Least-Attained-Service

Least-Attained-Service

THEOREM: $\mathrm{E}[T_L^{\mathrm{LAS}}] \sim \frac{\kappa}{lpha}$ Cor.: L

COR.: LAS strictly suboptimal

Least-Attained-Service

THEOREM: $\mathrm{E}[T_L^{\mathrm{LAS}}] \sim \frac{\kappa}{\alpha}$

COR.: LAS strictly suboptimal

Response time of tagged job of size x =time until empty under modified job sizes

Consider tagged L job of size
$$x > x^* = \frac{1}{\mu_H} \log \left(\frac{\mu_H}{\lambda - \mu_H} \right)$$

- ⇒ tagged job sees overloaded H states
- \Rightarrow Response time of tagged job = $\Omega(1/\alpha)$

Analysis Roadmap

- Warm-up: Workload analysis
 - FCFS

$$\mathrm{E}[T^{\pi}] \sim \frac{K^{\pi}}{\alpha}$$
 $\mathrm{E}[T^{\mathrm{FCFS}}] \sim \mathrm{E}[W] \sim \frac{w}{\alpha}$

A hypothetical OPT policy

$$\mathrm{E}[T_L^{\mathrm{OPT}}] = O(1)$$

 $\mathrm{E}[T^{\mathrm{OPT}}] \sim \frac{\mu_H}{\lambda} \cdot \frac{w}{\alpha}$

Preemptive LCFS

$$E[T_L^{\text{\tiny PLCFS}}] = O(1)$$

PLCFS is asymptotically OPT

opposite of i.i.d. case

Least-Attained-Service

LAS is strictly suboptimal

1. Scheduling theory refresher

3. Analysis of common scheduling policies

4. Simulation results

Fluid Workload

Busy period analysis

ODEs

Mean Response time

Mean Response time

Response time of "Little" jobs

Simulation Results

- LCFS, PLCFS overtake LAS very slowly
- \circ LAS or PLCFS are near-optimal for all α

Conclusions

- Qualitative properties of scheduling policies vastly different under i.i.d. and correlated job sizes
- Challenges in modeling correlation
 - performance not just a function of auto-correlation function
- Simple size/correlation-oblivious policies