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Abstract

Join the Shortest Queue (JSQ) is a popular routing policy for server farms. However, until

now all analysis of JSQ has been limited to First-Come-First-Serve (FCFS) server farms, whereas

it is known that web server farms are better modeled as Processor Sharing (PS) server farms.

We provide the first approximate analysis of JSQ in the PS server farm model for general job

size distributions, obtaining the distribution of queue length at each queue. To do this, we

approximate the queue length of each queue in the server farm by a one-dimensional Markov

chain, in a novel fashion. We also discover some interesting insensitivity properties for PS server

farms with JSQ routing, and discuss the near-optimality of JSQ.

1 Introduction

1.1 Motivation

The server farm is a popular architecture for computing centers. A server farm consists of a front-

end router/dispatcher which receives all the incoming requests (jobs), and dispatches each job to

one of a collection of servers which do the actual processing. The dispatcher employs a routing

policy (also called a “task assignment policy”, or TAP), which decides when and to which server

an incoming request should be routed. Server farms afford low cost (many slow servers are cheaper

than one fast server), high scalability (it is easy to add and remove servers) and high reliability

(failure of individual servers does not bring the whole system down). One of the most important
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fourth author was partly supported by NSF Grant DMI-0457095.
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design goals for a server farm is choosing a routing policy which will yield low response times; the

response time is the time from the arrival of a request to its completion.

We are motivated by web server farm architectures serving static requests. Requests for files

(or HTTP pages) arrive at a front-end dispatcher. The dispatcher then immediately routes the

request to one of the servers in the farm for processing using a routing policy. It is important

that the dispatcher does not hold back the arriving connection request, or the client will time out

and possibly submit more requests. The bottleneck resource at a web server is often the uplink

bandwidth. This bandwidth is shared by all files requested in a round-robin manner with a small

granularity, which is well-modeled by the idealized processor sharing (PS) scheduling policy [17].

Under PS scheduling, the server splits its capacity equally over the requests it is processing, giving

an equal share of its capacity to each of the current requests at every instant of time. We are thus

interested in a PS server farm with immediate dispatch. Time sharing servers are beneficial in that

they allow “short jobs” to get processed quickly, without being stuck waiting behind long jobs.

This is particularly important, since measurements have shown that requested files sizes, and the

associated service requirements, are highly variable, (e.g., heavy-tailed [4, 10]) .

Front−end servers

(Processor sharing)

Poisson arrivals

λ(rate    )

JSQ

Dispatcher New job

(request)

Figure 1: Server farm with front-end dispatcher and K identical processor sharing back-end servers.

The Join-the-Shortest-Queue (JSQ) routing policy is the most popular routing policy used in PS

server farms today; e.g., it is used in Cisco Local Director, IBM Network Dispatcher, Microsoft

Sharepoint and F5 Labs BIG/IP. Under JSQ, an incoming request is routed to the server with the

least number of unfinished requests. Thus, JSQ strives to balance load across the servers, reducing

the probability of one server having several jobs while another server sits idle. From the point of

view of a new arrival, it is a greedy policy for the case of PS servers, because the arrival would
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prefer sharing a server with as few jobs as possible. We refer to a PS server farm with JSQ routing

as a JSQ/PS server farm.

1.2 Model and Notation

We model the arrival process of jobs as a stationary Poisson process.1 We assume that there is a

single dispatcher (router) and K identical PS servers with unlimited waiting space, as depicted in

Figure 1. We assume that routing is immediate using the JSQ policy. Ties are broken by randomly

choosing (with equal probabilities) among the servers with the fewest jobs. No jockeying is allowed

between the servers (once a job is dispatched to a server, it stays there until completion). A job’s

size (service requirement) is defined as the time taken by a job to run on a server in isolation.

Consequently, the JSQ/PS server farm acts as an M/G/K/JSQ/PS queueing model, with JSQ

denoting the policy used to route arrivals to the servers and PS denoting the scheduling rule (service

discipline) used by each server. Jobs arrive as a Poisson stream (the M) with rate λ and are routed

immediately to one of the K servers with the fewest jobs. The service requirements are drawn

independently from a general distribution with mean µ−1 (the G) and service is performed at each

server according to PS. We define the load of this system, ρ, as the per-server load ρ = λ/(Kµ).

We sometimes use the extra notation M(λ)/G(µ)/K/JSQ/PS to denote that the average arrival

rate is λ and the mean job size is µ−1. We will use N to denote the random variable for the queue

length of a single PS queue in the server farm.

1.3 Contributions/Outline

Despite the ubiquity of JSQ/PS server farms, no one has yet analyzed the performance of JSQ in

this setting. The existing analysis on JSQ involves First-Come-First-Serve (FCFS) server farms,

where the servers employ FCFS scheduling. Within the JSQ/FCFS setting, almost all analysis

is restricted to 2 servers, often with exponentially-distributed job sizes. For more than 2 servers,

while some very appealing approximations exist, the accuracy of those approximations decreases

as the number of servers is increased or as the job-size distribution becomes more variable. Prior

work is detailed in §2.

In this paper we provide the first analysis of the JSQ/PS model. In particular, we provide a way to

calculate the approximate steady-state distribution of queue-length (number of jobs in the system)

1This is consistent with measurements, except that measurements invariably show that the arrival rate varies
strongly by time of day. However, in the short time scale over which we analyze performance (minutes, say), the
arrival rate usually can be regarded as constant. The request pattern of individual users is typically far from Poisson,
but as in many applications, a Poisson arrival process becomes justified because the overall arrival process is the
superposition of relatively sparse arrival processes from many nearly independent users. We can then invoke the
classical limit theorem establishing convergence to the Poisson process, as in Proposition 9.2.VII on p. 285 of Daley
and Vere-Jones [11].
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at any server, which also yields the mean response time via Little’s Law. While our analysis is

approximate, the accuracy of our approximation is extremely good: < 3% error for mean response

time and only slightly more for the second moment of queue length. More importantly, the error

does not seem to increase beyond 3% with increased numbers of servers, or with an increase in

job-size variability.

SQA

We accomplish this goal in what we believe is an interesting innovative way. In §3 we introduce

a new approximation technique for server farms, which we call the single-queue approximation

(SQA). Besides being useful for JSQ/PS server farms, SQA should apply to a much larger class

of multi-server systems with state-dependent routing policies. The key idea behind SQA is the

following: Instead of analyzing the entire multi-server model, we just concentrate on a single queue

in the server farm, say queue Q, and model its behavior independently of all the other queues. To

capture the effect of the other queues, without directly considering them, we model the arrival

process into queue Q by a stochastic point process with state dependent rates. In particular, we

assume that the arrival process into queue Q has stochastic intensity λ(NQ(t)), where NQ(t) is the

queue length of Q at time t and λ(n) is the long-run arrival rate when Q has n customers in the

original multi-server model.

We provide strong theoretical support for SQA: In Theorem 3.1 of §3 we prove that SQA is in fact

exact when the job-size distribution is exponential (given exact conditional arrival rates). Thus,

M/M/K/JSQ/PS
SQA
≡ Mn/M/1/PS ,

where equivalence denotes equivalent steady-state queue-length distributions.

Near-Insensitivity

Turning to general job-size distributions, in §4, we investigate the sensitivity of the M/G/K/JSQ/PS

to the variability of G. In §4.1, we prove that under a class of distributions, the degenerate hy-

perexponential (H∗

2 ), the mean response time of a JSQ/PS server farm depends on the job size

distribution only through its mean. That is, even when the parameters of the degenerate hyperex-

ponential are set to create very high variability, mean response time is unaffected, as we prove in

Theorem 4.1. Coupled with the above equation, we now have:

M/H∗

2/K/JSQ/PS ≡ M/M/K/JSQ/PS
SQA
≡ Mn/M/1,

where equivalence denotes equivalent queue-length distributions.
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To examine other job-size distributions, we resort to extensive simulations of a wide class of distri-

butions, including hyperexponential distributions, Erlang distributions, Weibull distributions, the

deterministic distribution and bimodal distributions (mixture of two point masses). We find, see

§4.2, that the JSQ/PS system shows near insensitivity to the variability of the job size distribution.

Coupled with the above equation, we now have:

M/G/K/JSQ/PS ≈ M/M/K/JSQ/PS
SQA
≡ Mn/M/1,

where the approximation is quite close for at least the first two moments of queue length.

In §4.3, we discuss intuition for the near-insensitivity of JSQ/PS server farms. First, we note

that the insensitivity of the M/G/1/PS queue (which is well-known) extends also to the (state-

dependent) Mn/G/1/PS queue (a less known fact). Second, we demonstrate that the conditional

arrival rates – the λ(n) – are also nearly insensitive to the job size distribution. Finally, we point

out that the fact that the M/G/K/JSQ/PS server farm exhibits near-insensitivity is non-trivial,

since very similar routing policies for PS server farms, like Least-Work-Left (sending the job to the

host with the least total work), or Round-Robin, are highly sensitive to the job size distribution.

Conditional Arrival Rates

At this point, it appears that we have a method for analyzing JSQ/PS server farms with gen-

eral job-size distributions: As shown in Figure 2, we approximate the M/G/K/JSQ/PS by an

M/M/K/JSQ/PS, which we prove is equivalent to an Mn/M/1, which we then solve. However,

there is an important unresolved issue: We have not explained how to derive the conditional arrival

rates, the λ(n)’s, into the Mn/M/1 queue. This is the subject of §5.

To determine the λ(n)’s, we began by measuring them through extensive simulation experiments.

Fortunately, we found stunning regularity in the results. We observed that λ(n) ≈ µρK for all

n ≥ 3. We further support this observation by Theorem 5.1, showing that

λ(n)

µ
→ ρK , as n → ∞

in the case where K = 2. Given the above observations, it suffices to determine only the three

remaining parameters: λ(0), λ(1) and λ(2), which we determine using a combination of analysis

and simulation. We thus obtain closed-form expressions for all the conditional arrival rates λ(n)

as a function of the three parameters λ, µ and K. With those formulas, we can get a closed-form

solution for the queue-length distribution, since the approximating Mn/M/1 model is a repeating

birth-and-death process.
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Figure 2: Pictorial view of results in the paper.

High Accuracy

In §6, we demonstrate the remarkable accuracy of our approximation method under a wide array

of job-size distributions, where we use our derived conditional arrival rates λ(n). We show that

our analytical approximation method is always within 2.5% of simulation estimates for mean queue

length and response time, under all job-size distributions examined. Furthermore, this percentage

error does not appear to increase as K is increased from 2 to 16. The maximum error only rises

from 2.5% to 3.5% when we look at the second moment of queue length.

Where prior work fits in.

Figure 2 demonstrates pictorially some of the results in this paper. It is important to note that one

is not forced to use the SQA approximation in the rightmost equality of Figure 2. Once we know

that: M/G/K/JSQ/PS ≈ M/M/K/JSQ/PS ≡ M/M/K/JSQ/FCFS, we can then apply any

known method in the literature to solve the M/M/K/JSQ/FCFS, not just SQA. As mentioned

earlier, the literature is full of methods for analyzing the M/M/K/JSQ/FCFS for the case of

K = 2; even for K > 2, there are some attractive approximations by Nelson and Philips [24] or by

Lin and Raghavendra [22].

Near-optimality of JSQ

We end the paper in §7 by presenting simulation results comparing JSQ with other routing policies

in the PS server farm setting. We find that JSQ is impressively close to achieving optimality,

despite using far less information about jobs than the other routing policies against which it is
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compared.

2 Prior Work

We emphasize again that there has been no previous mathematical analysis of the M/G/K/JSQ/PS

model. However, Bonomi [5] conducted a simulation study for the special case of two servers. He

showed that, among all policies that base their decisions only on the queue lengths at the servers,

JSQ minimizes the mean response time for the PS scheduling rule and exponential service require-

ments. Bonomi also proposed policies that improve slightly upon JSQ (5% improvement), for some

general job-size distributions, by exploiting the remaining service times of jobs. He showed via

simulation that common load-balancing schemes that perform well for JSQ/FCFS do not perform

well for JSQ/PS. Bonomi observed that, while Least-Work-Left (LWL) is good for FCFS, it is not

good for PS. However, we find that LWL is not always bad; see Figure 7.

By contrast, there is a lot of work on the JSQ/FCFS model (recall that under exponential work-

loads, JSQ/FCFS is equivalent to JSQ/PS with respect to the stationary queue length distribution).

However, even the M/M/K/JSQ/FCFS model remains quite intractable. Several authors, includ-

ing Weber [26], Winston [29], and Ephremides et al. [13], consider the optimality of JSQ for FCFS

servers in certain constrained settings involving a job-size distribution with non-decreasing failure

rate and various assumptions on not knowing job sizes a priori. Note, however, that JSQ is far

from optimal for FCFS servers with highly-variable job sizes [9, 18].

Almost all papers analyzing JSQ/FCFS performance are limited to 2 servers, an exponential job-

size distribution and the mean response time metric. Among the classic papers are Kingman

[20] and Flatto and McKean [14]. They use generating functions to derive the joint probability

distribution of queue lengths and express the mean response time as an infinite sum, which in

practice requires truncation to compute. Wessels, Adan, and Zijm [2] show that Kingman’s result

can be derived more intuitively via the compensation approach. Approximations for the mean

response time have also been obtained by state space truncation of the Markov chain [16, 8, 25, 23].

Heavy traffic approximations for JSQ/FCFS also exist and are evaluated in [15, 21]. Lastly, Boxma

and Cohen [6] obtain a functional representation for the mean response time using boundary value

approach. These methods are exact. However they are not always computationally efficient and do

not generalize to higher values of K.

For analyzing JSQ/FCFS with more than K = 2 servers, again with exponential job sizes, only

approximations exist. Again, the metric is mean response time. Nelson and Philips [24] use the

following idea: They look at the steady-state probability of the M/M/K/FCFS queue (with a

central queue) as an estimate for the total number of jobs in the JSQ/FCFS system, and then

assume that the jobs in the system are divided equally (within 1) among each of the queues.
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Lin and Raghavendra [22] follow the approach of approximating the number of busy servers by a

binomial distribution and then also assume that the jobs are equally divided among each of the

queues (within 1). Both approximations are reasonably accurate. Specifically, the Nelson and

Philips demonstrates error less than 8% for K up to 16 with exponentially distributed job sizes.

They also provide an empirically obtained correction factor which drops the error to 2%. Lin and

Raghavendra method yields less than 3.5% error for exponentially-distributed job sizes and K up

to 64. There are also some numerical methods papers that don’t lead to a closed-form solution,

but are accurate and computationally efficient for not-too-large K, see for example [1, 23, 3].

3 The Single-Queue Approximation (SQA)

To understand SQA, it helps to recall that the main obstacle in analyzing routing policies such

as JSQ is that the states of all the queues are correlated, necessitating a multidimensional state

space for the system. Thus exact analysis requires that we work with the vector of queue lengths

and possibly also the remaining service requirements of all jobs at each server. The SQA method

allows one to approximate the marginal queue length distribution of each queue in the server farm

by modeling each queue independently of the other, thereby avoiding the above difficulties.

Consider a queue Q in the server farm. Under SQA, we model Q by a queue Q′, where the arrival

rate of jobs into Q′ can depend only on the queue length of Q′, and not on the state of any other

queues. Thus SQA approximates each queue of the M/G/K/JSQ/PS model by an associated

Mn/G/1/PS model, where Mn denotes a state-dependent Markovian arrival process. Specifically,

at time t, the arrival process acts as a Poisson process with rate λ(NQ′(t)), where NQ′(t) is the

queue length of Q′ at time t and {λ(n) : n ≥ 0} is a deterministic sequence with λ(n) being the

actual long-run arrival rate into queue Q (of the original server farm) conditioned on the queue

length of Q being n. We define λ(n) in Definition 3.1.

Definition 3.1 Given a general M/G/K/R/S model, the conditional arrival rate into one desig-

nated queue Q given that it has n jobs, λ(n), is defined as

λ(n) = lim
t→∞

An(t)

Tn(t)
, (1)

where An(t) is the number of arrivals into Q during the time interval [0, t] that see n jobs at Q on

arrival (excluding themselves), while Tn(t) is the total time spent by Q with n jobs during the time

interval [0, t].

Formally, the arrivals form a stochastic point process with stochastic intensity λ(NQ′(t)), as defined

in §II.3,5 in Brémaud [7].

The state-dependence in the arrival rate λ(n) is intended to capture some of the dependence inherent
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in the full M/G/K/JSQ/PS model. Consider an M/G/K/JSQ/PS model with outside arrival

rate λ. The average arrival rate into each queue is λ/K. However, if we condition on the fact that

some designated queue has n jobs, then the arrival rate into that designated queue is no longer

λ/K. In fact, with JSQ routing, we expect that the long-term arrival rates into that designated

queue, λ(n), should decrease as n increases, because it is likely that at least one other queue is

shorter than the designated queue. This is precisely what happens: λ(0) is larger than λ/K, but

λ(n) decreases as n increases. In this way, having state-dependent arrival rates captures some of

the influence of the other queues on the designated queue.

The SQA approximation method is not limited to the M/G/K/JSQ/PS model we are primarily

considering. We can consider other routing policies R (see e.g., Definition 3.2) for the K-server

model and other scheduling rules S at this single queue. We can also accommodate heterogeneous

servers. SQA can also be defined for a more general arrival process, but its performance under

general arrival processes remains to be investigated. We now specify a class of routing policies for

which SQA works well.

Definition 3.2 A stationary queue-length-dependent routing policy is a time-stationary routing

policy that uses only information about queue lengths at the servers at the instant of an arrival.

The decisions may be made probabilistically, and may be biased in favor of certain servers (allowing

the modeling of heterogeneous servers).

We now show that SQA produces the exact stationary queue-length distribution for Markovian

models (when the actual arrival process is Poisson and the job sizes are independent exponential

random variables with a common distribution) and the routing and scheduling rules satisfy certain

regularity conditions.

Theorem 3.1 Consider an M/M/K/R/S model, where R is any stationary queue-length-dependent

routing policy, e.g., JSQ, and S is any stationary, size-independent, work-conserving scheduling pol-

icy, e.g., PS. Assume that this model has a unique proper steady-state distribution. Let Q be any

particular server in the M/M/K/R/S model. Then SQA with the exact conditional arrival rates

λ(n) yields the same steady-state queue-length distribution as in the original M/M/K/R/S model.

Proof: For simplicity, we will assume that K = 2, but it is easy to see that the proof can be

extended to any number of servers, allowing unequal service rates. By the assumptions about the

job-size distribution, the routing policy and the scheduling rule, the 2-dimensional vector of queue

lengths evolves as a continuous-time Markov chain (CTMC) with stationary transition probabilities.

By assumption, this CTMC has a unique steady-state distribution, where πn,j is the steady-state

probability that there are n jobs at queue 1 and j jobs at queue 2 (including the jobs receiving

service, if any). We will concentrate on queue 1. Let µ denote the service rate at queue 1. Let Πn
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denote the steady-state probability that there are n jobs at queue 1. Clearly,

Πn =
∞
∑

j=0

πn,j.

As above, let λ(n) denote the conditional arrival rate at queue 1 in the M/M/K/R/S model.

Let Mn/M/1/S denote the SQA model for queue 1, which has state-dependent arrival rates λ(n).

Let xn denote the limiting probability that there are n jobs at the single Mn/M/1/S queue with

state-dependent arrival rates λ(n). Since the queue-length process in the Mn/M/1/S model is a

birth-and-death process, xn is the unique solution (after normalization) to the following balance

equations:

xnλ(n) = xn+1µ, n ≥ 0 . (2)

Our goal is to prove that Πn = xn, n ≥ 0. To do this, we will show that Πn is a solution to (2).

We need only two observations to show this: Our first observation is that we can rewrite λ(n)

as follows: Let qn,j denote the probability that the (time-stationary) routing policy R in the

M/M/K/R/S model routes an incoming job to queue 1 when n and j are the number of jobs at

queue 1 and 2, respectively. By definition of λ(n), we must have

λ(n) =

∞
∑

j=0

(

πn,j

Πn

)

· λqn,j (3)

Our second observation is that we can balance the rate of transitions between the set of states

Sn = {(n, j) : j = 0, 1, . . .} and Sn+1 = {(n + 1, j) : j = 0, 1, . . .} in the M/M/K/R/S model as

follows:

∞
∑

j=0

πn,j · λqn,j =

∞
∑

j=0

πn+1,jµ . (4)

Results of this type using conditional arrival and departure rates have been obtained previously

using sample path arguments, see [12] (Theorem 1.9, Section 1.4.2, page 21). We can now easily

show that Πn is a solution to (2), because

Πnλ(n) = Πn

∞
∑

j=0

(

πn,j

Πn

)

· λqn,j by (3)

=
∞
∑

j=0

πn,j · λqn,j =
∞
∑

j=0

πn+1,jµ = Πn+1µ . by (4)
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4 Insensitivity

In §3 we showed that SQA can exactly model the M/M/K/JSQ/PS system (exponential job-size

distribution). We now look at general job-size distributions. We start in §4.1 with the case of a

degenerate hyperexponential job-size distribution, and then consider more general distributions in

§4.2. We provide some further support for SQA in §4.3 by observing that the insensitivity property

of the M/G/1/PS extends to the Mn/G/1/PS.

4.1 Insensitivity with the Degenerate Hyperexponential Distribution

In this subsection we introduce a special two-parameter family of job-size distributions for which

the M/G/K/JSQ/PS model has the insensitivity property. This family is a subset of the hy-

perexponential (H2) distributions (mixtures of two exponentials), which we refer to as degenerate

hyperexponential distributions and denote by H∗

2 . (The H∗

2 distribution has been used previously

to approximately capture the variability of job sizes in multi-server systems, e.g., [27, 28].)

Definition 4.1 A random variable X distributed according to the H∗

2 distribution with mean 1/µ

and squared coefficient of variation (variance divided by the square of the mean) C2, denoted by

H∗

2 (µ∗, p), is given by

X ∼

{

0 w.p. p

exp(µ∗) w.p. 1 − p ,

where p = (C2 − 1)/(C2 + 1) and µ∗ = µ(1 − p).

The degenerate hyperexponential distribution is a relatively minor modification of the exponential

distribution, but the modification provides an additional parameter, so that it can be used to

represent a full range of variability in the job-size distribution, with a squared coefficient of variation

C2 ranging from 1 to ∞. The next result shows that if the job sizes are drawn from an H∗

2

distribution, then the steady-state queue-length distribution and the mean response time in the

resulting M/H∗

2/K/JSQ/PS model depend only on the mean job size, and not on the remaining

free parameter; i.e., we have insensitivity within this H∗

2 class.

Theorem 4.1 The queueing systems M/H∗

2 ((1− p)µ, p)/K/JSQ/PS and M/M(µ)/K/JSQ/PS

(both with mean job size 1/µ) have identical steady-state queue-length distributions and mean steady-

state response times. Moreover, the response-time distribution of the M/H∗

2 ((1−p)µ, p)/K/JSQ/PS

system is a mixture of a unit point mass at 0, with probability p, and the response-time distribution

of the M/M(µ)/K/JSQ/PS system multiplied by 1/(1 − p), with probability 1 − p.
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Proof: The jobs with size 0 do not have to wait, since the servers are doing processor sharing.

Therefore, with respect to the queue-length distribution, we have that:

Π
M(λ)/H∗

2
(µ∗,p)/K/JSQ/PS

n = ΠM(λ(1−p))/M(µ(1−p))/K/JSQ/PS
n (5)

= ΠM(λ)/M(µ)/K/JSQ/PS
n (6)

From the perspective of response time, the response time of the p-proportion of zero-sized jobs is

the deterministic distribution with mean 0, while the remaining (1−p)-proportion of non-zero-sized

jobs experience an M(λ(1− p))/M(µ(1− p))/K/JSQ/PS system. But the M(λ(1− p))/M(µ(1−

p))/K/JSQ/PS system is the same as the M(λ)/M(µ)/K/JSQ/PS system seen on a slower time

scale, slowed by a factor of 1/(1−p). Thus the (1−p)-proportion of non-zero-sized jobs experience

a response time 1/(1 − p) times higher than that in an M(λ)/M(µ)/K/JSQ/PS system.

4.2 Near-Insensitivity for All Job-Size Distributions

The insensitivity of §4.1 is for very special job-size distributions. We will show that this insen-

sitivity property does not extend exactly to other job-size distributions, but that it does for all

practical purposes; i.e., we have near-insensitivity. To establish those conclusions, we simulated an

M/G/K/JSQ/PS system with the following job-size distributions (all with mean 2, in increasing

order of C2):

1. Deterministic: point mass at 2 (variance = 0)

2. Erlang2: sum of two exponential random variables with mean 1 (variance = 2)

3. Exponential: exponential distribution with mean 2 (variance = 4)

4. Bimodal-1: (mean = 2, variance = 9)

X =

{

1 w.p. 0.9

11 w.p. 0.1

5. Weibull-1: Weibull with shape parameter = 0.5 and scale parameter = 1 (heavy-tailed,

mean = 2, variance = 20)

6. Weibull-2: Weibull with shape parameter = 1
3 and scale parameter = 1

3 (heavy-tailed,

mean = 2, variance = 76)

7. Bimodal-2: (mean = 2, variance = 99)

X =

{

1 w.p. 0.99

101 w.p. 0.01
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The load was set at ρ = 0.9 and simulations were run for K = 2, 4, 8 and 16 servers. For each

value of K and each distribution, the simulation was run 50 times, each run consisting of K × 107

departures. (These are long runs!) Statistics for completed requests were considered. Figure 3

shows the 95% confidence intervals for the mean response time and second moment of queue length,

for each service distribution and number of servers, K. The mean response time in Figure 3 never

deviates by more than 2% from the exponential case, regardless of the job-size distribution, and

the deviation for the second moment of queue length is barely over 3%.

4.3 Intuition Behind Insensitivity Results

In this section we provide additional support for the near-insensitivity of the M/G/K/JSQ/PS

model, and for the SQA technique.

At first thought, one might assume that the near-insensitivity of the M/G/K/JSQ/PS model

stems directly from the well-known insensitivity of the M/G/1/PS queue. This doesn’t explain

everything, however, since, the arrival process into an individual queue under JSQ is not Poisson.

A more relevant piece of intuition is that insensitivity of the M/G/1/PS also extends to the (state-

dependent) Mn/G/1/PS. While this fact is not well-known, a proof of this fact follows directly from

general results on symmetric queues (processor sharing is a symmetric discipline); see Theorems

3.10 and 3.14 on pp. 78, 90 in Kelly[19].

Theorem 4.2 Consider the Mn/G/1/PS model. The (time-stationary) steady-state distribution

of the number in system is insensitive to the service-time distribution G beyond its mean. Moreover,

conditional on there being n jobs in the system in stationarity, the n (unordered) remaining service

times are i.i.d. with the equilibrium density.

Although we have thus far always thought of SQA as being applied to the M/M/K/JSQ/PS queue,

Theorem 4.2 provides justification for viewing SQA as being applied directly to an M/G/K/JSQ/PS

server farm, reducing it to an Mn/G/1/PS queue, which we now know is insensitive in G. That’s

still not the whole story, however, because, as we’ll see in §7, other common routing policies for

PS server farms, like Least-Work-Left (sending the job to the host with the least total work), or

Round-Robin, do not exhibit near-insensitivity, although one might think that a similar argument

could be applied to them.

What seems to be unique about JSQ is that the conditional arrival rates, the λ(n)’s, derived from

the server farm, are nearly insensitive to G, as we’ll see in Table 1. This fact allows us to write:

M/G/K/JSQ/PS
SQA
≈ M (G)

n /G/1/PS ≈ M (M)
n /G/1/PS = Mn/M/1/PS

where M
(G)
n denotes the state-dependent arrival process in the case of general service times and
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Figure 3: 95% Confidence intervals for mean response time (left column) and second moment of
queue length (right column) in the M/G/K/JSQ/PS model with ρ = 0.9 and mean job size 2 for
different job-size distributions based on simulations.
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Figure 4: Illustrating the convergence of conditional arrival rates, λ(n), for a given queue of an
M/M/K/JSQ/PS, with mean job size 1, where K = 2.

M
(M)
n denotes the state-dependent arrival process for the exponential service times. This insensi-

tivity of the conditional arrival rates seems related to the fact that the JSQ policy uses the number

of jobs in queue in making decisions, as compared with the Least-Work-Left policy, for example.

5 The Conditional Arrival Rates

The feasibility of the SQA method hinges on obtaining the conditional arrival rates λ(n), n ≥ 0,

defined in (1). In this section we will derive closed-form approximations for these conditional

arrival rates. Our results here draw on extensive simulation experiments in which we estimated

these conditional arrival rates for a range of job-size distributions and other model parameters.

Fortunately, we found remarkable regularity, greatly simplifying our task.

First, we observed that the conditional arrival rates rapidly converge to a limiting value as n (the

number of jobs at the queue) increases. Indeed, we found that

λ(n)

µ
≈ ρK for all n ≥ 3 , (7)

for ρ ≤ 0.95. Simulations of the M/M/K/JSQ/FCFS model showed this approximation to be

consistently within 2% of the actual values (provided that ρ is not too extreme, i.e., for 0.3 ≤ ρ ≤

0.95). This fact is illustrated in Figure 4 for the case of K = 2. We also prove this convergence in

the limit for the case K = 2 in Theorem 5.1 below.

Theorem 5.1 For the M(λ)/M(µ)/2/JSQ/PS system,

lim
n→∞

λ(n)

µ
= ρ2 (8)

Proof: The proof is presented in the Appendix. It relies closely on the paper of Adan, Wessels

and Zijm [2]. We believe that we can generalize the proof to any finite K, however we state it only
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for K = 2.

Observe that it makes intuitive sense that λ(n), the average arrival rate into a designated queue

conditioned on that queue having n jobs, should decrease as n is increased, because, if the designated

queue has many jobs then it is likely that other queues have fewer jobs than itself. What’s interesting

is that the limit is reached so quickly.

Next, consistent with the other near-insensitivity results, we observed that these conditional arrival

rates also exhibit near-insensitivity; there is almost no dependence on the variability of the job-

size distribution. This fact is illustrated in Table 1 for the case of K = 4, with hyperexponential

job-size distributions having squared coefficient of variation ranging from 1 to 64, where r denotes

the fraction of load made up by one branch of the hyperexponential (hence r = 0.5 denotes a

hyperexponential with balanced load on its branches). The near-insensitivity of the λ(n)’s provides

further justification for focusing on the special case of an exponential job-size distribution.

λ(0) λ(1) λ(2) λ(3) λ(4) λ(5) λ(6) λ(7) λ(8) λ(9)

C
2 = 0 2.2379 0.9865 0.6931 0.6575 0.6605 0.6645 0.6678 0.6696 0.6722 0.6727

C
2 = 1

r = 0.1 2.2136 0.9966 0.7098 0.6622 0.6562 0.6543 0.6557 0.6572 0.6583 0.6578
r = 0.5 2.2125 0.9962 0.7098 0.6631 0.6573 0.6550 0.6543 0.6551 0.6549 0.6538
r = 0.9 2.2136 0.9956 0.7084 0.6622 0.6562 0.6535 0.6522 0.6555 0.6564 0.6588

C
2 = 2

r = 0.1 2.2080 1.0000 0.7123 0.6629 0.6541 0.6516 0.6542 0.6514 0.6537 0.6474
r = 0.5 2.2074 0.9975 0.7119 0.6609 0.6520 0.6522 0.6525 0.6494 0.6504 0.6532
r = 0.9 2.2077 0.9947 0.7114 0.6649 0.6560 0.6554 0.6557 0.6553 0.6518 0.6527

C
2 = 4

r = 0.1 2.2068 1.0041 0.7144 0.6611 0.6513 0.6531 0.6522 0.6487 0.6486 0.6542
r = 0.5 2.2018 0.9992 0.7150 0.6653 0.6585 0.6553 0.6520 0.6511 0.6494 0.6547
r = 0.9 2.2075 0.9971 0.7110 0.6630 0.6572 0.6560 0.6549 0.6526 0.6535 0.6536

C
2 = 16

r = 0.1 2.2032 1.0092 0.7201 0.6641 0.6544 0.6521 0.6536 0.6495 0.6515 0.6418
r = 0.5 2.1957 0.9982 0.7181 0.6649 0.6534 0.6510 0.6559 0.6537 0.6488 0.6506
r = 0.9 2.2091 0.9965 0.7146 0.6672 0.6598 0.6567 0.6572 0.6550 0.6537 0.6477

C
2 = 64

r = 0.1 2.2061 1.0104 0.7157 0.6572 0.6515 0.6497 0.6597 0.6715 0.6671 0.6710
r = 0.5 2.1893 0.9959 0.7233 0.6702 0.6569 0.6526 0.6529 0.6533 0.6521 0.6486
r = 0.9 2.2072 0.9964 0.7136 0.6668 0.6583 0.6573 0.6554 0.6539 0.6554 0.6564

Table 1: Conditional arrival rates for M/H2/K/JSQ/PS with K = 4 and ρ = 0.9, where the
hyperexponential (H2) distribution has parameters C2 and r with mean 1, and the variability of
H2 ranges from C2 = 1 to C2 = 64. Results from simulation. (Conditional arrival rates for
M/D/K/JSQ/PS are also shown for reference in the top line.)

Based on the key observation in (7), our task has been reduced to obtaining approximations for

the first 3 conditional arrival rates: λ(0), λ(1) and λ(2). The following lemma, allows us to reduce

our task further to just deriving two conditional arrival rates, λ(0) and λ(2), since λ(1) can be

estimated from these, assuming the relation in (7).

Lemma 5.1 Under the approximating approximation of (7) for the M/M/K/JSQ/PS model, we

obtain

λ(1) = µ

[

µ
λ(0)

ρ−ρK+1

(1−ρ) + ρK − 1
]

1 + λ(2)/µ − ρK
. (9)
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Proof: Since all the servers are homogeneous, the time-average arrival rate into any one queue is

λ/K = µρ. By Theorem 3.1, SQA is exact given the conditional arrival rates. Therefore, we can

write the time average arrival rate into any server as

µρ =
∞
∑

n=0

Πnλ(n) .

By Little’s law (focusing on the servers), 1 − Π0 = ρ. Using that with (7), we obtain

µρ = (1 − ρ)λ(0) + (1 − ρ)
λ(0)

µ
λ(1) + (1 − ρ)

λ(0)λ(1)

µ2
λ(2)

+

(

ρ − (1 − ρ)
λ(0)

µ
− (1 − ρ)

λ(0)λ(1)

µ2

)

ρK (10)

This gives the desired approximation for λ(1).

The approximations for λ(2) and λ(0) were obtained empirically using MATLAB’s curve fitting

toolbox (version 1.1.5), which uses a trust-region method for a nonlinear least-squares fit. For each

value of load, ρ, we approximate λ(2) as a function of K by a simple exponential function of the

form

λ(2) ≈ µ
(

uρv
K
ρ

)

(11)

Empirical fit yields the following functions of ρ:

uρ = c3ρ
3 + c2ρ

2 + c1ρ + c0 and vρ = c′2ρ
2 + c′1ρ + c′0 ,

where c3 = −0.29, c2 = 0.8822, c1 = −0.5349, and c0 = 1.0112, while c′2 = −0.1864, c′1 = 1.195,

and c′0 = −0.016.

For λ(0), we used a function with two exponential terms, namely,

λ(0) ≈ µ
(

aρ − bρc
K
ρ − dρe

K
ρ

)

(12)

where cρ, eρ < 1. The constant aρ in (12) is clearly the limit as K → ∞. The following lemma

gives the value of this limit.

Lemma 5.2

lim
K→∞

λ(0)

µ
=

ρ

1 − ρ
(13)

Proof: For any value of ρ < 1, as the number of servers becomes large enough, any arrival will

find at least one server idle with high probability. Therefore, λ(i) ≈ 0 for i ≥ 1. Equating the
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expressions for time average arrival rates into any queue,

(1 − ρ)λ(0) = µρ or
λ(0)

µ
=

ρ

1 − ρ
.

The remaining functions bρ, cρ, dρ, and eρ were determined empirically for 0.3 ≤ ρ ≤ 0.95; we did

not have accurate enough simulations outside this range. The final functions are

bρ =
−0.0263ρ2 + 0.0054ρ + 0.1155

ρ2 − 1.939ρ + 0.9534

cρ = −6.2973ρ4 + 14.3382ρ3 − 12.3532ρ2 + 6.2557ρ − 1.005

dρ =
−226.1839ρ2 + 342.3814ρ + 10.2851

ρ3 − 146.2751ρ2 − 481.1256ρ + 599.9166

eρ = 0.4462ρ3 − 1.8317ρ2 + 2.4376ρ − 0.0512

6 Evaluating the Approximation

In this section we evaluate our SQA approximation for the M/G/K/JSQ/PS model, where the

conditional arrival rates used in the SQA are the approximate ones derived in §5. Our approach is

not exact even for the case of an exponential job-size distribution, because the conditional arrival

rates are approximate. Therefore, we first evaluate our method for exponential job-size distributions

in §6.1. Afterwards, we consider general job-size distributions in §6.2.

6.1 Exponential Job Sizes

Theorem 3.1 implies that SQA is exact if the conditional arrival rates are correct. In this section,

we apply SQA with our approximate conditional arrival rates to determine the first two moments

of queue lengths for exponential service requirements. The results are shown in Figure 5, where

N represents the queue length of a single queue in the server farm.

From Figure 5, it is difficult to see that the SQA method with our derived approximate conditional

arrival rates exhibits any error at all, when compared with simulations. However, the error is

actually < 2% for mean queue length and < 2.4% for the second moment of queue length, when

the number of servers is up to K = 64 and ρ = 0.9. Given that we have exponential job sizes, this

error is solely due to error in the approximation of the conditional arrival rates.

Looking at Figure 5, we see an interesting convergence in performance as K increases. If we denote

18



2 10 20 30 40 50 60

0.4

0.45

0.5

Number of servers (K)

E
[N

]

Load ρ=0.4

 

 

SQA
Simulation

2 10 20 30 40 50 60

0.8

1

1.2

1.4

1.6

Number of servers (K)

E
[N

]

Load ρ=0.7

 

 

SQA
Simulation

2 10 20 30 40 50 60
1

2

3

4

5

Number of servers (K)

E
[N

]

Load ρ=0.9

 

 

SQA
Simulation

2 20 40 60
0.4

0.5

0.6

0.7

0.8

Number of servers (K)

E
[N

2
]

Load ρ=0.4

 

 

SQA
Simulation

2 10 20 30 40 50 60
0

1

2

3

4

5

Number of servers (K)

E
[N

2
]

Load ρ=0.7

 

 

SQA
Simulation

2 10 20 30 40 50 60
0

10

20

30

40

50

Number of servers (K)

E
[N

2
]

Load ρ=0.9

 

 

SQA
Simulation

(a) ρ = 0.4 (b) ρ = 0.7 (c) ρ = 0.9

Figure 5: The top row shows the effectiveness of SQA in predicting mean queue length, and the
bottom row shows the effectiveness of SQA in predicting the second moment of queue length.
Results are shown for three values of load: ρ = 0.4, ρ = 0.7, and ρ = 0.9, K up to 64 servers.

by N the number of jobs at any designated queue in steady state, then we see that:

lim
K→∞

E[N ] = ρ.

This regularity occurs because, when ρ < 1 and the number of servers is allowed to increase,

λ(0) → µρ/(1 − ρ) and λ(i) → 0 for any i > 0; see Lemma 5.2.

6.2 General Job Sizes

We now move on to the case of general job-size distributions. Figure 6 shows the 95% confidence

intervals for the first and second moment of queue length obtained from simulations of the original

M/G/K/JSQ/PS server farm for the distributions mentioned in §4.2. Each plot also shows the

results of the SQA approximation: the analysis of the Mn/G/1/PS system with the conditional

arrival rates derived in §5. The results are also summarized in Tables 2 and 3.

The error is at most 2.6% for mean queue length, and at most 3.3% for the second moment of

queue length when ρ = 0.9.
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Figure 6: Comparison of the first and second moments of queue length at a single queue in the
JSQ/PS server farm with those obtained using SQA for various service distributions with load
ρ = 0.9 and number of servers K = 2 and 8. The top row shows E[N ] and the bottom row shows
E[N2].

K = 2 K = 8
E[N ]JSQ E[N ]SQA % error E[N ]JSQ E[N ]SQA % error

Deterministic 4.8999 4.8426 1.1676 1.8946 1.9295 1.8449

Erlang2 4.9216 4.8426 1.6055 1.9142 1.9295 0.8015

Exponential 4.9298 4.8426 1.7678 1.9213 1.9295 0.4260

Bimodal-1 4.9445 4.8426 2.0592 1.9308 1.9295 0.0668

Weibull-1 4.9495 4.8426 2.1589 1.9384 1.9295 0.4573

Weibull-2 4.9640 4.8426 2.4456 1.9490 1.9295 1.0010

Bimodal-2 4.9700 4.8426 2.5618 1.9431 1.9295 0.7004

Table 2: Evaluation of SQA: First moment of queue length, obtained via simulation versus SQA,
evaluated on distributions mentioned in §4.2.
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K = 2 K = 8
E[N2]JSQ E[N2]SQA % error E[N2]JSQ E[N2]SQA % error

Deterministic 46.9934 46.4050 1.2523 5.4210 5.5982 3.2690

Erlang2 47.3844 46.4050 2.0669 5.5354 5.5982 1.1352

Exponential 47.4411 46.4050 2.1840 5.5738 5.5982 0.4375

Bimodal-1 47.6244 46.4050 2.5606 5.6217 5.5982 0.4187

Weibull-1 47.6847 46.4050 2.6837 5.6688 5.5982 1.2464

Weibull-2 47.9491 46.4050 3.2203 5.7277 5.5982 2.2616

Bimodal-2 47.9787 46.4050 3.2801 5.6912 5.5982 1.6343

Table 3: Evaluation of SQA: Second moment of queue length, obtained via simulation versus SQA,
evaluated for distributions mentioned in §4.2.

7 Comparison of JSQ with Other Routing Policies

So far, we have only considered the commonly used JSQ routing policy. However, it is natural

to wonder how good a routing policy JSQ is for PS server farms. In this section we show, via

simulation, that it is unlikely that there is a routing policy which outperforms JSQ by more than

about 10%. We also pose many interesting open problems regarding the optimality of JSQ.

Figure 7 compares the performance of JSQ for a PS server farm with that of several other policies,

via simulation, on a range of job size distributions, defined in Section 4.2. The policies shown are:

Random – We flip a fair coin in deciding to which queue an incoming job should be assigned.

Note that in this case, each queue looks like an M/G/1/PS queue with arrival rate λ/K.

Round-Robin (RR) – Assign jobs in Round-Robin order, where if the previous job was assigned

to queue i mod K, then the next job will be assigned to queue (i + 1) mod K.

Least-Work-Left (LWL) – Each job is assigned to the queue with the least total remaining work.

Join-Shortest-Queue (JSQ) – Each job is assigned to the queue with the fewest number of jobs.

Ties are broken by flipping a fair coin.

OPT-0 – Each incoming job is assigned so as to minimize the mean response time for all jobs

currently in the system, assuming that there are 0 future arrivals. Note that we are not being

greedy from the perspective of the incoming job, but rather trying to minimize across all the

jobs in the system. This policy is followed for each successive incoming arrival. The OPT-0

policy was introduced Bonomi [5].

Observe that policies OPT-0 and Least-Work-Left are both less practical than the other policies

because they require knowledge of the job sizes.
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Figure 7: Comparison of the first moment of queue length for JSQ, Least Work Left (LWL), Round
Robin (R-R) and Random routing policies for K = 2 and K = 8 servers for a PS server farm with
a range of job-size distributions.

There are many interesting things to see in Figure 7. First, we note that OPT-0 is in fact the best

routing policy across all job-size distributions of those policies shown. Also JSQ is very close to

OPT-0, within no more than 10%. This is surprising because JSQ utilizes only the number of jobs

at each queue, whereas OPT-0 uses the remaining sizes of all jobs and the size of the incoming job.

From an insensitivity perspective, we see that that there are some policies, e.g., OPT-0 and JSQ,

that are nearly insensitive to the job-size distribution, whereas other policies, e.g., LWL and RR,

are highly sensitive to the job-size distribution. It is an interesting question whether there is some

detectable common characteristic among those routing policies that are nearly insensitive to the

job-size distribution under PS server farms. This is an important question in light of the fact that

the empirical workloads in Web server farms are very variable.

Turning to the question of optimality, note that the case of deterministic job sizes yields the lowest

mean response times, as compared with other job-size distributions, and that all three policies:

RR, LWL, and OPT-0, yield the same performance for the case of deterministic job sizes – in

fact, they behave identically on every sample path when the job-size distribution is deterministic.

Conjecture 7.1 below hypothesizes that this value is the minimum response time possible across all
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policies and job-size distributions for PS farms.

Conjecture 7.1 For an M/G/K/R/PS system, where the job-size distribution has mean µ−1, we

conjecture that setting G ≡ Deterministic(µ−1) and R ≡ RR results in the lowest possible mean

response time, over all other pairs (G, R).

Conjecture 7.1 gives us a handle on evaluating the optimality of JSQ. Making use of the fact

that JSQ is one of the policies that is nearly insensitive to the job-size distribution, by the above

conjecture, it would suffice to compare the performance of JSQ under deterministic job sizes with

RR under deterministic job sizes. Even under the narrowed scope of deterministic job sizes, the

comparison between JSQ and RR is not obvious, however, because JSQ can differ from RR both

in tie-breaks and non-tie-break situations. Hence there is much open work left to be done.

8 Conclusion

This paper has presented the first analysis of JSQ routing for PS server farms. Our analysis

introduces many new ideas which we believe will be applicable in much more general settings. The

first is the idea of a Single Queue Approximation (SQA), whereby one designated queue in the farm

can be analyzed in isolation of all the other queues, where a state-dependent arrival rate is used to,

in some sense, capture the effect of the other queues. Understanding what these state-dependent

arrival rates look like is also a very interesting topic that we introduce and study via analysis

and simulation. Finally, and perhaps most interesting, is the notion of near insensitivity, and the

discovery that the M/G/K/JSQ/PS farm exhibits near insensitivity to the job size distribution,

apart from the mean job size. This is particularly intriguing in light of the fact that so many other

routing policies for PS server farms, like Least-Work-Left or Round-Robin, do not exhibit this near

insensitivity property. All of the above topics are studied carefully both via analysis and simulation

across a wide range of job size distributions. We end with a simulation study of different routing

policies, leading us to pose several open questions regarding the near-optimality of JSQ routing.

References

[1] I.J.B.F. Adan, G.J. van Houtum, and J. van der Wal. Upper and lower bounds for the waiting

time in the symmetric shortest queue system. Annals of Operations Research, 48:197–217,

1994.

[2] I.J.B.F. Adan, J. Wessels, and W.H.M. Zijm. Analysis of the symmetric shortest queue prob-

lem. Stochastic Models, 6:691–713, 1990.

[3] I.J.B.F. Adan, J. Wessels, and W.H.M. Zijm. Matrix-geometric analysis of the shortest queue

problem with threshold jockeying. Operations Research Letters, 13:107–112, 1993.

23



[4] Paul Barford and Mark E. Crovella. Generating representative Web workloads for network and

server performance evaluation. In Proceedings of Performance ’98/SIGMETRICS ’98, pages

151–160, July 1998. Software for Surge is available from Mark Crovella’s home page.

[5] F. Bonomi. On job assignment for a parallel system of processor sharing queues. IEEE

Transactions on Computers, 39(7):858–869, 1990.

[6] O.J. Boxma and J.W. Cohen. Boundary value problems in queueing system analysis. North

Holland, 1983.

[7] P. Brémaud. Point Processes and Queues. Springer, New York.

[8] B.W. Conolly. The autostrada queueing problem. J. Appl. Prob., 21:394–403.

[9] Mark Crovella, Mor Harchol-Balter, and Critina Murta. On choosing a task assignment policy

for a distributed server system. J. Parallel and Distributed Computing, 59(2):204–228, 1999.

[10] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web traffic: Evidence

and possible causes. In Proceedings of the 1996 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Systems, pages 160–169, May 1996.

[11] D. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes. Springer, New

York, 1988.

[12] M. El-Taha and Shaler Stidham. Sample-Path Analysis of Queueing System. Kluwer, Boston,

1999.

[13] A. Ephremides, P. Varaiya, and J. Walrand. A simple dynamic routing problem. IEEE

Transac. on Auto. Cont., AC-25(4):690–693, 1980.

[14] L. Flatto and H.P. McKean. Two queues in parallel. Communication on Pure and Applied

Mathematics, 30:255–263, 1977.

[15] G. Foschini and J. Salz. A basic dynamic routing problem and diffusion. IEEE Trans. Comm.,

26(3):320–328, 1978.

[16] W.K. Grassmann. Transient and steady state results for two parallel queues. Omega, 8:105–

112, 1980.

[17] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to improve

web performance. ACM Transactions on Computer Systems, 21(2):207–233, 2003.

[18] Mor Harchol-Balter. Task assignment with unknown duration. JACM, 49(2):260–288, 2002.

[19] F. P. Kelly. Reversibility and Stochastic Networks. Chichester, 1979.

[20] J.F.C. Kingman. Two similar queues in parallel. Biometrika, 48:1316–1323, 1961.

24



[21] C. Knessl, B.J. Matkowsky, Z. Schuss, and C. Tier. Two parallel M/G/1 queues where arrivals

join the system with the smaller buffer content. IEEE Trans. Comm., 35(11):1153–1158, 1987.

[22] H.C. Lin and C.S. Raghavendra. An analysis of the join the shortest queue (JSQ) policy. In

Proc. 12th Int’l Conf. Distributed Computing Systems, pages 362–366, 1992.

[23] J.C.S. Lui, R.R. Muntz, and D.F. Towsley. Bounding the mean response time of the minimum

expected delay routing policy: an algorithmic approach. IEEE Trans. Comp., 44(12):1371–

1382, 1995.

[24] R.D. Nelson and T.K. Philips. An approximation to the response time for shortest queue

routing. ACM Perf. Eval. Review, 17:181–189, 1989.

[25] B.M. Rao and M.J.M. Posner. Algorithmic and approximation analyses of the shorter queue

model. Naval Research Logistics, 34:381–398, 1987.

[26] R.W. Weber. On optimal assignment of customers to parallel servers. J. Appl. Prob., 15:406–

413, 1978.

[27] Ward Whitt. Comparison conjectures about the M/G/s queue. OR Letters, 2(5):203–209,

1983.

[28] Ward Whitt. Heavy-traffic limits for the G/H∗

2/n/m queue. Math. Oper. Res., 30(1):1–27,

2005.

[29] W. Winston. Optimality of the shortest line discipline. J. Appl. Prob., 14:181–189, 1977.

A Proof of Theorem 5.1

The proof follows directly from the work of Adan et al. [2] on using compensation approach to

analyze the M/M/2/JSQ/FCFS queue and will use Lemmas A.1 and A.2 mentioned below. We

begin by reviewing the notation. Let πm,n be the stationary probability that length of queue 1 is

m and length of queue 2 is n. For m ≥ 0 and r ≥ 0, define qm,r as:

qm,r = πm,m+r (14)

That is, qm,r is the probability that queue 1 is the shorter queue and has m jobs and queue 2 has

m + r jobs.

Lemma A.1 [Adan et al. [2]] The stationary probabilities qm,r for m ≥ 0 and r ≥ 1 are given by:

qm,r = Cxm,r
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The normalization constant C is given by

C =
2(1 − ρ2)(2 − ρ)

ρ(2 + ρ)

and

xm,r =

∞
∑

i=0

di(α
m
i + ciα

m
i+1)β

r
i (15)

where αi, βi, ci and di’s are given by the following recursion scheme:

d0 = 1

α0 = ρ2

β0 =
ρ2

2 + ρ

αiαi+1 = 2ρβ2
i

βiβi+1 = α2
i+1/(2ρ + αi+1)

ci = −
αi+1 − βi

αi − βi

di+1 = −
(αi+1 + ρ)/βi+1 − (ρ + 1)

(αi+1 + ρ)/βi − (ρ + 1)
cidi

We will use the following lemma to bound the infinite sum of (15) by a finite sum.

Lemma A.2 The infinite sum for xm,r (m ≥ 0, r ≥ 1) in (15) can be bounded by the following

finite sums:

(αm
0 + c0α

m
1 )βr

0 + d1(α
m
1 + c1α

m
2 )βr

1 = xm,r < xm,r < xm,r = (αm
0 + c0α

m
1 )βr

0 (16)

Proof: Let si = |di(α
m
i + ciα

m
i+1)β

r
i |. In [2] (Lemma 8), authors prove that:

si+1 < Rsi
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where R = 4/(4 + 2ρ + ρ2) < 1. Also as a consequence of Lemma 1 of [2], di+1/di < 0. That is di

alternate signs, d0 being defined to equal 1. Hence,

xm,r = s0 − s1 + s2 − s3 + s4 − . . .

< s0 − s1 + Rs1 − s3 + Rs3 − . . .

= s0 − (1 − R)(s1 + s3 + . . .)

< s0

def
= xm,r

and,

xm,r = s0 − s1 + s2 − s3 + s4 − s5 + . . .

> s0 − s1 + s2 − Rs2 + s4 − Rs4 + . . .

= s0 − s1 + (1 − R)(s2 + s4 + . . .)

> s0 − s1

def
= xm,r

Proof of Theorem 5.1: Let Πn be the stationary probability that there are n jobs in queue 1.

Since we know SQA is exact, we can express the conditional arrival rates, λ(n), as

λ(n) = µ
Πn+1

Πn
= µ

∑

∞

i=0 πn+1,i
∑

∞

i=0 πn,i

Let xm,0 = C−1qm,0. Since for m > 0,

qm,0 =
1

1 + ρ
(2ρqm−1,1 + qm,1) (17)

we also have the following bounds on xm,0:

1

1 + ρ
(2ρxm−1,1 + xm,1) = xm,0 < xm,0 < xm,0 =

1

1 + ρ
(2ρxm−1,1 + xm,1)

Expressing π’s in terms of the x’s gives us the following bounds on λ(n):

λ(n) < λ(n) < λ(n) (18)
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where,

λ(n) = µ
xn+1,0 +

∑

∞

i=1 xn+1,i +
∑n

j=0 xj,n+1−j

xn,0 +
∑

∞

i=1 xn,i +
∑n−1

j=0 xj,n−j

(19)

λ(n) = µ
xn+1,0 +

∑

∞

i=1 xn+1,i +
∑n

j=0 xj,n+1−j

xn,0 +
∑

∞

i=1 xn,i +
∑n−1

j=0 xj,n−j

(20)

The expression for λ(n) in (20) is obtained by upper bounding the numerator, Πn+1, and lower

bounding the denominator, Πn. Doing the opposite gives λ(n) (19).

To prove the convergence of λ(n), we will prove

lim
n→∞

λ(n) = lim
n→∞

λ(n) = µρ2

We will first show the convergence of λ(n). Proof for λ(n) is similar. Now,

λ(n) = µ
xn+1,0 +

∑

∞

i=1 xn+1,i +
∑n

j=0 xj,n+1−j

xn,0 +
∑

∞

i=1 xn,i +
∑n−1

j=0 xj,n−j

= µ
Sn+1

Sn + Tn
(21)

where,

Si =
β0

1 + ρ
[2ρ(αi−1

0 + c0α
i−1
1 ) + (αi

0 + c0α
i
1)] + (αi

0 + c0α
i
1)

β0

1 − β0

+ β0

(

αi
0 − βi

0

α0 − β0
+ c0

βi
0 − αi

1

β0 − α1

)

Ti =d1

[

β1

1 + ρ
[2ρ(αi−1

1 + c1α
i−1
2 ) + (αi

1 + c1α
i
2)] + (αi

1 + c1α
i
2)

β1

1 − β1

+β1

(

αi
1 − βi

1

α1 − β1
+ c1

βi
1 − αi

2

β1 − α2

)]

Dividing the numerator and denominator of (21) by αn−1
0 , taking limn→∞ and noting that α1

α0
< 1,

α2

α0
< 1, β0

α0
< 1 and β1

α0
< 1:

lim
n→∞

λ(n) = µα0

β0

1+ρ [2ρ + α0] + α0
β0

1−β0
+ β0

(

α0

α0−β0

)

β0

1+ρ [2ρ + α0] + α0
β0

1−β0
+ β0

(

α0

α0−β0

) (22)

= µα0

= µρ2 (23)
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Similarly,

lim
n→∞

λ(n) = lim
n→∞

µ
Sn+1 + Tn+1

Sn
= µρ2

and hence convergence of λ(n) follows by convergence of its upper and lower bounds.
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