Tight Moments-based Bounds for Queueing Systems

VARUN GUPTA

Carnegie Mellon \longrightarrow Google Research $-->$ University of Chicago

 Booth School of BusinessWith:
Takayuki Osogami
(IBM Research-Tokyo)

The M/G/k/FCFS model

The M/G/k/FCFS model

The M/G/k/FCFS model

First-Come-First-Serve

Homogeneous servers

The M/G/k/FCFS model

First-Come-First-Serve

Poisson(λ)

Homogeneous servers

- $\lambda=$ arrival rate

The M/G/k/FCFS model

First-Come-First-Serve Buffer

Poisson(λ)

Homogeneous servers

- $\lambda=$ arrival rate
- job sizes $\left(S_{1}, S_{2}, \ldots\right)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda E[S]$

The M/G/k/FCFS model

First-Come-First-Serve

Homogeneous servers

- $\lambda=$ arrival rate
- job sizes $\left(S_{1}, S_{2}, \ldots\right)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda \mathrm{E}[S]$

GOAL : E[$\left.W^{M / G / k}\right]$

$\mathrm{k}=1$

Case: S ~ Exponential (M/M/1) Analyze $\mathrm{E}\left[W^{\text {MM/ } / 1}\right]$ via Markov chain (easy)

Case: S ~ General (M/G/1)
$\mathrm{E}\left[W^{M / G / 1}\right]=\frac{C^{2}+1}{2} \mathrm{E}\left[W^{M / M / 1}\right]$

$$
C^{2}=\frac{\operatorname{var}(S)}{E[S]^{2}}
$$

Sq. Coeff. of Variation (SCV) >20 for computing workloads

k>1

Case: S ~ Exponential (M/M/k) $\mathrm{E}\left[W^{\text {M/MK }}\right]$ via Markov chain

Case: S ~ General (M/G/k)
No exact analysis known
The Gold-standard approximation:
Lee, Longton (1959)
$\mathrm{E}\left[W^{M / G / k}\right] \approx \frac{C^{2}+1}{2} \mathrm{E}\left[W^{M / M / k}\right]$

Lee, Longton approximation:
$\mathrm{E}\left[W^{M / G / k}\right] \approx \frac{C^{2}+1}{2} \mathrm{E}\left[W^{M / M / k}\right]$

\& Simple
Exact for $k=1$
Can not provision using this approximation!
\& Asymptotically tight as $\rho \rightarrow k$ (Antral Limit Inm.)

Outline

2 moments not enough for E[WMCAK]
Tighter bounds via higher moments of job size distribution

Lee, Longton approximation:
$\mathrm{E}\left[W^{M / G / k}\right] \approx \frac{C^{2}+1}{2} \mathrm{E}\left[W^{M / M / k}\right]$

GOAL: Bounds on approximation ratio
\{G | 2 moments\}

\{G | 2 moments\}

THEOREM: If $\rho<k-1$, Gap >= $\left(C^{2}+1\right) X$

$\mathrm{E}\left[W^{\mathrm{M} / G / 4}\right]$

COR.: No approx. for E[$\left.W^{M / G / k}\right]$ based on first two moments of job sizes can be accurate for all distributions when C^{2} is large

PROOF: Analyze limit distributions in $D_{2} \equiv$ mixture of 2 points Min $3^{\text {rd }}$ moment

Approximations using higher moments?

Outline

2 moments not enough for E[WMCAK]
Tighter bounds via higher moments of job size distribution

Exploiting higher moments

GOAL: Identify the "extremal" distributions with given moments
RELAXED GOAL: Extremal distributions in some "non-trivial" asymptotic regime
IDEA: Light-traffic asymptotics $(\lambda \rightarrow 0)$

RELAXATION: Identify the "extremal" distributions in light traffic

Light traffic theorem for $M / G / k$ [Burman Smith]:

$$
\mathrm{E}\left[W^{M / G / k}\right]=\frac{\rho^{k}}{k!} \mathrm{E}\left[\min \left\{S_{e_{1}}, S_{e_{2}}, \ldots, S_{e_{k}}\right\}\right]+o\left(\rho^{k}\right)
$$

Probability of finding all servers busy

i.i.d. copies of $S_{e} \equiv$ equilibrium excess of S

$$
\text { pdf of } S_{e}: f_{S_{e}}(x)=\frac{\operatorname{Prob}[S \geq x]}{\mathrm{E}[S]}
$$

SUBGOAL: Extremal distributions for E[min $\left.\left\{S_{e 1}, \ldots, S_{e k}\right\}\right]$

$$
\text { s.t. } \mathrm{E}\left[S^{\prime}\right]=m_{i} \text { for } \mathrm{i}=1, . ., \mathrm{n}
$$

Where we are...

GOAL: Tight bounds on E[$\left.W^{M / G / k}\right]$ given n moments of S IDEA: Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

$$
\mathrm{E}\left[\min \left\{S_{e 1}, \ldots, S_{e k}\right\}\right] \text { s.t. } \mathrm{E}[S]=m_{i} \text { for } \mathrm{i}=1, . ., n
$$

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable X with support [0,B]

$$
\begin{gathered}
\mathrm{E}\left[X^{0}\right]=m_{0} \\
\mathrm{E}\left[X^{1}\right]=m_{1} \\
\ldots \\
\mathrm{E}\left[X^{n}\right]=m_{n}
\end{gathered}
$$

Principal Representations (p.r.) on $[0, B]$ are distributions satisfying the moment conditions, and the following constraints on the support

Upper p.r.

$1+n / 2$ point masses

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable X with support [0,B]
$\mathrm{E}\left[X^{0}\right]=m_{0}$
$\mathrm{E}\left[X^{〔}\right]=m_{1}$
$\mathrm{E}\left[X^{n}\right]=m_{n}$
Want to bound: $\mathrm{E}[\mathrm{g}(X)]$

Principal Representations and Extremal Problems

GIVEN: Moment conditions on random variable X with support [0,B]

Want to bound: $\mathrm{E}[\mathrm{g}(X)]$

THEOREM [Markov-Krein]:

If $\left\{\mathrm{x}^{0}, \ldots, \mathrm{x}^{\mathrm{n}}, \mathrm{g}(\mathrm{x})\right\}$ is a Tchebycheff-system on $[0, \mathrm{~B}]$, then $\mathrm{E}[\mathrm{g}(X)]$ is extremized by the unique lower and upper principal representations of the moment sequence $\left\{m_{0}, \ldots, m_{n}\right\}$.

Where we are...

GOAL: Tight bounds on $E\left[W^{M / G / k}\right]$ given n moments of S IDEA: Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for
THEOREM:

$$
\mathrm{E}\left[\min \left\{S_{e 1}, \ldots, S_{e k}\right\}\right] \text { s.t. } \mathrm{E}\left[S^{\prime}\right]=m_{i} \text { for } \mathrm{i}=1, . ., n
$$

For $n=2$ or 3

RELAXATION 2: Restrict to Completely Monotone distributions (mixtures of Exponentials)

THEOREM:
For all n.
(contains Weibull, Pareto, Gamma)

CONJECTURE: P.R.s are extremal for $\mathrm{E}\left[\mathrm{W}^{M / G / K}\right]$ for all ρ, for all n, if moment constraints are integral.

Given at least $\mathrm{E}[\mathrm{S}], \mathrm{E}\left[\mathrm{S}^{2}\right]$

ρ

Not given E[S²], even \# of moment constraints in $(0,2)$

ρ

Simulation Results (k=4, $\rho=2.4$,)

Simulation Results ($k=4, \rho=2.4$,)

Simulation Results ($k=4, \rho=2.4$,)

Approximation Schema:

Refine lower bound via an additional odd moment, Upper bound via even moment until gap is acceptable

Outline

2 moments not enough for $E[W M / G / k]$
Tighter bounds via higher moments of job size distribution

Many other "hard" queueing systems fit the approximation schema

Other queuing systems exhibiting Markov-Krein characterization

Example 1: M/G/1 Round-robin queue

Incomplete

Need analysis to find q that balance overheads/performance

THEOREM: Upper and lower p.r. extremize mean response time under $\lambda \rightarrow 0$, when S is a mixture of Exponentials.

Other queuing systems exhibiting Markov-Krein characterization

Example 2: Systems with fluctuating load

THEOREM: Upper and lower p.r. extremize mean waiting time under $\alpha \rightarrow 0$, when T_{H}, T_{L} are mixtures of Exponentials.

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server system
$W_{i+1}=$ waiting time of S_{i+1}

$$
W_{i+1}=\Phi\left(W_{i}, S_{i}, A_{i+1}\right)
$$

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server system
$W_{i+1}=$ waiting time of S_{i+1}

$$
W_{i+1}=\left(W_{i}+S_{i}-A_{i+1}\right)^{+}
$$

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences
Example: Single server system
$W_{i+1}=$ waiting time of S_{i+1}

$$
W \stackrel{d}{=}(W+S-A)^{+}
$$

Stationary behavior of a queueing system

Fixed point of a stochastic recursive sequence of the form

$$
W^{\mathrm{d}} \Phi(W, S)
$$

Q: Given moments of S, under what conditions on f, Φ, is $\mathrm{E}[f(W)]$ extremized by p.r.s?

Conclusions

- All existing analytical approx for performance based on 2 moments, but 2 moments inadequate
- Provide evidence for tight n-moments based bounds via asymptotics for M/G/k and other queuing systems
- A new problem in analysis: Markov-Krein characterization of stochastic fixed point equations

