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ABSTRACT
Motivated by the problem of packing Virtual Machines on
physical servers in the cloud, we study the problem of online
stochastic bin packing under two settings – packing with
permanent items, and packing under item departures.
In the setting with permanent items, we present the first
truly distribution-oblivious bin packing heuristic that achieves
O(
√
n) regret compared to OPT for all distributions. Our

algorithm is essentially gradient descent on suitably defined
Lagrangian relaxation of the bin packing Linear Program.
We also prove guarantees of our heuristic against non i.i.d.
input using a randomly delayed Lyapunov function to smoothen
the input.
For the setting where items eventually depart, we are inter-
ested in minimizing the steady-state number of bins. Our
algorithm extends as is to the case of item departures. Fur-
ther, leveraging the Lagrangian approach, we generalize our
algorithm to a setting where the processing time of an item
is inflated by a certain known factor depending on the con-
figuration it is packed in.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Se-
quencing and Scheduling; G.3 [Probability and Statis-
tics]: Stochastic Processes
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1. MODEL NOTATION AND DEFINITIONS
There is a sequence of items that are packed online using
algorithm A. Items can be of different types j ∈ [J ] =
{1, . . . , J}. Each arrival is of type j i.i.d. with probability
pj . We abbreviate this distribution by F . The set C denotes
the feasible set of configurations for the bins, where each
c ∈ C is a multiset of items with xcj representing the num-
ber of type j items in configuration c. Denote the empty
configuration by ∅, a configuration with a single type j item

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
SIGMETRICS’15, June 15-19, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3486-0/15/06 ...$15.00.
http://dx.doi.org/10.1145/2745844.2745897.

by ej , and c∪j and c\j denotes configurations with one more
and one less item j respective (assuming they are in C). We
assume that we have an infinite number of bins available,
and we use NA

c (n) to denote the number of bins in configu-
ration c after nth item has been packed.
The performance metric that we want to minimize is the
number of bins opened by a packing algorithm on distribu-
tion F , i.e.,

NA
F (n) ,

∑
c∈C\∅

NA
c (n)

Departure Model: In Section 2.2 we extend our model
to the case where items depart after spending some random
time in the system. We assume that items arrive according
to a Poisson process in time with rate 0 < λ <∞ and leave
after some random time with finite mean 1/µj and M ,
{1/µ1, . . . , 1/µJ}, and finite higher moments.Additionally,
an item packed in configuration c experiences a slowdown,
so that the departure rate of a type j item which is cur-
rently in configuration c becomes µjscj . We are interested
in both the steady-state behavior (the number of bins used
is parameterized by λ in this case), as well as the transient
behavior (convergence rate to steady-state).

1.1 Review of Bin Packing Literature
Online bin packing with infinite collection of bins
and permanent items: The Sum of Squares (SS) rule [2,
1] is the current state-of-the-art bin packing policy when
item sizes and bin size B are integral. However, for certain
class of distributions (“linear waste”) SS achieves a constant
factor more waste than OPT, and in [1] the authors fix this
problem by essentially learning some information about the
distribution. Our proposed policy achieves O(

√
n) regret for

all distributions and is truly distribution-oblivious.
Bin packing with infinitely many bins and item de-
partures: Stolyar [5] proposes a greedy packing heuristic
that achieves OPT×(1+ε) number of bins in steady state for
arbitrarily small ε > 0, which was improved to OPT + o(λ)
by Stolyar and Zhong [6]. Ghaderi et al. [3] propose a ran-
domized Best Fit heuristic which also achieves OPT×(1+ε)
number of bin for arbitrary ε > 0. However, due to special-
ized nature of the proposed algorithms, none of the above
extend to the case of congestion-dependent slowdown.

2. ALGORITHMS

2.1 Bin Packing with Permanent Items
Given the item size distribution F , the optimal bin rate for



F (that is, the average number of bins used per item) can be
computed by solving the following Linear Program (called
the configuration LP):

b(F ) = min
nc

∑
c∈C

nc (Pnodep)

subject to

∀c ∈ C : nc ≥ 0

∀j ∈ [J ] :
∑
c

ncxcj = Pj

The variable nc denote the expected number of configura-
tion c bins opened per item from F . (In a prior unpublished
technical report [4], we had looked at the 1-d level packing
problem via flow LP which is a more compact representation
of the configuration LP in that setting, and gives slightly
better constants in suboptimality gap).

The algorithm PD-exp is a straightforward Lagrangian min-
imization of Pnodep with exponential penalty function:

Algorithm PD-exp : At time t

• Define configuration potentials:

Vc(t) = 1− κe−ε(t)Nc(t)

with V∅
.
= 0.

• Place arriving item, say of type j, in configuration
c∗ to create c∗ ∪ j, where:

c∗ = arg minc Vc∪j(t)− Vc(t)

Theorem 1. For the PD-exp algorithm with ε(t) =
√

|C|
2(|C|+t) ,

E
[
NPD
F (n)

]
≤ E

[
NOPT
F (n)

]
+
√

8|C|(n+ |C|)

2.1.1 Guarantees against non-i.i.d. input
Adversarial Model: At time t, the adversary samples an
item size St from distribution Ft that is a function of the
history of samples generated by him. That is:

Ft = ft(S1, . . . , St−1) (1)

Let {Ft} denote the filtration generated by {S1, . . . , St}
where as is usual F0 = {∅,Ω}.

Theorem 2. For a given window size L, define the smoothed
arrival distribution at time k conditioned on Ft as:

F̂k|t
.
= E

[
1

L+ 1

k+L∑
m=k

Fm

∣∣∣∣∣Ft
]

Denote the optimal bin-rate of the bin packing LP for F̂k by
b̂k|t. For succinctness, b̂k

.
= b̂k|0.

If L, ε, κ, |C| satisfy (i) εL < 1 and (ii) L ≤ 1
ε

log κ|C|
|C|−1

then

E
[
NPD(n)|Ft

]
≤

n∑
k=1

b̂k|t + nκε

(
2L+ 3

4

)
+
|C|κ
ε

+ L.

Corollary 1. If L = Θ(nc) for arbitrary 0 ≤ c < 1,

choosing ε = Θ(n
1+c
2 ):

E
[
NPD(n)

]
≤

n∑
k=1

b̂k +O(n
1+c
2 ).

2.2 Bin Packing with item departures
Our proposed heuristics extend almost as-is to the case of
item departures. As before we define configuration poten-
tials as:

Vc(t) = 1− 1

ε(t)
e−ε(t)Nc(t)

where we set ε(t) =
√

|C|
2(|C|+n(t)) , n(t) denoting the total

number of items in the system.

2.2.1 Packing with Heterogeneous slowdowns: The
Proxy Dual method

In this section we consider the more general problem of het-
erogeneous slowdowns: the departure rate of a type j item
in configuration c is given by µjscj . Our convention will be
sej ,j = 1, that is the slowdown of an item type when it is
the only item in a bin is the benchmark of slowdown.

Algorithm PDhet :

• Define configuration duals:

αc(t) = 1− κe−ε(t)Nc(t)

where κ ≥ m ×maxc,j∈c
1
scj

(m denotes the maxi-

mum number of items in any configuration).

• Define configuration potentials:

Vc(t) = (1− αc(t))−
∑
j

xcjscj(1− αej )

with V∅
.
= 0.

• Place arriving item, say of type j, in configuration
c∗ to create c∗ ∪ j, where:

c∗ = arg minc Vc∪j(t)− Vc(t)

Figure 1: Primal-Dual algorithm for heterogeneous
slowdowns
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