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Abstract

Correlations in traffic patterns are an important facet of the workloads faced by real systems,
and one that has far-reaching consequences on the performance and optimization of the systems
involved. However, all the existing analytical work on understanding the effect of correlations be-
tween successive service requirements (job sizes) is limited to First-Come-First-Served schedul-
ing. This leaves open fundamental questions: How do various scheduling policies interact with
correlated job sizes? Can scheduling be used to mitigate the harmful effects of correlations?
In this paper we take the first step towards answering these questions. Under a simple model for
job size correlations, we present the first asymptotic analysis of various common size-independent
scheduling policies when the job size sequence exhibits high correlation. Our analysis reveals
that the characteristics of various scheduling policies, as well as their performance relative to
each other, are markedly different under the assumption of i.i.d. job sizes versus correlated
job sizes. Further, among the class of size-independent scheduling policies, there is no single
scheduling policy that is optimal for all degrees of correlations and thus any optimal policy must
learn the correlations. We support the asymptotic analysis with numerical algorithms for exact
performance analysis under an arbitrary degree of correlation, and with simulations. Finally, we
verify the lessons from our correlation model on real world traces.

Keywords: Scheduling, Correlation, MMAP, M/G/1, Asymptotic analysis, Fluid analysis

1. Introduction

Motivation
The M/G/1 single-server queue has been used as a guiding model for performance analysis
of widely varying systems, such as buffers for network switches, web server downlinks, and the
CPU scheduler. There is a large body of work on the analysis of different scheduling policies and
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their effects on response times of jobs (defined to be the time from the arrival to the completion of
a job) [6]. However, almost all of the exact analysis has been performed under the assumptions
of (i) Poisson arrival process and (ii) independent and identically distributed (i.i.d.) job sizes.
Long ago, the need was recognized to relax these assumptions, as real systems workloads exhibit
significant correlation patterns, and these patterns tend to greatly affect the accuracy of the tradi-
tional results [9, 20]. Primarily, there are three kinds of correlations that exist in real workloads:
(i) correlations between consecutive interarrival times (e.g., network traffic [12], and web server
traffic [8, 14, 25]), (ii) correlations between interarrival times and the subsequent service require-
ments (e.g., [3, 5, 12, 14]), and (iii) correlations between consecutive service requirements (e.g.
packet sizes over network [12], supercomputing jobs [10, 16, 24], and disk request sizes [19]).
In this paper we focus on studying the effects of correlations of type (iii).
While there has been a lot of analytical work studying the effect of all three types of correlation
on mean response time in single server queues, all of this work has assumed First-Come-First-
Served (FCFS) queues only. Fendick et al. [12] study all three types of correlation via a Brownian
approximation and propose a stationary workload approximation based on heavy traffic limits.
Adan and Kulkarni [2] also use analysis to study autocorrelation and cross-correlation of interar-
rival and service times in a MAP/G/1/FCFS queue. Riska et al. [22] use matrix-analytic methods
to numerically calculate the mean response time in a MAP/PH/1/FCFS queue with correlated
arrival stream. Ghosh and Squillante [14] propose a refinement to the Fendick et al. [12] approx-
imation for FCFS queues, and propose approximations for a multi-class priority system with
FCFS scheduling within each class. Cidon et al. [5] study correlations of type (ii) by deriving
the Laplace transform of the workload using the theory of linear functional equations in a queue
with an Interrupted Poisson arrival process.
The effect of correlation has also been studied via simulation, see for example [17–19, 23, 28]. In
all except [18], FCFS scheduling was assumed. In [18] the authors examine an approximation of
Shortest-Job-First (SJF) scheduling, which the authors call SWAP, and compare it against FCFS
scheduling via simulation.
In summary, all the prior work dealing with correlations in successive job sizes has almost ex-
clusively dealt with FCFS scheduling. Important questions have remained unanswered: How do
different scheduling policies react to correlations in job sizes? Can scheduling be used to allay
the detrimental effect of correlated job sizes on the performance?
In this paper, we take an important first step by analyzing the mean response time under various
scheduling policies in the presence of correlated job sizes (see Table 1 for a list of policies
analyzed in this paper). We restrict ourselves to the class of size-independent policies. That is, we
consider policies which know the generative correlation model, but not the actual realizations of
the sizes (or the size-class) of jobs. In most applications, including scheduling of CPU, IP flows,
database queries etc., the job sizes are often not known a priori, and hence size-independent
policies are more realistic. We consider the question of how the optimality of size-independent
policies is affected by the presence or absence of correlation in the job sizes.

The MMAP Correlation Model
We assume the following simple Markov Modulated Arrival Process (MMAP) model for job-size
correlations: jobs belong to one of two classes called little (L) and huge (H), where jobs of class L
(respectively H) are Exponentially distributed with mean 1

µL
(respectively 1

µH
> 1

µL
) 1. Therefore,

1Note that the mean sizes of the two classes can in fact be close. We have chosen the names of the classes to map to
low (L) and high (H) load, respectively, in Section 2.
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Scheduling Policy Description

F-C-F-S (FCFS) Jobs are served in the order of arrival.

L-C-F-S (LCFS) Whenever a job completes service, the next job to be served is the one that arrived
last.

P LCFS  R
(P-LCFS)

New arrivals immediately begin service by preempting the job at the server. On
a service completion, the next job to resume service is the one that arrived last.

L-A-S (LAS) The job with the least amount of received service (age) gets to serve.

P S (PS) If there are n jobs in the system, each job gets 1
n th of the server’s capacity.

R-O--S
(ROS)

Whenever a job completes service, the next job to be served is picked uniformly
at random from amongst the jobs currently in the queue.

O O (OPT) A hypothetical optimal scheduling scheme that knows the class of all jobs, and
gives preemptive priority to class L jobs.

Table 1: A glossary of scheduling policies analyzed in this paper.

our jobs belong to a 2-phase hyperexponential (H2) distribution. The system operates under a
2-state Markovian environment process with states L and H: while the environment process is
in state L all arrivals are of class L, and while in state H all arrivals are of class H. The arrivals
occur according to a Poisson process with rate λ independent of the environment process. The
times spent in state L during each visit are i.i.d. Exponentially distributed with mean 1

αL
, and

those in state H are i.i.d. Exponentially distributed with mean 1
αH

. Denote α = αL + αH , and
p =

1/αL
1/αL+1/αH

= αH
α

. Thus the time-average probability of an arrival belonging to class L is p, and

of belonging to class H is 1− p. We will use ρ = λ ·
(

p
µL

+
1−p
µH

)
to denote the long run fraction of

time the system is busy. If we fix the job size distribution and arrival rate (i.e. µL, µH , p, λ) and set
α = ∞, then the job sizes form an i.i.d. stream. As we decrease α and thereby increase the mean
residence time per sojourn of L and H states, we increase the correlation among successive job
sizes, since the probability that a class L job is followed by another class L job (pL,L = p+

λ(1−p)
λ+α

)
increases. By expressing pL,L = α

λ+α
p + λ

λ+α
, we can alternately visualize the correlation model

as: with probability λ
λ+α

the class of a job is the same as the class of the immediately preceding
job, otherwise it is an independent sample from the H2 distribution.
Let · · · , X−2, X−1, X0, X1, X2 · · · represent the sequence of job sizes. An appealing property of the
above correlation model is the simple closed-form autocorrelation function (acf). In particular,
the lag n correlation for n ≥ 1 is given by:

cor(Xm, Xm+n) =
E[XmXm+n] − E[Xm]E[Xm+n]
√

var(Xm)
√

var(Xm+n)
=

(
λ
λ+α

)n
[

p
µ2

L
+

1−p
µ2

H

]
+

(
1 −

(
λ
λ+α

)n)
E[X0]2

var(X0)
−

E[X0]2

var(X0)

=

(
λ

λ + α

)n E
[
X2

0

]
2 − E[X0]2

var(X0)
=

1
2

(
C2 − 1

C2

) (
λ

λ + α

)n

where C2 =
var(X0)
E[X0]2 > 1 denotes the squared coefficient of variation (SCV) of the H2 job size

distribution.

Scope of the MMAP correlation model:. The MMAP correlation model analyzed in this paper is
similar to the model used in [2]. While MMAP models with more than 2 phases (e.g., [19]) or lo-
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Figure 1: An example of the effect of job-size correlation on scheduling policies: (a) mean response time versus
α for low to medium correlation; (b) mean response time versus α for medium to high correlation; (c) mean re-
sponse time of the “little” (L) jobs versus α. Here ρ = 0.97 and C2 ≈ 1.08. Note that the E[T ] ordering changes
from FCFS=ROS=LCFS>PS=P-LCFS>LAS>OPT at α = ∞ (i.i.d. job sizes) to FCFS≈ROS>PS>LAS>LCFS=P-
LCFS=OPT as α→ 0 (high correlation).

cal sampling based models [11] are capable of modeling more general auto-correlation functions,
the goal of this paper is to use an analytically tractable correlation model to explore qualitative
behavior of different scheduling policies in the presence of correlated job sizes, and to gain in-
sights for these behaviors and the effect of various system parameters on the performance.We
believe that the qualitative behavior of scheduling policies discovered in this paper would extend
to more general correlation structures, and we partially test this via real-world traces in Section 3.

Summary of Contributions
Most of our results look at the effect of the parameter α on mean response time, E[T ]. We
prove that, although all scheduling policies we consider are hurt by increasing the correlation,
the degree to which correlation affects different policies varies widely. We consider two regimes:
(i) µL > µH > λ, where the server is never in overload, and (ii) µL > λ > µH , where the
system is in overload during bursts of H jobs, although it is still stable on average. For the
no-overload regime, we prove that, as α decreases (correlation increases), all size-independent
scheduling policies become the same with respect to mean response time. For the transient-
overload regime, we prove that as correlation decreases, there can be a large (up to a factor
of µL

µH
) difference in E[T ] between the policies. Also, the ordering of policies from “best” to

“worst” mean response time changes a lot under correlation. An example of performance of the
various scheduling policies under the transient-overload regime is shown in Figure 1(a). Some
particularly interesting findings include:

• LAS is provably sub-optimal among size-independent policies when α → 0, while it has
provably the best mean response time when α → ∞ for an H2 job size distribution (due to its
decreasing failure rate [21]).

• LCFS is provably best when α→ 0, while it is worst (along with FCFS, ROS) when α→ ∞.
• P-LCFS is also provably best when α → 0, which is interesting because under α → ∞ (i.i.d.

case) LCFS and P-LCFS can be far apart for high variability job size distributions.
• PS can be arbitrarily worse than P-LCFS as α→ 0, while they are provably equal as α→ ∞.

The effect of correlation on the mean response time of the L jobs, E[TL], is even more pro-
nounced. In particular, we prove that:
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• While E[TL] increases for most policies, as α decreases (correlation increases), E[TL] always
decreases for P-LCFS and for LCFS. An example is shown in Figure 1(c).

• LAS performs poorly for E[TL] compared to OPT, and even worse for E
[
T 2

L

]
. Thus, while

LAS is designed to help the little jobs by biasing towards jobs with least attained service, it
fails to do this under correlation, and policies like LCFS which are entirely oblivious to job
size distribution can actually help the little jobs.

The above results are primarily obtained by using fluid analysis and looking at asymptotic behav-
ior of response time as α → 0, see Section 2. However, the effect of correlation under moderate
α is also interesting. To study the moderate α regime, we derive numerical algorithms to analyze
LCFS, OPT, P-LCFS, and FCFS. 2 For the other policies, we resort to simulations, see Section 3.
These numerical and simulation results are useful for understanding the behavior of schedul-
ing policies for intermediate α values and to explore how quickly scheduling policies converge
to their asymptotically-limiting (α → 0) behavior. To see how our messages carry through to
real-world scenarios, we end Section 3 with trace-driven simulation studies.

2. Asymptotic Analysis of Scheduling Policies as α → 0

Our goal in this section is to obtain an understanding of the “first-order effect” of correlations
in the job sizes by considering the limiting case where the correlation approaches its maximum
value under our model, that is, α → 0.3 While this extremal case implies arbitrarily long con-
secutive streaks of only L and only H arrivals, an understanding of the behavior of the various
scheduling policies under this asymptote gives us insights into why different scheduling policies
react differently to correlation in job sizes, and should help guide the design of policies which
are robust to correlation.
In Section 2.1, we present the asymptotic results for the simpler case µH > λ. The non-trivial
case of µH < λ is analyzed in Sections 2.2-2.5. A large number of scheduling policies that we
will analyze will involve asymptotic analysis of busy periods. We have chosen to present the
main results on busy period analysis in Appendix B and focus on the messages in the main body.
For ready reference, we have summarized the notation used in this section in Table 2.

Note on scaling and asymptotic notation:. The asymptotic analysis of the scheduling policies
is performed by considering a sequence of systems, indexed by the parameter α. The system
with index α is obtained by setting the switching rates of the environment process as αH = p · α
and αL = (1 − p)α, where p, µL, µH and λ are held constant. We are interested in seeing the
behavior of the scheduling policies in the asymptote α→ 0, and hence the expressions for mean
response times presented in this section will be written in the asymptotic notation: We say that
a function g(α) is of a ‘smaller order’ than h(α) (and make the limit α → 0 implicit), denoted
g(α) = o(h(α)), when g(α)

h(α) → 0 when α → 0 (see Table 2). When we write the expressions
for the mean response time under the αth system, we only identify the dominant term in the
expression, expressing the remaining terms which become negligible in comparison as α→ 0 as

2Due to lack of space, the asymptotic analysis of PS and ROS, and the results on exact numerical analysis of LCFS,
OPT, P-LCFS and FCFS are presented in the extended version [15].

3The analysis of the asymptote α→ 0 should be seen analogously to heavy traffic analysis where the traffic intensity
ρ is allowed to approach 1 to observe the “first order” effect of system parameters (variance, cross-correlations) on the
system performance.
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Notation Meaning Notation Meaning

E
[
T π

L

]
,E

[
T π

H

]
,E[T π] mean response time of a class

{L, H, avg} job under policy π
E
[
Dπ

L

]
,E

[
Dπ

H

]
,E[Dπ] mean delay of a class {L, H, avg}

job under scheduling policy π
E
[
T π

L(x)
]
,E

[
T π

H(x)
]

mean response time of a class L,
H job of size x under policy π

WL,WH stationary workload conditioned
on being in state L, H

rL = 1 − λ
µL

rL(x) = 1 − λsL(x)

rH = 1 − λ
µH

rH(x) = 1 − λsH(x)

ρ = λ (p/µL + (1 − p)/µH) ρ(x) = λ(psL(x) + (1 − p)sH(x))

sL(x) = E
[
min{Exp(µL), x}

]
= 1−e−µL x

µL

W∗
L,W

∗
H

stationary fluid workload in a sys-
tem with flow rates rL and rH , con-
ditioned on being in state L, H

sH(x) = E
[
min{Exp(µH), x}

]
= 1−e−µH x

µH

g(x) = Θ(h(x)) as x→ x0
0 < lim inf

x→x0

g(x)
h(x) ≤ lim sup

x→x0

g(x)
h(x) < ∞ W∗

L(x),W∗
H(x) stationary fluid workloads in a

system with flow rates rL(x), rH(x)

g(x) = o(h(x)) as x→ x0 limx→x0
g(x)
h(x) = 0 X̃(s) = E

[
e−sX

]
Laplace transform of r.v. X

Table 2: Notation used in Section 2.

being of a smaller order than the dominant term. Similarly, we say g(α) is of ‘the same order’
as h(α) (again with the limit α → 0 implicit), denoted g(α) = Θ(h(α)) when intuitively g(α)

h(α) is
eventually bounded between two strictly positive constants. Thus, for example, a Θ(1) function
is eventually bounded between two strictly positive constants as α → 0. In proving theorems
about response time, it will often suffice to just argue about the asymptotic order of busy period
durations, probabilities and related quantities.

2.1. Analysis for case µH > λ

Let T π
L and T π

H denote the random variables for response time of class L and class H jobs, respec-
tively, under scheduling policy π (see Table 2). When µH > λ, the system is stable during both L
and H states, and we have the following intuitive result which we state without proof.

Theorem 1. Let π be any work-conserving, size-independent policy. When µH > λ,

lim
α→0

E
[
T π

L
]

=
1

µL − λ
; lim

α→0
E
[
T π

H
]

=
1

µH − λ
.

Remark 1: Theorem 1 says that as job sizes become more and more correlated, the behavior of
all work-conserving, size-independent scheduling policies will tend to become the same, pro-
vided µH > λ. This is because the system behaves as a mixture of two stable M/M/1 systems,
and all size-independent scheduling policies have the same mean response time for an M/M/1
system. The same argument does not apply when µH < λ because the M/M/1 during the H states
is unstable and the workload built up during the H states results in significant transient effects.
Remark 2: Since LAS is optimal (among size-independent policies) at each extreme, we intu-
itively expect LAS to be near-optimal through the entire range of α, and thus for all levels of
correlation. We verify that this is indeed true in Section 3, Figure 2.
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2.2. Preliminaries: Workload analysis via Fluid model for the case µH < λ

We begin our study of the case µH < λ by finding the distribution of stationary workload during
the L and H states, respectively. To do this, we first introduce the fluid model of our MMAP
correlation model.

Definition 1. Under the fluid model, we assume that the workload increases at a constant rate of
−rH during the H states (see Table 2), and decreases at a constant rate of rL during the L states
as long as the workload is positive.

Lemma 1. Let W∗L and W∗H denote the random variables for the stationary workload during L
and H states under the fluid model, respectively (we will superscript fluid model random vari-
ables by ∗). Let W̃∗

L(s) = E
[
e−sW∗L

]
and W̃∗H(s) = E

[
e−sW∗H

]
denote their Laplace transforms.

Then,

W̃∗H(s) =
γH − γL

s + (γH − γL)
; W̃∗L(s) =

(
1 −

γL

γH

)
+
γL

γH
·

γH − γL

s + (γH − γL)

where γL = αL
rL

and γH = −αH
rH

.
Thus the workload during the H states, W∗

H , is distributed as an Exp(γH − γL) random variable,
and the workload during the L states, W∗

L, is a mixture of an Exp (γH − γL) random variable and
an atom at 0. Further, the mean of W∗

L and W∗
H are of the order Θ

(
1
α

)
. Thus, as α→ 0 , the fluid

workload diverges at a rate of 1
α

.

Lemma 2. WL
d
= W∗L + o(α−1) , WH

d
= W∗H + o(α−1).

Remark 3: Lemma 2 says that, asymptotically as α → 0, the stationary workload, WL and WH ,
of the stochastic system converge in distribution to the stationary workload, W∗L and W∗H , under
the fluid model. While a convergence of workloads on a sample path basis was proved in [4], we
are unaware of a proof of the convergence of stationary workloads.
Proof of Lemma 1: We first note that by conditional PASTA [27], W∗

L and W∗H are equal in
distribution to the stationary workload at the end of L and H states respectively. Let τL and τH

be Exponentially distributed random variables with mean 1
αL

and 1
αH

, respectively. We have the
following stochastic fixed point equations:

W∗H
d
= W∗

L − rHτH ; W∗L
d
= max

{
W∗

H − rLτL, 0
}

Taking Laplace transforms of the above equations, we get the following fixed point equations:

W̃∗
H(s) = W̃∗L(s) ·

αH/rH

αH/rH − s
; W̃∗L(s) =

sW̃∗
H(αL/rL) − (αL/rL)W̃∗H(s)

s − αL/rL
,

which yield the expressions in Lemma 1.
Proof of Lemma 2: The lemma is proven by starting with Theorem 5 (Appendix A) which
gives the exact expressions for the Laplace transforms of WL and WH . According to Theorem 5:

W̃L(s) =
(1 − ρ)αmLmH − smLgHπL(0)
αLgHmL + αHgLmH − sgLgH

(1)

where, mL = µL + s, mH = µH + s, gL = µL − λ+ s, gH = µH − λ+ s, πL(0) =
(1−ρ)α(µH+ξ)
ξ(µH−λ+ξ) , and ξ

denotes the unique root of the denominator of (1) (viewed as a cubic in s) in the interval (0,+∞).
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The quantity πL(0) denotes the long run fraction of time that the system is empty conditioned on
being in state L. Taking the limit α→ 0, we get

ξ = (λ − µH) +
pαλ
λ − µH

+ Θ(α2)

and thus,

πL(0) =
(1 − ρ)α(µH + ξ)
ξ(µH − λ + ξ)

=
(1 − ρ)α(λ + Θ(α))

(λ − µH + Θ(α))
(

pαλ
λ−µH

+ Θ(α2)
) =

1 − ρ
p

+ Θ(α)

Note that the above is not in disagreement with the result Pr
[
W∗L = 0

]
=

(
1 − γL

γH

)
as the latter is

only equivalent to Pr
[
WL = o

(
1
α

)]
. The other roots of the denominator of (1) in the limit α → 0

are given by:

χ = (λ − µL) −
pαλ
µL − λ

+ Θ(α2) and η = −
αµLµH(1 − ρ)

(µL − λ)(λ − µH)
+ Θ(α2).

Canceling the common factor (s − ξ), and noting that αµLµH (1−ρ)
(µL−λ)(λ−µH ) = (γH − γL), we can rewrite:

W̃L(s) = πL(0) + K1
−χ

s − χ
+ K2

−η

s − η
=

1 − ρ
p

+ K1
µL − λ + Θ(α)

s + (µL − λ + Θ(α))
+ K2

γH − γL

s + (γH − γL)
.

Matching the coefficients of s, we get K1 = 1−rL
rL

(
1−ρ

p

)
+Θ(α), and K2 = 1− 1−ρ

prL
+Θ(α) =

γL
γH

+Θ(α).
Thus we have proved that, as α→ 0, the distribution of WL is a mixture of an Exponential distri-
bution with mean 1

γH−γL
with probability ∼ γL

γH
, and with the remaining probability the stationary

distribution of an M/M/1 with arrival rate λ and service rate µL.

Goals of asymptotic analysis. Since we are interested in analyzing work-conserving policies,
the stationary workload, W, is the same across policies. What differs from one policy to another
is what types of jobs make up that work. Since we restrict ourselves to size-independent policies,
we can bound the mean remaining size of any job under our H2 job size distribution between
1
µL

and 1
µH

. This gives bounds on E[Nπ] – the mean number of jobs in the system for any work-
conserving policy π – as µHE[W] ≤ E[Nπ] ≤ µLE[W]. Finally, by applying Little’s law, we get
µH
λ

E[W] ≤ E[T π] ≤ µL
λ

E[W]. Since E[W] diverges as 1
α

as α→ 0, we have the following.

Lemma 3. When µH < λ in the MMAP model, the mean response time of any work-conserving
size-independent scheduling policy π grows as E[T π] = Kπ

α
+ o( 1

α
), for some constant Kπ which

depends only on the scheduling policy and the parameters µH , µL, p and λ.

Our goal is to identify the Kπ for different policies. This is analogous to heavy traffic analysis,
where space (response time, number of jobs in system, etc.) is scaled by (1 − ρ) and analyzed in
the limit ρ→ 1.

2.3. FCFS
Theorem 2. In the regime µH < λ,

E
[
DFCFS

L

]
=

(1 − p)
p(1 − ρ)

(
λ

µH
− 1

)2 1
α

+ o
(

1
α

)
E
[
DFCFS

H

]
=

1
(1 − ρ)

(
1 −

λ

µL

) (
λ

µH
− 1

)
1
α

+ o
(

1
α

)
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Proof: By conditional PASTA, the delay of class L jobs is distributed as WL, and that of class H
as WH . Applying Lemmas 2 and 1, the result is immediate.
Remark 4: We already see a divergence in the behavior of scheduling policies when job sizes
become correlated. When α → ∞ (i.i.d. case), and under a Poisson arrival process, the mean
delay under FCFS depends only on the first two moments of the job size distribution. However,
as α→ 0, it depends on all the parameters of the H2 job size distribution.

2.4. OPT, P-LCFS and LCFS
While it is hard to characterize the optimal size-independent policy when job sizes are correlated
since the optimal policy might (and will) exploit the correlation structure to predict classes of
future jobs based on observed history of job sizes, a trivial lower bound is obtained by considering
an omniscient scheduler – that is, a scheduler that knows the class (L,H) of each job in the system,
but not the exact size, and gives preemptive priority to class L jobs. We call this policy OPT.

Theorem 3. When µH < λ, we have for each policy π ∈ {OPT, P-LCFS, LCFS}:

E
[
Dπ

L
]

= Θ(1)

E
[
Dπ

H
]

=

[
µH

λ(1 − p)

]
(1 − p)λ
(1 − ρ)

(
1
µH
−

1
µL

) (
λ

µH
− 1

)
1
α

+ o
(

1
α

)
Corollary 1. For π ∈ {LCFS, P-LCFS, OPT}, when µH < λ: limα→0

E
[
T FCFS

]
E[T π] = λ

µH
.

Proof of Theorem 3: We first consider class L jobs. Under OPT, class L jobs get priority, and
hence their response time is stochastically upper bounded by that of an M/M/1 with arrival rate
λ and service rate µL, and is Θ(1). Under P-LCFS, the response time of class L jobs is the busy
period started by Exp(µL) work in state L. By Theorem 6, Case 2 (see Appendix B), this is Θ(1).
Under LCFS, the delay of class L jobs is a busy period started either by Exp(µL), Exp(µH) or 0
work. Again, by Theorem 6, Case 2, this is Θ(1).
To understand the delay of class H jobs, note that the above implies that the mean number of
class L jobs in the system, and hence their contribution to the total workload is Θ(1). However,
the stationary average workload is Θ(α−1), and hence this must be composed (aside from a Θ(1)
term) of class H jobs alone. Since, all scheduling policies are size-independent, the mean resid-
ual size of these class H jobs is 1

µH
, yielding the mean number of class H jobs of pE[WL]+(1−p)E[WH ]

1/µH
.

By Little’s law, we obtain the mean delay of class H jobs as pE[WL]+(1−p)E[WH ]
λ(1−p)/µH

.
Remark 5: The proof does not extend to other policies in Table 1 as their E[TL] is not Θ(1).
Remark 6: For the metric of E[T ], all three policies – OPT, P-LCFS and LCFS – are asymptot-
ically optimal. However, E[TL] under the three policies is different, although always Θ(1), and
given by the following lemma, whose proof we omit.

Lemma 4. When µH < λ, E[TL] under OPT, LCFS and P-LCFS are given by:

E
[
T OPT

L

]
=

1
µL − λ

+ o(1)

E
[
T P−LCFS

L

]
= E

[
BL

L

]
+ o(1) =

1 − ρH

µL(1 − ρ)
+ o(1)

E
[
T LCFS

L

]
= θH(1 −

λ

µL
)E

[
BH

L

]
+
λ

µL
E
[
BL

L

]
+

1
µL

+ o(1)

where θH =
(1−p)(λ−µH )

(1−p)λ+(p−ρ)µH
, and E

[
BL

L

]
and E

[
BH

L

]
are given in Corollary 2 (see Appendix B).
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Remark 7: Comparing with E
[
T P−LCFS

L

]
α→∞

= 1
µL
· 1

1−ρ , we see that the extreme correlated E[TL]
for P-LCFS is always lower than the uncorrelated E[TL]. We can prove a similar result for LCFS.
Remark 8: A further difference between the three policies emerges if one looks at higher order
metrics, such as E

[
(T π

L)2
]
. As a byproduct of the proof of Theorem 6 (Case 2), we can see

that E
[
(T P−LCFS

L )2
]

= Ω
(

1
α

)
, while it is Θ(1) for OPT. Thus, while simple policies such as P-

LCFS and LCFS are asymptotically optimal for E[T ], learning-based scheduling policies might
be preferred when one cares about more fine-grained metrics.

2.5. LAS
The asymptotic analysis of LAS presented below builds on the analysis under i.i.d. arrivals given
in [7]. In short, to analyze the response time of a tagged arrival of size x, we consider a modified
system where jobs of original size s are truncated to size min {s, x} when they enter the system.
Under LAS, the response time of the tagged arrival is given by the busy period generated by the
work it sees on arrival in this modified system.

Theorem 4. When µH < λ, the mean response time of a job of size x under the LAS scheduling
policy is given by:
Case λsH(x) > 1:

E
[
T LAS

L (x)
]

=
E
[
W∗

L(x)
]

1 − ρ(x)
+ o

(
1
α

)
; E

[
T LAS

H (x)
]

=
1
αH

+
E
[
W∗H(x)

]
+

λsH (x)−1
αH

1 − ρ(x)
+ o

(
1
α

)
Case λsH(x) < 1:

E
[
T LAS

L (x)
]

= E
[
T M/M/1/LAS

L (x)
]

+ o(1); E
[
T LAS

H (x)
]

= E
[
T M/M/1/LAS

H (x)
]

+ o(1)

where E
[
T M/M/1/LAS

L (x)
]

and E
[
T M/M/1/LAS

H (x)
]

denote the mean response time of a job of size x
under LAS scheduling in M/M/1 queues with arrival rate λ, and job size distribution Exp(µL)
and Exp(µH), respectively.

Proof: Case λsH(x) > 1: In this case, the modified system with truncated job sizes is in transient
overload during the H states. Theorem 6, Case 1 (see Appendix B), gives us the expression for
the required mean busy period.
Case λsH(x) < 1: In this case, the modified system with truncated job sizes is stable during the
H states. As α → 0, the system looks like a mixture of two independent stable M/G/1 queues
with the modified job size distributions (similar to Theorem 1). The mean response time of a
type L job of size x in this modified system thus converges to the mean response time of a job of
size x under an M/M/1/LAS system with arrival rate λ and job sizes i.i.d. Exp (µL). A similar
argument applies to type H jobs of size x.
Remark 9: Under i.i.d. H2 job sizes, LAS is the optimal size-independent policy for minimizing
E[T ] because it isolates the class L jobs from class H jobs. Intuitively we expect this behavior to
carry over when correlations are introduced, but this is not the case. Not only does LAS perform
suboptimally, but E[TL] under LAS grows as Θ

(
1
α

)
, while it is Θ(1) under LCFS and P-LCFS.

The reason for this counter-intuitive behavior lies in the fraction of L jobs that do not get isolation
and hence experience Θ

(
1
α

)
mean response time. Under LCFS and P-LCFS, this fraction is Θ(α)

with a net effect of Θ(1). Under LAS, however, all L jobs with a size bigger than 1
µH

log
(

µH
λ−µH

)
,

which is a Θ(1) fraction, experience Θ
(

1
α

)
mean response time.
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3. Evaluation via Simulations

While Section 2 provided fluid asymptotics as α → 0 for a wide range of size-independent
scheduling policies, we are only able to perform exact numerical analysis of the case 0 < α < ∞
for a smaller subset (FCFS, LCFS, P-LCFS, OPT) via algorithms proposed in the supplement
[15]. This section studies the full range of policies for all α via numerical techniques for the
policies mentioned above, and via simulation for the remaining policies in Table 1. We start with
results for our MMAP model and then present results for trace-based experiments.

0.010.1110
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α

E
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]

 

 

FCFS
ROS
PS
LAS
LCFS
P−LCFS
OPT

PS≈P−LCFS
≈LAS≈OPT

FCFS

ROS

LCFS

Figure 2: Effect of job size correlation when µH > λ. The parameters chosen were µL = 50.73, µH = 1.0055, p =

0.5073, λ = 1 (ρ = 0.5,C2 ≈ 2.9).

MMAP under No transient overload: In Figure 2, we see the effect of correlation on scheduling
policies when µH > λ, so that there is no transient overload in H states. We see that for moderate
α, E[T ] of the different scheduling policies range from E[T ] = 1 to about E[T ] = 1.5, with FCFS
being the worst and LAS being the best. As α decreases, we see that the relative performance
difference between scheduling policies begin to vanish (E[T ] ranges from 6.9 to 7.5 for α ≈
0.01). This behavior as α → 0 is consistent with Theorem 1. Observe also that while FCFS,
ROS and LCFS are equal at the two extremes (α → ∞ and α → 0), for 0 < α < ∞ they are
ordered as FCFS>ROS>LCFS with respect to E[T ].
MMAP under Transient overload: Figure 3 shows the effect of correlation in the more inter-
esting case of µH < λ, implying that there is transient overload during the H states. Figure 3(a)
shows the E[T ] vs. α curves for the different scheduling policies. We see that FCFS is the worst
policy and LAS is optimal or close to optimal throughout the range of α shown. On the other
hand, P-LCFS starts out equal to PS when α→ ∞ and is clearly suboptimal; yet for low α (high
correlation), P-LCFS approaches and even overtakes LAS, and becomes optimal. This is consis-
tent with Theorem 3. Similarly, LCFS starts out equal to FCFS when α → ∞ and is worst in
performance, but becomes optimal as α→ 0, again confirming Theorem 3.
A major difference between Figure 3(a) (transient overload) and Figure 2 (no overload) is that the
policies clearly do not converge to each other in Figure 3 as α→ 0, whereas they do in Figure 2.
Furthermore, for each policy π in Figure 3(a), the E[T ] curve asymptotes to a line on the plotted
scale, which corresponds to E[T π] ∼ Kπ

α
as in Lemma 3. Thus the mean response times grow

unboundedly as α→ 0, unlike in Figure 2.
Figure 3(b) verifies the expressions for Kπ obtained from our asymptotic analysis by showing(

α
1+α

)
E[T ] as a function of 1

1+α
. We choose to scale E[T ] by α

1+α
(instead of α) to show the

results for α → ∞ asymptote and the α → 0 asymptote in the same plot. In the former case,
limα→∞

α
1+α

E[T π] = limα→∞ E[T π] and in the latter case limα→0
α

1+α
E[T π] = limα→0 αE[T π] =
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Kπ. The x-axis shows 1
1+α

which is bounded between 0 and 1 (unlike α). The αE[T π] curves
clearly converge to the analytically obtained values of Kπ marked with a small x. In the limit
α→ 0, E[T ] for the different policies follows the order LCFS = P-LCFS < LAS < PS < ROS <
FCFS. Due to the parameter settings, the difference between LAS and LCFS = P-LCFS as α→ 0
is very slight; this contrasts with Figure 1 where the difference was significant.
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(c) E[TL] vs. α
Figure 3: Effect of job size correlation when µH < λ. The parameters chosen were µL = 10, µH = 1, p = 0.95, λ = 6
(ρ = 0.87,C2 ≈ 4.66).

Figure 3(c) shows mean response time for “little” (class L) jobs, denoted E[TL], versus α. For the
L jobs, there is a wide difference (several orders of magnitude) in performance across policies.
Several policies (FCFS, ROS, PS, LAS) show E[TL] increasing in proportion to 1

α
(though this

is less obvious in the case of LAS); however, other policies (LCFS, P-LCFS) show a decrease in
E[TL] as α decreases, as pointed out in Remark 7. Under the first group of polices, E[TL] suffers
from increased correlation, because L jobs are affected by H jobs. For LCFS and P-LCFS, this
is not the case, since an L job is only affected by H jobs if they arrive during the L job’s busy
period. This happens with probability proportional to α, which becomes zero as α→ 0.
Trace-based experiments: While we garnered useful intuition by analyzing the MMAP corre-
lation model, it is not obvious to what extent our results would extend to real-world applications.
To investigate this, we consider two very different traces, one involving packets sizes (Bellcore)
and a second involving supercomputing job sizes (SHARCNET). We have simulated FCFS, ROS,
PS, LCFS and P-LCFS policies. In addition, we simulate PRIO-P, which gives preemptive pri-
ority to class L jobs, where class L jobs are defined as jobs with size below some threshold.
Hence the PRIO-P policy is similar to the OPT policy, but is not necessarily the optimal size-
independent policy because class L and H jobs are no longer Exponentially distributed. We also
simulate SRPT (Shortest Remaining Processing Time) policy, and our plots show E[T ] under the
simulated policies normalized by the mean response time under SRPT scheduling.
Figures 4(a)-4(d) show the results of our experiments with a trace of packet sizes seen on the
Bellcore Ethernet [13]. The autocorrelation function of packet sizes (Figure 4(a)) shows signif-
icant sequential job size correlation – the lag-1 correlation is approximately 0.45 with correla-
tion persisting even at lags of up to 100 (unlike MMAP model where the correlation decreases
exponentially in lag). Figure 4(b) shows the job size distribution which is almost a trimodal
distribution. To perform the simulations, we modify the base trace as follows: In the first set of
experiments (Figure 4(c)), we scale the interarrival times from the trace to vary the ‘load’. In the
second set of experiments (Figure 4(d)), we keep the same sequence of job sizes as the original
trace, but create a new Poisson arrival process to eliminate correlations in the arrival process
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(h) Results for Poisson arrivals

Figure 4: Trace-based experiments. Simulation results for the Bellcore trace are shown in the top box, and for the
SHARCNET trace in the bottom box. For each set of traces, the top-left plot shows the autocorrelation function for job
size sequence; the bottom-left plot shows the cdf of the job size distribution; the two top-right plots show the performance
(as the ratio of E[T ] to E

[
T S RPT

]
, and of E[TL] to E

[
T S RPT

L

]
, respectively) when the interarrival times are taken from

the trace; the two bottom right plots show the performance obtained by creating a synthetic Poisson arrival process.

(the trace arrival process is bursty) and correlations between interarrival times and job sizes (the
correlations between a job size and immediately following interarrival time is −0.15). We see
that with respect to E[T ], the ordering of the policies largely obeys FCFS≈ROS≈PS>LCFS≈P-
LCFS>PRIO-P>SRPT. This is consistent with the ordering we obtained via analysis using the
MMAP correlation model. We also see that E

[
T FCFS

]
is up to 1.8 times worse than E

[
T LCFS

]
which contrasts with the uncorrelated case where they are equal. We also investigate the effect
of scheduling on the little jobs by classifying packets of size less than 400 bytes as L. Under
our criterion, the L jobs make up 70% of the packets, and 25% of the total bytes. We find that
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E
[
T FCFS

L

]
is up to 3 to 4 times worse than E

[
T LCFS

L

]
and almost 10 times worse than E

[
T P−LCFS

L

]
.

We also see that PS outperforms LCFS but not P-LCFS in terms of E[TL]. This can be explained
by the fact that under the uncorrelated case PS and P-LCFS have identical performance and out-
perform LCFS which suffers due to job size variability. Under moderate correlation, we see a
behavior that is the mixture of uncorrelated and high-correlation cases: job size variability is still
hurting class L jobs under LCFS and thus gives them worse performance than PS, however due to
correlation P-LCFS is able to perform better than PS (our MMAP simulation results also suggest
that for moderate correlations, PS still outperforms LCFS). The same observations hold under a
Poisson arrival process, but the gains are more moderate. This suggests that in the presence of
cross-correlations and bursty arrivals, the effect of scheduling will be more pronounced.
Figures 4(e)-4(h) show the results for the SHARCNET trace [1], which is a supercomputing
workload. Here job size is defined as the run time of jobs submitted to the server, and the
correlation in the sequence of job sizes is very high (lag-1 autocorrelation is over .7, and even
lag-100 correlation is over .4). The ordering of policies with respect to E[T ] largely obeys
FCFS>ROS>PRIO-P>PS≈P-LCFS≈LCFS>SRPT. The gains of utilizing LCFS instead of FCFS
for the SHARCNET trace are even more significant, as the ratio of E

[
T FCFS

]
to E

[
T LCFS

]
can be

over 2. For the SHARCNET trace, we defined L jobs as those smaller than 54000 seconds ( 86%
jobs, 25% of total load). There is again a significant difference between E

[
T FCFS

L

]
and E

[
T LCFS

L

]
,

up to 4X when scaling the original interarrival times, and 15X to 20X when the arrival process has
been converted to a Poisson process. Comparing E[TL] for LCFS, PS and P-LCFS, we see that PS
does better than LCFS which can be explained by the presence of job size variability. However
the ordering of PS and P-LCFS under arrival times from the SHARCNET trace switches when
a Poisson arrival process is considered. While under a Poisson arrival process, PS performs
worse than P-LCFS as predicted by our analysis of the MMAP correlation model, under the
arrival sequence from the SHARCNET trace, PS outperforms P-LCFS. This suggests that the
correlation between the arrival times (the SHARCNET arrival sequence has extremely bursty
and variable interarrival times compared to the Bellcore trace) is also an important aspect to
consider to fully understand the effect of scheduling under correlated traffic pattern.

4. Conclusions

To the best of our knowledge, this is the first paper to study analytically how common scheduling
policies, like PS, LAS, ROS, P-LCFS, LCFS, etc. are affected by correlation among consecutive
job sizes. We find the ranking of scheduling policies, from highest to lowest mean response
time (E[T ]), changes dramatically under correlation: LCFS which performs poorly under no
correlation becomes optimal among size-independent policies under high correlation; the optimal
size-independent policy for i.i.d. job sizes, LAS, becomes sub-optimal under high correlation;
the mean response times of policies which are insensitive to job-size variability when job sizes
are i.i.d., like PS and P-LCFS, now depend on the entire job-size distribution, to cite a few
examples. When examining the mean response time of “little” jobs only (E[TL]), the change in
ranking is even more dramatic, with correlation actually making some policies like LCFS and
P-LCFS perform better, and making other policies like LAS perform far worse.
We have only scratched the surface of how correlation in job sizes affects performance. First, our
correlation model is very simple, chosen for analytical tractability and to gain insights; extending
the results presented here to richer models is left for future work. Second, while this paper
shows that P-LCFS and LCFS perform optimally among size-independent policies under very
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high correlation, the paper does not answer the question of which policy is best under moderate
correlation. Furthermore, we have not even explored policies which might exploit the correlation
structure to improve performance. Third, our model only captures correlations in consecutive
job sizes, but we believe that the techniques introduced herein can be applied to understanding
the effect of all three types of correlation on the performance of scheduling policies.

Appendix A. Transforms for stationary workload

Theorem 5. Let W̃L(s) and W̃H(s) denote the transform for the stationary workloads during the
L and H states, respectively, under the MMAP model. Then:

W̃L(s) =
(1 − ρ)αmLmH − smLgHπL(0)
αLgHmL + αHgLmH − sgLgH

(A.1)

where,

mL = µL + s ; mH = µH + s
gL = µL − λ + s ; gH = µH − λ + s ; πL(0) =

(1 − ρ)α(µH + ξ)
ξ(µH − λ + ξ)

and ξ denotes the unique root of the denominator of (A.1) in the interval (0,+∞). The quantity
πL(0) denotes the long run fraction of time that the system is empty conditioned on being in state
L. The expression for W̃H(s) is obtained by flipping µH and µL, and flipping αL and αH .

Proof: The first step is analysis of the transient workload in an M/G/1. Consider an M/G/1
with arrival rate λ, i.i.d. job sizes X1, X2, . . . with Laplace transform of the job size distribution
given by E

[
e−sX1

]
= X̃(s). We can write the following equation for the evolution of the workload

W(t) in this M/G/1:

W(t + δt) = W(t) − δt1W(t)>0 +
∑

n

Xn1nth arrival in (t,t+δt)

Let W̃t(s) = E
[
e−sW(t)

]
. Taking Laplace transforms in the above equation, and then letting δt → 0,

d
dt

W̃t(s) = W̃t(s)
(
s − λ(1 − X̃(s))

)
− sPr[Wt = 0]

Let T be an Exp(ν) random variable and W̃T (s) = E
[
e−sW(T )

]
. Using integration by parts, we get:

W̃T (s) ≡
∫ ∞

u=0
W̃u(s)νe−νudu =

W̃u(s)νe−νu

−ν

∞
u=0

+

∫ ∞

u=0

dW̃u(s)
du

e−νudu

= W̃0(s) +
1
ν

∫ ∞

u=0

(
W̃u(s)

[
s − λ(1 − X̃(s))

]
− sPr[Wu = 0]

)
νe−νudu

= W̃0(s) +
1
ν

(
W̃T (s)[s − λ(1 − X̃(s))] − sPr[W(T ) = 0]

)
Specializing to our problem, we obtain the following two relations by applying the above equa-
tion during L and H states, and noting that by PASTA W̃L(s) and W̃H(s) also denote the stationary
workloads at the ends of L and H states, respectively:

W̃L(s) = W̃H(s) +
s
αL

[
W̃L(s)

(
1 −

λ

µL + s

)
− πL(0)

]
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W̃H(s) = W̃L(s) +
s
αH

[
W̃H(s)

(
1 −

λ

µH + s

)
− πH(0)

]
Eliminating W̃H(s), and πH(0) by using the fact πL(0)

αL
+

πH (0)
αH

= (1 − ρ)
(

1
αL

+ 1
αH

)
, we obtain

the expression for W̃L(s) shown in the Theorem. It now remains to determine the unknown
πL(0). To obtain this, we note that the polynomial in the denominator of W̃L(s) is a cubic in s
which approaches −∞ as s → ∞. Further, the denominator is positive at s = 0 but negative at
s = λ − µL < 0. Therefore there is exactly one root of the denominator in the interval (0,+∞),
which we denote by ξ, at which there is a degeneracy in the denominator. Since the transform
must converge in Re(s) > 0, the numerator must share this root, yielding the unknown πL(0).

Appendix B. Asymptotic Expressions for Mean Busy Periods

Busy periods form the core of the analysis for scheduling policies, and therefore we deal with
the problem of analyzing busy periods in as much generality as possible.
We consider a system with an environment controlled by a 2-state Markov chain with states L and
H. The time spent in state L during each visit is Exp (αL) and time spent in state H is Exp (αH).
Let α = αL + αH , p = αH

α
. The arrivals occur at a rate λ in each state. The arrivals during an L

state have i.i.d. general job sizes and are denoted by random variable S L. Similarly, the arrivals
during an H state have i.i.d. general job sizes denoted by random variable S H . We will assume
E[S L] < E[S H]. We index this system by α.
The scaling: We consider a sequence of systems, indexed by α, obtained by setting the switching
rates as αL + αH = α, while fixing p = αH

α
. We start the αth system in a prescribed state with

initial workload (a random variable) denoted by Wα. We will say that the workload sequence

Wα is Θ(g(α)) if the sequence
{

Wα

g(α)

}
is uniformly integrable and limα→0

Wα

g(α)
d
→ W, where W is

some non-degenerate random variable. Similarly, we say Wα = o(h(α)) if Wα = Θ(g(α)) and
limα→0

g(α)
h(α) = 0, or Wα = ω(h(α)) if Wα = Θ(g(α)) and limα→0

h(α)
g(α) = 0.

Goal: Let BL(Wα) and BH(Wα) denote the random variables for the busy periods started by work
Wα in states L and H, respectively, in the αth system. We will be interested in obtaining the mean
busy period in the asymptotic regime α→ 0. That is, we are interested in obtaining the dominant
term in E[BL(Wα)] or E[BH(Wα)], as the switching rate α→ 0.
Notation: S̃ L(s) = E

[
e−sS L

]
; S̃ H(s) = E

[
e−sS H

]
rL = 1 − λE[S L] ; rH = 1 − λE[S H]; ρ = λ(pE[S L] + (1 − p)E[S H])

We first present the theorems on asymptotic expressions for the mean busy periods. After pre-
senting the theorems, we first present a brief proof sketch to elucidate how the theorems were
derived, and then the detailed proofs. Theorem 6 considers the case λE[S H] > 1, and Theorem 7
considers the case λE[S H] < 1.

Theorem 6. Let rH < 0. That is, the system is under temporary overload during H states.
Case 1: Wα = ω(1), Pr

[
W = 0

]
= 0:

E[BL(Wα)] =
E[Wα]
1 − ρ

+ o(Wα)

E[BH(Wα)] =
E[Wα] +

1−ρ−rH
αH

1 − ρ
+ o(max

{
Wα, α

−1
}
)
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Case 2: Wα = Θ(1):

E[BL(Wα)] =
E
[
W

]
rL

+ pswitch · (1 − Q f )
1 − ρ − rH

αH(1 − ρ)
+ o(1)

E[BH(Wα)] = (1 − P f ) ·
E
[
W

]
+

1−ρ−rH
αH

1 − ρ
+ O(1)

where, pswitch denotes the probability that the environment state switches to H before the busy
period started by W in state L ends. We call this event a ‘switch’. The expression for pswitch is

given by pswitch =
E
[
W

]
αL

rL
+ o(α). The quantity Q f denotes the probability that, given a ‘switch’

occurs, the residual busy period is finite if the H state were to last indefinitely from then on:

Q f = Ṽ(λ(1 − p f )) + o(1)

where Ṽ(·) is given by 4: Ṽ(s) =
rL·

1−W̃(s)
E[W]

s−λ(1−S̃ L(s))
, and p f ∈ (0, 1) solves the fixed point equation5:

p f = S̃ H(λ(1 − p f )).
The quantity P f denotes the probability that the busy period started by W during an H state is

finite if the H state were to last indefinitely and is given by P f = W̃(λ(1 − p f )).

Corollary 2. Consider the case S L ∼ Exp (µL) and S H ∼ Exp (µH), µL > λ > µH . Let Bc
s

(c, s ∈ {L,H}) denote the busy period duration started by a class c job in environment state s.
Then,

E
[
BL

L

]
=

1
µL − λ

1 +
1 − p

p
·
λ − µH

µL − µH
·

λ
µH
− ρ

1 − ρ

 + o(1);

E
[
BH

L

]
=

µL

µH(µL − λ)

1 +
1 − p

p
(1 − Q fH )

λ
µH
− ρ

1 − ρ

 + o(1)

and:

E
[
BH

H

]
=

(
1 −

µH

λ

)
·

λ
µH
− ρ

αH(1 − ρ)
+ o(α−1)

E
[
BL

H

]
=

(
1 −

µL

µL + λ − µH

)
·

λ
µH
− ρ

αH(1 − ρ)
+ o(α−1).

In the above, 1 − Q fH = 1 − ṼH(λ(1 − φ f )), where φ f =
µH
λ

, and ṼH(s) =

(
1− λ

µL

)(
µH
µH +s

)
1− λ

µL

(
µL
µL+s

) .

4 The function Ṽ(s) denotes the Laplace transform of the workload in the system just before the ‘switch’ event occurs.
Ṽ(s) is obtained as the Laplace transform of the stationary workload conditioned on server being busy in an M/G/1 with
repeated vacations, with service distribution S L and i.i.d. vacations distributed as W.

5The quantity p f denotes the probability that a busy period started by an H job in an H state is finite if the H state
were to last indefinitely.



/ Performance Evaluation 00 (2010) 1–24 18

Theorem 7. Let rH > 0. That is, the system is stable during H states.
Case 1: Wα = ω(α−1)

E[BL(Wα)] =
E[Wα]
1 − ρ

+ o(Wα) ; E[BH(Wα)] =
E[Wα]
1 − ρ

+ o(Wα).

Case 2: Wα = Θ(α−1)

E[BL(Wα)] =
E[Wα]
1 − ρ

(1 − uα) +
E[Wα]

rL
uα + o(α−1)

E[BH(Wα)] =
E[Wα]
1 − ρ

(1 − uα) +
E[Wα]

rH
uα + o(α−1)

where uα ≡

 1−W̃α

(
αL
rL

+
αH
rH

)
E[Wα]

(
αL
rL

+
αH
rH

)
, 0 < uα < 1, and limα→0 uα = u =

 1−W̃
(

1−p
rL

+
p

rH

)
E
[
W

](
1−p
rL

+
p

rH

)
; and recall

W = limα→0 αWα.
Case 3: Wα = o(α−1)

E[BL(Wα)] =
E[Wα]

rL
+ o(Wα); E[BH(Wα)] =

E[Wα]
rH

+ o(Wα).

Proof Sketch of Theorems 6 and 7: Recall our fluid model, in which the workload decreases at
deterministic rate rL during the L states, and increases at rate −rH during the H states. We would
like to believe that given an initial workload Wα, asymptotically the busy period started by Wα is
the same as the duration of the busy period started by Wα under the fluid model. However, this is
only partially true. When Wα = Θ(α−1), this asymptotic equivalence is justified by [4, Theorem
1(b)] which proves the convergence of workload sample paths of the stochastic and fluid systems
(although one needs to do a little more work to convert it to convergence of busy periods). For the
remaining cases, we must consider the tree of events that may occur until each leaf corresponds
to an empty system, or one with workload that is Θ(α−1) so that we can apply [4, Theorem 1(b)].
We describe this below.
Case: Wα = ω(α−1): In this case, the initial workload is of a higher order than the scale at which
the system switches. Thus, asymptotically, the number of times the system switches states before
Wα drains goes to ∞ as α → 0, and the workload sees the “average system” during its sojourn.
Thus the mean busy period is E[Wα]

1−ρ + o(Wα).
Case: Wα = Θ(α−1): As noted above, in this case from [4, Theorem 1(b)] asymptotically the
mean busy period is given by the busy period under the fluid model. The final expressions are
obtained by setting up and solving recurrences for the mean busy period under the fluid model.
Remark 10: When rH > 0, the mean busy period started in state s is a convex combination of the
busy period if the state s were to last indefinitely, and the busy period of the “average system”,
with the coefficient being a function of the Laplace transform of the workload.
Case: Wα = o(α−1), rH > 0: In this case, the system is stable in both states. Consider a busy
period starting in state L. If the L state were to last forever, the busy period would exactly be
E[Wα]

rL
. However, since we may switch at rate Θ(α), there is a o(1) probability that the system

switches to state H before the busy period finishes. If this switch were to happen, the remaining
busy period would be stochastically bounded by a Θ(Wα) random variable, as the system is
always stable, thus giving a o(Wα) contribution to the overall busy period after multiplying by
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the probability of switching. Thus asymptotically, the mean busy period started by Wα workload
in state L would be E[Wα]

rL
+ o(Wα).

Case: Wα = Θ(1), rH < 0: This case is the most non-trivial of all, and clearly explains the
failure of fluid modeling of busy periods. First, consider a busy period started in state H by
Wα = Θ(1) work. The fluid model would imply that the workload keeps increasing at rate −rH

until the system switches to L. At this point we have Θ(α−1) workload built up, and we could
apply [4, Theorem 1(b)]. However, given that we start with Θ(1) workload in state H (which is
in transient overload), there is still a constant (Θ(1)) probability that the stochastic busy period
started by the Θ(1) workload is finite! This probability is denoted by P f in Theorem 6, and given
that this event does not happen, we can use the fluid busy period expressions. Next, consider a
busy period started in state L by Wα = Θ(1) work. In this case, with Θ(α) probability (given by
pswitch), there is a class H arrival before the busy period ends. We are now in state H with Θ(1)
workload (whose transform is given by L̃(s) · S̃ H(s)). Given that a class H arrival happens, the
residual busy period (from our argument above) is Θ(α−1). After multiplying it with pswitch, we
see that the contribution of this term to the overall busy period is Θ(1), and hence is of the same
asymptotic order as the duration of the busy period started in state L conditioned on it ending in
state L (= E[Wα]

rL
+ o(1)). Therefore, we need to be precise with each of the terms involved, and

applying the fluid method does not yield the correct expressions.
Proof of Theorem 6:
Case 1: Wα = ω(1), Pr

[
W = 0

]
= 0: We first show that under the fluid regime, the expres-

sions for the busy periods are as given. Then we will argue that when Wα = ω(1), the fluid
approximation for the mean busy period is asymptotically the same as the stochastic busy period.
Let Wα be deterministic x, and τL ∼ ExpαL. Then we can write the following recurrence relation
for the fluid busy period started in L or H state by workload x.

E[BH(x)] =
1
αH

+ E
[
BL

(
x −

rH

αH

)]
E[BL(x)] = E

[
min

{
x
rL
, τL

}]
+ E

[
BH

(
x − rL min

{
x
rL
, τL

})
· 1{x>rL·τL}

]
.

Now we assume E[BL(x)] = bLx and E[BH(x)] = aH + bH x for some constants bL, aH , bH , and
then verify that these forms are indeed correct by identifying the unknown constants. Under the
assumed forms for fluid busy periods, the recurrences reduce to:

aH + bH x =
1
αH

+ bLx − bL
rH

αH
; bLx =

1 − e−
αL
rL

x

αL
+ aH(1 − e−

αL
rL

x) + bH x − bHrL
1 − e−

αL
rL

x

αL

Since the above equations should be satisfied for all x, we get bL = bH = 1
1−ρ and aH =

1−ρ−rH
αH (1−ρ)

yielding the expressions in the theorem statement.
Now we verify that when Wα = ω(1), the fluid busy period expressions are asymptotically cor-
rect. In the simple case Wα = ω(α−1), the system switches on a faster time-scale (Θ(α−1)) than
the initial amount of work (ω(α−1)). Thus this workload sees the “average” system (rather than
the transient system) and its busy period is simply E[Wα]

1−ρ + o(Wα).
When the workload is Θ(α−1), then using [4], the sample paths of the stochastic system (scaled
by α) converge as α → 0 to the fluid sample path in the space D[0,∞). Thus, the mean busy
period of the stochastic system is within o(α−1) of the mean busy period of the fluid system.
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Now consider the case Wα = Θ(g(α)) where g(α) = ω(1), but g(α) = o(α−1) (e.g., g(α) = 1
√
α

).
Subcase 1: Busy period beginning in state H: We will show that even though the initial workload
is o(α−1), since it is ω(1), with overwhelming probability, the sample paths will follow the fluid
trajectory. Let W̃α(s) = E

[
e−sWα

]
. Since reordering the jobs served in a busy period does not

change the busy period duration, consider the case where the initial workload Wα is served first.
If the H state were to last forever, the z−transform for the number of arrivals of class H jobs
while workload Wα is served is given by W̃α(λ(1 − z)). The main idea is to show that since the
H state is in overload, with probability tending to 1, at least one of the class H jobs will start a
busy period that lasts until the end of the H state, whereby by the Strong Law of Large Numbers
the accumulated workload will be Θ(α−1). Consider the busy period that one class H job starts,
provided the H state continues forever. The Laplace transform of the busy period in an M/G/1
with only class H jobs, B̃H(s), satisfies:

B̃H(s) = S̃ H(s + λ(1 − B̃H(s))).

Since the M/G/1 is in overload, there is a constant probability that the busy period is infinite.
The probability that the busy period is finite is obtained as

p f = lim
s→0

B̃H(s).

Taking limit in the expression for B̃H(s), we obtain:

p f = S̃ H(λ(1 − p f ))

The busy period started by Wα, given the H phase lasts forever, is finite if and only if the busy
period started by each H arrival while Wα was served is finite. This probability, then is given by

Pr
[
busy period started during H is finite

]
=

∞∑
i=0

Pr
[
i arrivals during Wα

]
·pi

f = W̃α(λ(1−p f ))→ 0.

The last fact is true since Wα

g(α) → W, W̃α(s) → W̃(s · g(α)) → 0 as α → 0 (W̃(s) is a decreas-

ing function from 1 to 0, and g(α) = ω(1)). The fact that lims→∞ W̃(s) = 0 follows from the
assumption Pr

[
W = 0

]
= 0.

Therefore, with probability approaching 1, the busy period started by Wα in phase H (under the
assumption that the H phase lasts forever) is not finite. In other words, during the H phase, the
workload increases asymptotically along the fluid trajectory, and then the system switches to the
L phase. Since the work built up during the H state is Θ(α−1), the workload follows the fluid
trajectory after switching to the L state. Therefore, the expression for the mean busy period
started in H phase by ω(1) work is indeed given by the mean busy period under the fluid regime
within a o(max {Wα, α

−1}) term.
Subcase 2: Busy period beginning in state L: Now we consider the case where the busy period
starts in the L phase. If the L phase were to last forever, the workload in the system, scaled by
g(α), would follow the fluid trajectory, and hence the mean busy period would be the mean busy
period under the fluid regime within a o(Wα) term. However, with probability Θ(α · g(α)) the
system switches to H state before the fluid workload reaches 0. Conditioned on switching to the
H state before the period ends, the workload at the beginning of the H state is again Θ(g(α)).
We have already argued above that subsequently the workload follows the fluid trajectory – and



/ Performance Evaluation 00 (2010) 1–24 21

the residual busy period will be Θ(α−1) within an o(α−1) term. Therefore, the mean busy period
started in L phase will be the mean busy period under the fluid regime, within a o(Wα) term.
Case 2: Wα = Θ(1): We first consider the case where the busy period begins in the H state

by workload W with Laplace transform W̃(s). As we have argued above, since the H state is
in overload, there is a constant probability that the busy period does not end before the system
switches to the L state. This probability is given by 1 − P f where,

P f = W̃(λ(1 − p f ))

and p f is the solution to the fixed point equation p f = S̃ H(λ(1 − p f )). P f denotes the proba-
bility that a busy period started by work W in the M/G/1 under overload is finite, and p f is the
probability that a busy period started by a single class H job is finite.
Given that the busy period does not end before the system switches, the work that builds up in
the system is given by τH( λ

µH
− 1) + o(α−1) where τH denotes the duration of the H state and

is Θ(α−1). We can thus apply the previous case and conclude that the mean busy period in this
case, that is with probability 1 − P f , is given by 1

αH
−

rH
αH (1−ρ) . In simpler terms, we are starting

the busy period with Θ(1) work in the H state. With Θ(1) probability, the busy period does not
end in the H phase, in which case we start the subsequent L state with Θ(α−1) work, with an
overall contribution to the mean busy period of Θ(α). If however, the original busy period ends
in the H state itself, then this event contributes a Θ(1) term and hence is asymptotically negligible
compared to the contribution of the event where the busy period does not end in the H state.
Now we consider the case where the busy period begins in an L state. Again, we have two cases
– either the busy period ends in the L state itself, or the system switches to an H state before the
busy period ends. If the busy period ends in the L state, an event which happens with probability

1 − Θ(α), then the mean busy period conditioned on this event is given by
E
[
W

]
rL

. However,
the system can switch with probability Θ(α), and the contribution of the residual busy period
conditioned on this event can be Θ(α−1) (from the previous subcase). Therefore, this event also
contributes a Θ(1) term to the mean busy period, and we handle this event next.
Consider an M/G/1 busy period started by work W. We let this M/G/1 evolve in the L state, and
consider an independent Poisson(αL) marking process. Our aim is to find the workload in the
M/G/1 when the first mark arrives during the busy period. The probability that no mark arrives

is given by 1 −
E
[
W

]
αL

rL
, which we denote by 1 − pswitch in the theorem statement. Thus, with

probability pswitch, at least one mark arrives, or equivalently, the environment processes switches
before the busy period ends and hence the busy period now evolves in the H state.
The subsequent busy period (that which evolves after the system switches to H) is given by the
the busy period that starts in H state with work Ṽ(s), where Ṽ(s) denotes the transform of the
work that is seen by the Poisson(αL) marking process conditioned on being the first mark of a
busy period. We will now argue that this is asymptotically given by the stationary work in an
M/G/1 conditioned on the server being busy, with exceptional service distribution for the job
that starts the busy period given by W, and service distribution S L. We first note that if we
have such an M/G/1 where we consider the distribution of work seen by all marks, then this
is indeed the stationary work conditioned on the server being busy, and hence is given by the
stationary delay seen by arrivals finding the server busy in an M/G/1 system with special first

service (this expression, Ṽ(s) =
rL·

1−W̃(s)
E
[
W

]
s−λ(1−S̃ L(s))

, is given in the theorem statement; see [26] or [15,
Appendix B] for proof). However, we are interested in the work that the first mark sees in a
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busy period, call this W1. We will argue that as the probability of marking goes to 0, the work
seen by the first mark converges in distribution to the stationary work conditioned on the server
being busy (and that this sequence of random variables remains uniformly integrable so that the
Laplace transforms converge). We first note that the work seen by the first mark is stochastically
bounded above by the supremum of the work in a busy period started by work W, denote this
by W∗1 . Further, conditioned on a second marked arrival, we can upper bound the work that this
mark sees by the supremum of the work in the busy period started by W∗1 (which is an upper
bound on the work after the arrival of the first mark), denote this by W∗2 . Similarly, we can obtain
an upper bound on the work seen by the nth marked arrival in a busy period. We also have the
trivial lower bound of 0 on the work seen by the nth marked arrival in a busy period. Note that
both these upper and lower bounds are independent of the marking probability. Let pi denote the
probability that there are i marked arrivals in a busy period. We can thus sandwich the stationary
work of the M/G/1 conditioned on it being busy between p1·W1∑∞

i=1 pi
and p1·W1+

∑∞
i=2 p2·W∗i∑∞

i=1 pi
. However, as

the marking probability (Θ(α)) goes to 0, pi ∼ Θ(αi). Therefore, W1 converges to the stationary
work in the M/G/1 with special service, conditioned on server being busy.
Proof of Theorem 7:
Recall that the work is decreasing during both the L and H states. There is a negative drift of
rL = 1 − λ

µL
during the L phase and a negative drift of rH = 1 − λ

µH
during the H phase.

Case 1: Wα = ω(α−1): As in the proof of Theorem 6, since the system switches at a faster time
scale (Θ(α−1)) than the initial work (ω(α−1)), the work during its sojourn sees an average system,
and hence the busy period is E[Wα]

1−ρ + o(Wα).
Case 2: W = Θ(α−1): We begin by noting that since the initial work is Θ(α−1), the workload
trajectory of the stochastic system, scaled by α, converges to the fluid trajectory. Hence the busy
period of the stochastic system is given by the fluid busy period and an additional o(α−1) term.
We now set up the recurrences for busy periods started by deterministic work x during the H and
L phases under the fluid regime:

E[BH(x)] = E
[
min

{
x

rH
, τH

}]
+ E

[
BL

(
x − rH min

{
x

rH
, τH

})
· 1{x>rH ·τH }

]
E[BL(x)] = E

[
min

{
x
rL
, τL

}]
+ E

[
BH

(
x − rL min

{
x
rL
, τL

})
· 1{x>rL·τL}

]
where τH is an Exp (αH) random variable and τL is an Exp (αL) random variable.
We now guess and verify that E[BH(x)] and E[BL(x)] have the following function form:

Bi(x) = ai + bix + cie
−

(
αL
rL

+
αH
rH

)
x

where ai, bi and ci, i ∈ {L,H}, are constants to be determined. The ‘guess’ is in fact an educated
attempt arrived at by exact analysis of the mean busy period started by n jobs in an alternate
discrete system which is identical on fluid scale to the system we want to analyze, but with 0
arrival rate. Since Bi(0) = 0, we have ai = −ci. Since the Laplace transform for x − ri min

{
x
ri
, τi

}
is E

[
e
−s

(
x−min

{
x
ri
,τi

})]
=

se−
αi
ri

x
−
αi
ri

e−sx

s− αi
ri

and E
[
min

{
x
ri
, τi

}]
= 1−e−

αi
ri

x

αi
, our recurrences become:

aL + bLx + cLe
−

(
αL
rL

+
αH
rH

)
x

=
1 − e−

αL
rL

x

αL
+ aH + bH

x −
1 − e−

αL
rL

x

αL
rL

 + cH


(
αL
rL

+ αH
rH

)
e−

αL
rL

x
−

αL
rL

e
−

(
αL
rL

+
αH
rH

)
x

αH
rH


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aH + bH x + cHe
−

(
αL
rL

+
αH
rH

)
x

=
1 − e−

αH
rH

x

αH
+ aL + bL

x −
1 − e−

αH
rH

x

αH
rH

 + cL


(
αL
rL

+ αH
rH

)
e−

αH
rH

x
−

αH
rH

e
−

(
αL
rL

+
αH
rH

)
x

αL
rL

 .
Since the above equalities hold for all x, together with ai = −ci, we get:

bL = bH =

 rL
αL

+ rH
αH

1
αL

+ 1
αH

−1

=
1

1 − ρ
,

−aL = cL =
rL − rH

αLαH

(
rL
αL

+ rH
αH

)2 ·
rH

αH
,

−aH = cH = −
rL − rH

αLαH

(
rL
αL

+ rH
αH

)2 ·
rL

αL
.

Therefore the expected busy period started by a work of size x during L and H phases, respec-
tively, can be expressed in the following convenient/intuitive form:

E[BL(x)] =
x

1 − ρ
−

(
x

1 − ρ
−

x
rL

)
·

1 − e
−

(
αL
rL

+
αH
rH

)
x(

αL
rL

+ αH
rH

)
x

 (B.1)

E[BH(x)] =
x

1 − ρ
−

(
x

1 − ρ
−

x
rH

)
·

1 − e
−

(
αL
rL

+
αH
rH

)
x(

αL
rL

+ αH
rH

)
x

 (B.2)

which show that E[BL(x)] and E[BH(x)] are weighted averages of the busy periods of the α →
0 and α → ∞ cases. Taking expectation over x (which is distributed as Wα), we obtain the
expressions given in the theorem.
Case 3: Wα = o(α−1) : Since the system is stable during both the L and H states, the busy period
is Θ(Wα) (being upper bounded by the busy period started by Wα in an M/G/1 with service
distribution S H). Suppose the busy period starts in the L state. If the L state were to last forever,
the busy period would indeed be E[Wα]

rL
. Now either the system switches to the H state before

this busy period ends, and this event happens with probability 1 − o(1). In this case, the length
of the busy period conditioned on it being smaller than Exp(αL) will be E[Wα]

rL
+ o(Wα) since

Wα = o(α−1). However, if the system switches before the busy period ends, which happens with
probability o(1), the residual busy period is still Θ(Wα). The overall contribution of the second
event to the mean busy period started by Wα is o(Wα). By law of total probability, the mean busy
started in L phase is E[Wα]

rL
+ o(Wα).

The proof for busy periods started during H phases is identical.
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