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Abstract

The M/G/K queueing system is one of the oldest model for multi-server systems, and has
been the topic of performance papers for almost half a century. However, even now, only coarse
approximations exist for its mean waiting time. All the closed-form (non-numerical) approxima-
tions in the literature are based on (at most) the first two moments of the job size distribution.
In this paper we prove that no approximation based on only the first two moments can be accu-
rate for all job size distributions, and we provide a lower bound on the inapproximability ratio,
which we refer to as “the gap.” This is the first such result in the literature to address “the
gap.” The proof technique behind this result is novel as well and combines mean value analysis,
sample path techniques, scheduling, regenerative arguments, and asymptotic estimates. Finally,
our work provides insight into the effect of higher moments of the job size distribution on the
mean waiting time.

1 Introduction

The M/G/K queueing system is one of the oldest and most classical example of multi-server
systems. Such multi-server systems are commonplace in a wide range of applications, ranging from
call centers to manufacturing systems to computer systems, because they are cost-effective and
their serving capacity can be easily scaled up or down.

An M/G/K system consists of K identical servers and a First-Come-First-Serve (FCFS) queue.
The jobs (or customers) arrive according to a Poisson process (the symbol M) with rate λ and their
service requirements (job sizes) are assumed to be independent and identically distributed random
variables having a general distribution (the symbol G); we use X to denote such a generic random
variable. If an arriving job finds a free server, it immediately enters service, otherwise it waits in
the FCFS queue. When a server becomes free, it chooses the next job to process from the head of

∗Preprint of the article appearing in Queueing Systems: Theory and Applications. The original publication is
available at www.springerlink.com.

†This work was done when the author was an Associate Professor in the School of Industrial and Systems Engi-
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the FCFS queue. We denote the load of this M/G/K system as ρ = λE[X]
K , and assume ρ < 1 so

that a steady-state distribution exists. We will focus on the metric of mean waiting time in this
work, denoted as E

[
WM/G/K

]
, and defined to be the expected time from the arrival of a customer

to the time it enters service. Throughout the paper, we assume E[X] = 1. This is without loss
of generality since the arrival rate, the mean job size and the mean waiting time can be scaled
appropriately for general values of E[X].

Even though the M/G/K queue has received a lot of attention in the queueing literature, an exact
analysis for even simple metrics like mean waiting time for the case K ≥ 2 still eludes researchers.
To the best of our knowledge, the first approximation for the mean waiting time for an M/G/K
queue was given by Lee and Longton [26] nearly half a century ago:

E
[
WM/G/K

]
≈

(
C2 + 1

2

)
E

[
WM/M/K

]
(1)

where E
[
WM/M/K

]
is the mean waiting time with exponentially distributed job sizes with the

same mean, E[X], as in the M/G/K system, and C2 is the squared coefficient of variation1 (SCV)
of X. Many other authors have also proposed simple approximations for the mean waiting time,
[19, 20, 25, 31, 32, 48], but all these closed-form approximations involve only the first two moments
of the job size distribution.

Whitt [47], while referring to (1) as “usually an excellent approximation, even given extra informa-
tion about the service-time distribution,” hints that approximations based on two moments of the
job size distribution may be inaccurate when C2 is large. Similar suggestions have been made by
many authors, but there are very limited numerical experiments to support this. While a high C2

may not be of major concern in many applications like manufacturing or customer contact centers,
the invalidity of the approximation (1) is a major problem in computer and communication systems.
In Table 1, we consider two values of C2, C2 = 19 and C2 = 99, and parameterize the distrbutions
so that they have these C2 values. Such high values of C2 are typical for workloads encountered in
computer systems, such as the sizes of files transferred over the internet [2], and the CPU requests
of UNIX jobs [12] and supercomputing jobs [17]. We consider a range of distributions (Weibull,
lognormal, truncated Pareto2) used in the literature to model computer systems workloads and
compare the mean waiting time obtained via simulations to the mean waiting time predicted by
the approximation in (1). As can be seen, there is a huge disagreement between the simulated mean
waiting time and the 2-moment approximation (1). Further, the simulated mean waiting times are
consistently smaller than the analytical approximation. Also observe that different distributions
with the same mean and C2 result in very different mean waiting times.

In this paper, we investigate the above experimental findings, illuminating how other characteristics
of the job size distribution may affect the mean waiting time, E

[
WM/G/K

]
. We do so by choosing a

specific class of distributions, the hyper-exponential distributions, which are mixtures of exponential
distributions. Use of hyper-exponential distributions allows us the freedom to evaluate the effect of
different characteristics of the distribution while preserving the first two (and even higher) moments.

Our foremost goal is to study the range of possible values of E
[
WM/G/K

]
for general job size

distributions with some given first two moments. We refer to this range as “the gap”. To define
1The squared coefficient of variation of a positive random variable X is defined as C2 = var(X)/ (E[X])2

2The cumulative distribution function of a truncated Pareto distribution with support [xmin, xmax] and parameter
α is given by:

F (x) =
x−α

min − x−α

x−α
min − x−α

max

xmin ≤ x ≤ xmax

Therefore, specifying the first two moments and the α parameter uniquely defines a truncated Pareto distribution.
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C2 = 19 C2 = 99
E[W ] E[W ]

2-moment approximation (Eqn. 1) 6.6873 33.4366
Weibull 6.0691±0.0138 25.9896±0.1773

Truncated Pareto (α = 1.1) 5.5277±0.0216 24.6049±0.2837
Lognormal 4.9937±0.0249 19.5430±0.4203

Truncated Pareto (α = 1.3) 4.8788±0.0249 18.7738±0.3612
Truncated Pareto (α = 1.5) 3.9466±0.0321 10.6487±0.5373

Table 1: Simulation results for the 95% confidence intervals of the mean waiting time for an
M/G/K with K = 10 and ρ = 0.9. The first line shows the mean waiting time given by the
analytical 2-moment approximation in Equation (1). All job size distributions throughout the
paper have E[X] = 1.

the gap, set
WC2

h = sup
{

E
[
WM/G/K

] ∣∣∣ E[X] = 1,E
[
X2

]
= C2 + 1

}
, (2)

and
WC2

l = inf
{

E
[
WM/G/K

] ∣∣∣ E[X] = 1,E
[
X2

]
= C2 + 1

}
. (3)

The gap spans (WC2

l ,WC2

h ). As one of the major contributions of this paper, we prove a lower
bound on the gap for the case ρ < K−1

K (at least one spare server) in Theorem 1, and for the case
ρ > K−1

K (no spare servers) in Theorem 2. We believe that the bounds presented in Theorem 1
for the case ρ < K−1

K are tight, and conjecture tight bounds for the case ρ > K−1
K in Section 7,

Conjecture 1.

Theorem 1 For any finite C2 and ρ < K−1
K ,

WC2

h ≥ (C2 + 1)E
[
WM/D/K

]

WC2

l ≤ E
[
WM/D/K

]

and thus,

WC2

h

WC2

l

≥ C2 + 1

where E
[
WM/D/K

]
is the mean waiting time when the job size distribution is deterministic 1.

Theorem 2 For any finite C2 and ρ ≥ K−1
K ,

WC2

h ≥
(

C2 + 1
2

)
E

[
WM/M/K

]

WC2

l ≤ E
[
WM/M/K

]
+

1
1− ρ

[
ρ− K − 1

K

]
C2 − 1

2

and thus,

WC2

h

WC2

l

≥

(
C2+1

2

)
E

[
WM/M/K

]

E
[
WM/M/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2−1

2
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where E
[
WM/M/K

]
is the mean waiting time when the job size distribution is exponential with mean

1.

Theorem 1 will be proved in Section 4 and follows by combining a result of Daley [7] with some new
observations. Theorem 2 is far more intricate to prove, and forms the bulk of the paper (Section 5).

We now make a few important observations on the gap:

• Since we prove a lower bound for WC2

h and an upper bound for WC2

l , Theorems 1 and 2 give
a lower bound on the span of the gap for general distributions.

• The gap can be quite large if the C2 of the job size distribution is high. In particular,
when ρ < K−1

K , Theorem 1 proves that the maximum possible mean waiting time is at least(
C2 + 1

)
times the minimum possible mean waiting time.

• The lower bound on WC2

h in Theorem 2 is the same as the 2-moment approximation in (1).
(The lower bound on WC2

h in Theorem 1 is very close but slightly higher than the 2-moment
approximation.)

• Theorems 1 and 2 prove that any approximation based only on the first two moments will be
inaccurate for some distribution because the span of possible values of mean waiting time is
large.

Another interesting point is that the lower bound on the gap depends on the load, ρ. The case
ρ ≥ K−1

K is commonly known in the queueing literature as 0-spare servers and the case ρ < K−1
K

is known as at least 1 spare server. The presence of spare servers is known to play a crucial role
in determining whether the mean waiting time is infinite given that the second moment of the
job size distribution is infinite (see [35] and references therein) and on the tail of the waiting time
distribution (see [13]). Observe that in our results too, the number of spare servers (zero or at least
one) affects whether C2 shows up in the lower bound of the gap. When there is even just one spare
server, the lower bound is independent of C2, which suggests that having even one spare server
might potentially reduce most of the effect of C2 on the mean waiting time.

Proving Theorem 1
(
ρ < K−1

K

)
essentially involves looking at two extreme two-point job size dis-

tributions and finding the mean waiting time under those extremal job size distributions. To prove
Theorem 2

(
ρ ≥ K−1

K

)
, we look at two extreme distributions in the class of 2-phase hyperexponen-

tial distributions and obtain the mean waiting time under those job size distributions. We believe
that it is not hard to tighten the bound in Theorem 2 by extending our proof technique to work with
two-point distributions, and proving a wider “gap” than we do in this paper. However, presently,
we focus on 2-phase hyperexponential distributions for ease of exposition and to elucidate the basic
steps in obtaining the bound. Clearly the span described by Theorem 1 is non-empty for all C2 > 0.
The span described by Theorem 2 is non-empty only when C2 > 1 even though the theorem is true
for all values of C2. In fact, Proposition 1 shows that our lower bound for the span of the gap is
strictly positive when K ≥ 2 and C2 > 1:

Proposition 1 Let E
[
WM/M/K

]
be the mean waiting time in an M/M/K with mean job size 1.

For all values of K ≥ 2, ρ ∈ [
K−1

K , 1
)

and C2 > 1,

(
C2 + 1

2

)
E

[
WM/M/K

]
> E

[
WM/M/K

]
+

1
1− ρ

[
ρ− K − 1

K

]
C2 − 1

2
.

We provide a proof of the proposition in Appendix B.
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The bounds on WC2

h and WC2

l in Theorem 2 are identical for K = 1, and in fact in this case agree
with the well-known Pollaczek Khintchine formula

E
[
WM/G/1

]
=

(
C2 + 1

2

)
E

[
WM/M/1

]
, (4)

which shows that the mean waiting time is completely determined by C2 and E[X].

Similar results on the gap for the mean queue length of a GI/M/1 queue were derived by Whitt [46]
by considering extremal interarrival time distributions. For the GI/M/1 queue, proving such
theorems is simplified due to the availability of the exact expression for the mean queue length.

Outline

Section 2 reviews existing work on obtaining closed-form, numerical and heavy-traffic approxima-
tions for E

[
WM/G/K

]
. In Section 3 we seek insights into why the first two moments of the job size

distribution are insufficient for approximating the mean delay. We also seek answer to the question:
“Which characteristics of the job size distribution, outside of the first two moments, are important
in determining the mean waiting time?” Our insights stem from numerical experiments based on
the 2-phase hyperexponential class of job size distributions. These insights help us later in proving
Theorem 2. Sections 4 and 5 are devoted to proving Theorems 1 and 2, respectively. In Section 6,
we address the question of the effect of higher moments of job size distribution on the mean waiting
time. We present some results and conjecture on the exact span of E

[
WM/G/K

]
given the first two

moments of the job size distribution via tight two-moment bounds in Section 7. We conclude in
Section 8.

2 Prior Work

While there is a large body of work on approximating the mean waiting time of an M/G/K
system, all the closed-form approximations only involve at most the first two moments of the job
size distribution. As mentioned earlier, to the best of our knowledge, the first approximation
for the mean waiting time for an M/G/K queue was given in (1) by Lee and Longton [26]. This
approximation is very simple, is exact for K = 1 and was shown to be asymptotically exact in heavy
traffic by Köllerström [25]. The same expression is obtained by Nozaki and Ross [31] by making
approximating assumptions about the M/G/K system and solving for exact state probabilities of
the approximating system, and by Hokstad [19] by starting with the exact equations and making
approximations in the solution phase. Boxma et al. [32] obtain a closed-form approximation for the
mean waiting time in an M/D/K system, extending the heavy traffic approximation of Cosmetatos
[6]. Takahashi [40] obtains expressions for mean waiting time by assuming a parametric formula.
Kimura [22] uses the method of system interpolation to derive a closed-form approximation for the
mean waiting time that combines analytical solutions of simpler systems.

There is also a large literature on numerical methods for approximating the mean waiting time by
making much weaker assumptions and solving for state probabilities. For example, Tijms et al. [18]
assume that if a departure from the system leaves behind k jobs where 1 ≤ k < K, then the time
until the next departure is distributed as the minimum of k independent random variables, each
of which is distributed according to the equilibrium distribution of X. If, however, the departure
leaves behind k ≥ K jobs, then the time until the next departure is distributed as X/K. Similar
approaches are followed in [19, 20, 28, 29, 36]. Miyazawa [29] uses “basic equations” to provide a
unified view of approximating assumptions made in [31], [19] and [18], and to derive new approx-
imation formulas. Boxma et al. [32] also provide a numerical approximation for M/G/K which is
reasonably accurate for job size distributions with low variability (C2 ≤ 1) by assuming a para-
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metric form and matching the heavy traffic and light traffic behaviors. Other numerical algorithms
include [9, 10, 11]. While these numerical methods are accurate and usually give an approximation
for the entire waiting time distribution, the final expressions do not give any structural insight into
the behavior of the queueing system and the effect of M/G/K parameters on waiting time.

Heavy traffic, light traffic and diffusion approximations for the M/G/K system have been studied in
[5, 21, 25, 43, 47, 48]. The diffusion approximations used in [43] are based on many-server diffusion
limits. Motivated by call center applications, there is now a huge body of literature for multiserver
systems with a large number of exponential servers; see the survey paper [14] and references therein.

Bounds on the mean waiting time for M/G/K queues (and more generally for GI/GI/K queues)
have mainly been obtained via two approaches. The first approach is by assuming various orderings
(stochastic ordering, increasing convex ordering) on the distribution of job sizes (see [8, 30, 38, 44,
45]), but these tend to be very loose as approximations. Moreover, one does not always have the
required strong orderings on the job size distribution. The second, and more practical, approach
that started with the work of Kingman [23] is obtaining bounds on mean delay in terms of the first
two moments of the interarrival and job size distributions. The best known bounds of this type
for GI/GI/K mean waiting time are presented by Daley [7]. Scheller-Wolf and Sigman [34] derive
bounds for the case Kρ <

⌊
K
2

⌋
which are in many cases superior to the bounds in [7]. Daley [7]

also conjectures tight upper and lower bounds on GI/GI/K mean waiting time in terms of the
first two moments of interarrival and job size distributions, and proves a tight lower bound

inf E
[
WGI/GI/K

]
= 0, when ρ < 1− 1

K
.

While bounds for GI/GI/K mean waiting time are more general, they can also be loose when ap-
plied to M/G/K. Recently, Bertsimas and Natarajan [3] have proposed a computational approach
based on semidefinite optimization to obtain bounds on the moments of waiting time in GI/GI/K
queues given the information of moments of the job size and the interarrival time distributions.

We differ from the prior work in that we prove E
[
WM/G/K

]
is inapproximable within a certain

factor based on just the knowledge of the first two moments of the job size distribution.

3 Insights on why two-moment approximations are not enough

Our goal in this section is to illustrate the inadequacy of the first two moments of the job size
distribution for approximating E

[
WM/G/K

]
. To do this, we restrict our attention to the class of

two-phase hyperexponential distributions, denoted by H2 (see Definition 1 below). Distributions in
the H2 class are mixtures of two exponential distributions and thus have three degrees of freedom.
Having three degrees of freedom provides us a method to create a set of distributions with any given
first two moments (C2 > 1 in the case of H2) and analyze the effect of some other characteristic.
A natural choice for this third characteristic is the third moment of the distribution3. The H2

distribution is also convenient because it allows us to capture the effect of small vs. large jobs (the
two phases of the hyperexponential) – an insight which will be very useful to us.

Definition 1 Let µ1 > µ2 . . . > µn > 0. Let pi > 0, i = 1, . . . , n, be such that
∑n

i=1 pi = 1. We

3In [9, 47], the authors use the quantity r, which denotes the fraction of load contributed by the branch with the
smaller mean, as the third parameter to specify the H2 distribution. We choose the third moment because it is more
universal and better understood than r. Further, r is an increasing function of the third moment.
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Figure 1: Illustration of the inadequacy of two-moment approximations for mean delay
E

[
WM/G/K

]
. As shown, the normalized 3rd moment, θ3, of the job size distribution has a big

effect on mean waiting time of an M/H2/10 system (solid line). The parameters of the job size
distribution were held constant at E[X] = 1 and C2 = 19 with load ρ = 0.9. The dashed line shows
the standard two-moment approximation of (1). The values on the x−axis are the normalized third
moment (5).

define the n−phase hyperexponential distribution, Hn, with parameters µi, pi, i = 1, . . . , n, as:

Hn ∼





Exp(µ1) with probability p1

Exp(µ2) with probability p2

...
Exp (µn) with probability pn

where Exp(µi), i = 1, . . . , n, are n independent exponential random variables with mean 1
µi

, i =
1, . . . , n.

Definition 2 Let µ1 > µ2 . . . > µn−1 > 0. Let pi > 0, i = 0, . . . , n− 1, be such that
∑n−1

i=0 pi = 1.
We define the n−phase degenerate hyperexponential distribution, H∗

n, with parameters p0, µi, pi,
i = 1, . . . , n− 1, as:

H∗
n ∼





0 with probability p0

Exp(µ1) with probability p1

...
Exp (µn−1) with probability pn−1

where Exp(µi), i = 1, . . . , n− 1, are n− 1 independent exponential random variables with mean 1
µi

,
i = 1, . . . , n− 1.

Figure 1 shows the mean waiting time for an M/H2/K system evaluated numerically using matrix
analytic methods. The dashed line shows the standard two moment approximation of (1). Note

7



that the x−axis is actually not showing E
[
X3

]
but rather a normalized version of the third moment,

θ3, which we define as:

θ3 =
E

[
X3

]
E[X]

E
[
X2

]2 . (5)

The above normalization for the third moment with respect to the first two moments is analogous
to the definition of the squared coefficient of variation, C2 = E

�
X2
�

E[X]2
−1, which is the scale-invariant

normalization of the second moment with respect to the first moment. For positive distributions,
θ3 takes values in the range [1,∞), and our ongoing work on approximations for E

[
WM/G/K

]
based

on higher moments of job size distribution suggests that θ3 is the right variable to look at. We will
use the normalized third moment, θ3, throughout the paper.

Our first interesting observation is that the M/H2/K mean waiting time actually drops with an
increase in the normalized third moment of X. We also observe that the existing two moment
approximation is insufficient as it sits at one end of the spectrum of possible values for E

[
WM/H2/K

]
.

For lower values of the third moment the approximation is good, but it is very inaccurate for high
values. Moreover, any approximation based only on the first two moments will be inaccurate for
some distribution because the span of possible values of mean waiting time for the same first two
moments of the job size distribution is large.

While the drop in mean waiting time with increasing θ3 seems very counterintuitive, this phe-
nomenon can partially be explained by looking at how increasing θ3 alters the distribution of load
among the small and large jobs. Let ρ(x) represent the fraction of load made up by jobs of size
smaller than x. If f(x) represents the probability density function of the job size distribution, then,

ρ(x) =
1

E[X]

∫ x

0
uf(u)du.

In Figure 2, we show the ρ(x) curves for distributions in the H2 class with mean 1, C2 = 19 and
different values of θ3. As reference, we also show the ρ(x) curve for the exponential distribution
with mean 1. As can be seen from Figure 2, increasing θ3 while holding fixed the first two moments
of the H2 distribution, causes the load to (almost monotonically) shift towards smaller jobs. While
the large jobs also become larger, they become rarer at an even faster rate so that in the limit as
θ3 → ∞, the ρ(x) curve for the H2 distribution converges to the ρ(x) curve for the exponential
distribution with the same mean. Thus as θ3 increases, the M/H2/K system sees smaller jobs
more often, thereby causing a smaller mean waiting time. In fact, this behavior would hold for any
M/G/K system where the job size distribution is a mixture of two scaled versions of an arbitrary
distribution.

Based on the numerical evidence of the huge variation in E
[
WM/H2/K

]
, a natural question that

arises is: Can this span of possible values of E
[
WM/H2/K

]
be quantified? Lemmas 3 and 4 in

Section 5 answer this question. Lemma 3 is obtained by considering the case of a distribution in
the H2 class with a low θ3. In particular, we consider the case of an H∗

2 distribution (see Definition 2)
which we can prove has the lowest possible third moment of all distributions in the H2 family (with
any given first two moments), and we derive the exact mean waiting time under the H∗

2 jobs size
distribution. Likewise, Lemma 4 is derived by considering the case of an H2 distribution where θ3

goes to ∞ and we derive the asymptotic mean waiting time for that situation. Since we restrict
our attention to a subset of the entire space of distributions with given first two moments, our
results provide a lower bound on the exact span of E

[
WM/G/K

]
. We conjecture the exact span of

E
[
WM/G/K

]
in Section 7, Conjecture 1.
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Figure 2: Illustration of the effect of the normalized 3rd moment, θ3, on the distribution of load as
a function of job size for the H2 class of distributions. The first two moments were held constant
at E[X] = 1 and C2 = 19. The distribution of the load for exponential distribution with mean 1,
labeled Exp(1), is shown for reference.

4 Proof of Theorem 1

To obtain the bounds on WC2

h and WC2

l in Theorem 1, it suffices to show the existence of job size
distributions with SCV C2 which give the desired expressions for mean waiting times. To obtain
an upper bound on WC2

l , we use a corollary of [7], Proposition 3.15:

Lemma 1 (Daley [7, Proposition 3.15]) For any C2 > 0 and 0 < ε <
√

1
C2 , define the follow-

ing two-point job size distribution:

D(ε) ∼
{

1− ε
√

C2 with probability 1
1+ε2

1 +
√

C2

ε with probability ε2

1+ε2
.

For ρ < K−1
K and any given GI arrival process,

lim
ε→0

E
[
WGI/D(ε)/K

]
= E

[
WGI/D/K

]

where E
[
WGI/D/K

]
is the mean waiting time when the job size distribution is deterministic 1.

By definition, each distribution in the D(ε) family has mean 1 and SCV C2. The bound on WC2

l

follows by setting GI ≡ M .

To obtain a lower bound on WC2

h , we consider the following two-point distribution:

D∗
2 ∼

{
0 with probability C2

C2+1

C2 + 1 with probability 1
C2+1

.

It is easy to verify that the above distribution has mean 1, squared coefficient of variation C2 and
θ3 = 1. We denote the M/G/K system with D∗

2 job size distribution as M/D∗
2/K.
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The bound on WC2

h follows from the following lemma:

Lemma 2 For any ρ < 1 and C2 > 0,

E
[
WM/D∗2/K

]
= (C2 + 1)E

[
WM/D/K

]
.

Proof: Since the scheduling discipline is size independent, the distribution of waiting time experi-
enced by zero-sized jobs and non-zero jobs is identical. Further, to find the waiting time distribution
experienced by non-zero sized jobs, we can ignore the presence of zero-sized jobs. The waiting time
distribution of the non-zero sized jobs is thus equivalent to the waiting time distribution in an
M/D/K system with arrival rate λ

C2+1
and mean job size (C2 + 1). The latter system, however, is

just an M/D/K system with arrival rate λ and mean job size 1 seen on a slower time scale, slowed
by a factor (C2 + 1). Hence, the mean waiting time of the original system is also (C2 + 1) times
the mean waiting time of an M/D/K system with arrival rate λ and mean job size 1.

5 Proof of Theorem 2

As in the proof of Theorem 1, to obtain the bounds on WC2

h and WC2

l in Theorem 2, it suffices
to show the existence of job size distributions with SCV C2 which give the desired mean waiting
times. To handle the case ρ > K−1

K , we resort to job size distributions in the class of 2-phase
hyperexponentials.4

To obtain a lower bound on WC2

h , we consider the following degenerate hyperexponential distribu-
tion:

H∗
2 ∼

{
0 with probability C2−1

C2+1

Exp
(

2
C2+1

)
with probability 2

C2+1
.

It is easy to verify that the above distribution has mean 1, squared coefficient of variation C2 and
θ3 = 3

2 . The H∗
2 distribution as defined above has the lowest third moment among all the Hn

distributions with mean 1 and SCV C2:

Claim 1 Let ∪n>1{Hn|C2} be the set of all hyperexponential distributions with finite number of
phases, mean 1 and squared coefficient of variation C2 (C2 > 1). The H∗

2 distribution lying in this
set has the smallest third moment among all the distributions in ∪n>1{Hn|C2}.
Proof: See Appendix A.

The bound on WC2

h in Theorem 2 follows from the following lemma which can be proved along the
lines of Lemma 2:

Lemma 3 For any ρ < 1 and C2 > 1,

E
[
WM/H∗

2 /K
]

=
(

C2 + 1
2

)
E

[
WM/M/K

]
.

Note that the bound obtained from Lemma 3 is weaker than the bound from Lemma 2 since
E

[
WM/M/K

]
< 2 · E[

WM/D/K
]
. We present Lemma 3 here for comparison with the corre-

sponding upper bound on WC2

l in Lemma 4 and the 2-moment approximation (1), which involve
E

[
WM/M/K

]
.

4The reader may wonder why we don’t use the two-point job size distributions from Section 4. The use of two-point
distributions may lead to stronger bounds, as we conjecture in Section 7, and we believe that our proof technique
can be extended to the class of two-point job size distributions. But the additional complexity of doing so is beyond
the scope of this paper.
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To obtain a bound on WC2

l , we consider a sequence of systems parameterized by a parameter ε
in which we fix the first two moments of the job size distribution analogous to Lemma 1. The
parameter ε allows for increasing the third moment as ε goes to 0. More precisely, we consider the
sequence of queues M/H

(ε)
2 /K (see Section 5.2, Definition 3) as ε → 0 and prove the following limit

theorem:

Lemma 4 For any finite C2,

lim
ε→0

E
[
WM/H

(ε)
2 /K

]
=

{
E

[
WM/M/K

]
if ρ < K−1

K

E
[
WM/M/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2−1

2 if ρ ≥ K−1
K

where E
[
WM/M/K

]
is the mean waiting time when the job size distribution is exponential with mean

1.

The rest of this section is devoted to proving Lemma 4. Since the proof of Lemma 4 involves a
new technique, we begin in Section 5.1 with a high level proof idea. Subsequent subsections will
provide the rigorous lemmas.

5.1 Proof idea

The key steps involved in the analysis are as follows:

1. We first observe that the H
(ε)
2 job size distribution is made up of two classes of jobs – small

jobs and large jobs. We use Ns and N` to denote the number of small and large jobs in
system, respectively.

2. We show that the expected number of large jobs, E
[
N

M/H
(ε)
2 /K

`

]
, vanishes as ε goes to zero;

therefore it suffices to consider only small jobs (see Section 5.3).

3. For each M/H
(ε)
2 /K system, we construct another system, U (ε), which stochastically upper

bounds the number of small jobs in the corresponding M/H
(ε)
2 /K system. That is,

N
M/H

(ε)
2 /K

s ≤st NU(ε)

s

(see Section 5.4).

4. To analyze NU(ε)

s , we consider two kinds of periods: good periods – when there are no large
jobs in the system, and bad periods – when there is at least one large job in the system. Our
approach is to obtain upper bounds on the mean number of small jobs during the good and
bad periods, E

[
NU(ε)

s | good period
]

and E
[
NU(ε)

s | bad period
]
, respectively, and obtain an

upper bound on E
[
NU(ε)

s

]
using the law of total probability:

E
[
NU(ε)

s

]
= E

[
NU(ε)

s | good period
]
Pr[good period] + E

[
NU(ε)

s | bad period
]
Pr[bad period]

We obtain upper bounds on the mean number of small jobs during the good and bad periods
using the following steps (see Section 5.5):

(a) We first look at the number of small jobs only at switching points. That is, we consider
the number of small jobs only at the instants when the system switches from a good
period to a bad period and vice versa.

11



(b) To obtain bounds on the number of small jobs at the switching points, we define a
random variable ∆, which upper bounds the increment in the number of small jobs
during a bad period. Further, by our definition, the upper bound ∆ is independent of
the number of small jobs at the beginning of the bad period. To keep the analysis simple,
this independence turns out to be crucial.

(c) Next we obtain a stochastic upper bound on the number of small jobs at the end of a
good period by solving a fixed point equation of the form

A
d= Φ(A + ∆)

where A is the random variable for (the stochastic upper bound on) the number of small
jobs at the end of a good period, and Φ is a function that maps the number of small
jobs at the beginning of a good period to the number of small jobs at the end of the
good period.

(d) Finally, we obtain the mean number of small jobs during the good and bad periods from
the mean number of small jobs at the switching points.

5. Similar to U (ε), for each M/H
(ε)
2 /K system, we also construct a system, L(ε), which stochas-

tically lower bounds the number of small jobs in the corresponding M/H
(ε)
2 /K system. That

is,

N
M/H

(ε)
2 /K

s ≥st NL(ε)

s

(see Section 5.6). We omit the analysis of L(ε) since it is similar to analysis of U (ε). Note,
that we indeed obtain

E
[
NU(ε)

s

]
= E

[
NL(ε)

s

]
+ o(1)

Convergence of E
[
NM/H

(ε)
2 /K

]
follows from convergence of its upper and lower bounds.

6. Finally, we use Little’s law to obtain mean waiting time, E
[
WM/H

(ε)
2 /K

]
, from the mean

number of waiting jobs, E
[
NM/H

(ε)
2 /K

]
−Kρ.

5.2 Preliminaries

Below we give a formal definition of the H
(ε)
2 class of job size distributions.

Definition 3 We define a family of distributions parameterized by ε as follows:

H
(ε)
2 =





Exp
(
µ

(ε)
s

)
with probability p(ε)

Exp
(
µ

(ε)
`

)
with probability 1− p(ε)

µ(ε)
s > µ

(ε)
`

12



where µ
(ε)
s , µ

(ε)
` and p(ε) satisfy,

p(ε)

µ
(ε)
s

+
1− p(ε)

µ
(ε)
`

= E
[
X(ε)

]
= 1

2
p(ε)

(
µ

(ε)
s

)2 + 2
1− p(ε)

(
µ

(ε)
`

)2 = E
[(

X(ε)
)2

]
= C2 + 1

6
p(ε)

(
µ

(ε)
s

)3 + 6
1− p(ε)

(
µ

(ε)
`

)3 = E
[(

X(ε)
)3

]
=

1
ε

For proving the upper bound on the lower bound WC2

l of E[W ], we look at E
[
WM/H

(ε)
2 /K

]
as

ε → 0. That is, the third moment of service time goes to ∞. Below we present some elementary
results on the asymptotic behavior5 of the parameters of the H

(ε)
2 distribution, which will be used

in the analysis in Section 5.5.

Lemma 5 The µ
(ε)
s , µ

(ε)
` and p(ε) can be expressed in terms of ε as :

µ(ε)
s = 1 +

3
2
(C2 − 1)2ε + Θ(ε2)

µ
(ε)
` = 3(C2 − 1)ε + 18C2(C2 − 1)ε2 + Θ(ε3)

p(ε) = 1− 9
2
(C2 − 1)3ε2 + Θ(ε3)

Proof in Appendix A.

Corollary 1 As ε → 0,

p(ε) → 1 , µ
(ε)
s → 1

1−p(ε)

µ
(ε)
`

→ 0 , 1−p(ε)
�
µ

(ε)
`

�2 → C2−1
2

5We will use the following asymptotic notation frequently in this paper: We say a function h(ε) is:

1. Θ(g(ε)) if

0 < lim inf
ε→0

����
h(ε)

g(ε)

���� ≤ lim sup
ε→0

����
h(ε)

g(ε)

���� < ∞

Intuitively, this means that the functions h and g grow at the same rate, asymptotically, as ε → 0.

2. o(g(ε)) if

lim
ε→0

����
h(ε)

g(ε)

���� = 0

Intuitively, h becomes insignificant when compared with g, asymptotically, as ε → 0.

3. O(g(ε)) if

lim sup
ε→0

����
h(ε)

g(ε)

���� < ∞

That is, h is either Θ(g(ε)) or o(g(ε)).
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Corollary 1 formalizes the observation we made from Figure 2: As the third moment grows, as-
ymptotically, all the load is made up only by the small jobs, whose mean approaches 1. While the
mean size of the large jobs also grows linearly in the third moment (asymptotically), the probability
that a large job arrives vanishes at a faster rate. Thus, intuitively, our M/H

(ε)
2 /K system rarely

encounters a large job in the limit as ε → 0.

It is important to point out that, as ε → 0, the H
(ε)
2 distribution converges in distribution to

the Exp(1) distribution. Thus, the stationary queue length and waiting time distributions of the
sequence of M/H

(ε)
2 /K systems also converge in distribution to the queue length and waiting time

distributions of the corresponding M/M/K system [4, 37]. However, convergence in distribution of
the waiting time does not imply convergence of the mean waiting time; namely, it is possible that

lim
ε→0

E
[
WM/H

(ε)
2 /K

]
6= E

[
WM/M/K

]
. (6)

Indeed, (6) can be verified for K = 1 where the mean waiting time is given by the Pollaczek-
Khintchine formula (4). Lemma 4 proves that the non-convergence (6) also holds for the M/H

(ε)
2 /K

system when ρ > K−1
K .

Daley [7] proved an analogous non-convergence result by considering a class of job size distributions,
S(ε), which includes H

(ε)
2 job size distributions. He further conjectured [7, Conjecture 3.19] an

expression for the difference,

lim
ε→0

E
[
WGI/S(ε)/K

]
−E

[
WGI/S/K

]
,

where S denotes the limiting job size distribution. The proof of Lemma 4 verifies Daley’s conjecture
for the case of Poisson arrival process and H2 job size distribution.

5.3 Bounding the number of large jobs

The following lemma proves that to bound the mean number of jobs in an M/H
(ε)
2 /K system within

o(1), it suffices to consider only the small jobs.

Lemma 6 E
[
N

M/H
(ε)
2 /K

`

]
= o(1)

Proof: We will upper bound the expected number of large customers in the system by (a) giving
high priority to the small customers and letting the large jobs receive service only when there are
no small jobs in the system, and (b) by allowing the large customers to be served by at most one
server at any time. Further, we increase the arrival rate of small customers to λ and increase the
mean size of the small customers to 1. By not being work conserving, increasing the arrival rate,
and making small jobs stochastically larger, the modified system can become overloaded. However,
since we are only interested in the asymptotic behavior as ε → 0, it suffices to find an ε′ such that

the above system is stable for all ε < ε′. This is indeed true for ε′ = 1
6

[
Kρ(C2+1)2

4(1−ρ) + 1
]−1

(See proof
of Lemma 9).

For brevity, we use M(a)/M(b)/k to denote an M/M/k queue with arrival rate a and service rate
b. Let N`

(ε) be the steady-state number of customers in an M
(
λ(1− p(ε))

)
/M

(
µ

(ε)
`

)
/1 queue

with service interruptions, where the server is interrupted for the duration of the busy period of an
M(λ)/M(1)/K queue. It is easy to see that

E
[
N

M/H
(ε)
2 /K

`

]
≤ E

[
N`

(ε)
]
.

The proof is completed by the following lemma:
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’

Number of
large jobs

Bad  phase
(1 large job)

Bad   phase
(> 0 large jobs)

’’

Good period Good period

(0 large jobs) (0 large jobs)

Large job arrives
Gets preemptive prio at server 1

Second large job arrives
Queues up at server 1
Service of small jobs ceases

Good period begins
Service of small jobs resumes

Third large job arrives
Queues up at server 1

Bad period

Figure 3: Construction of system U (ε) which upper bounds the number of jobs in an M/H
(ε)
2 /K

Lemma 7 E
[
N`

(ε)
]

= o(1)

Proof in Appendix A.

5.4 Construction of U (ε): the upper bounding system for N
M/H

(ε)
2 /K

s

Figure 3 illustrates the behavior of system U (ε), which upper bounds the number of small jobs in
an M/H

(ε)
2 /K. Denote periods where there are no large jobs (including when the system is idle) as

good periods, and periods when there is at least 1 large job as a bad period. During a good period,
the small jobs receive service according to a normal K server FIFO system. As soon as a large job
arrives, we say that a bad period begins. The bad period consists of up to 2 phases, called bad′

and bad′′. A bad′ phase spans the time from when a large job first arrives until either it leaves or
a second large job arrives (whichever happens earlier). A bad′′ phase occurs if a second large job
arrives while the first large job is still in the system, and covers the period from when this 2nd
large job arrives (if it does) until there are no more large jobs in the system.

The large job starting a bad period preempts the small job at server 1 (if any) and starts receiving
service. The small jobs are served by the remaining (K − 1) servers. If a second large job arrives
during a bad period while the first large job is still in system, starting a bad′′ phase, we cease
serving the small jobs and continue serving the large jobs by only server 1 until this busy period
of large jobs ends (there are no more large jobs). When the last large job leaves, we resume the
service of small jobs according to a normal K server FIFO system.

Analyzing system U (ε) is simpler than analyzing the corresponding M/H
(ε)
2 /K system because in

U (ε), the large jobs form an M/M/1 system independent of the small jobs, due to preemptive
priority and service by only one server. The small jobs operate in a random environment where
they have either K, (K − 1) or 0 servers.

Lemma 8 The number of small jobs in an M/H
(ε)
2 /K system, N

M/H
(ε)
2 /K

s , is stochastically upper
bounded by the number of small jobs in the corresponding system U (ε), NU(ε)

s .

15



’

Number of
small jobs ’’

∆b

∆b

Ns,g
*

’’

time

Good period Bad period

Bad  phase’ Bad   phase

Figure 4: Notation used for analysis of system U (ε)

Proof: Straightforward using stochastic coupling.

Stability of system U (ε): Since system U (ε) is not work conserving, there are values of ε for which
it is unstable, even when ρ < 1. Therefore we restrict our attention to the following range of ε:

Lemma 9 The upper bounding system, U (ε), is stable for ε < ε′ where

ε′ =
1
6

[
Kρ(C2 + 1)2

4(1− ρ)
+ 1

]−1

.

Proof in Appendix A.

5.5 Analysis of system U (ε)

Figure 4 introduces the notation we will use in this section. Since in this section we focus only
on the analysis of system U (ε), we will omit superscripting the random variables used in analysis
by U (ε) for readability. Unless explicitly superscripted, random variables correspond to the U (ε)

system. We define the following random variables:

• N∗
s,g ≡ the number of small jobs at the end of a good period, that is, when the system switches

from a good to a bad period

• N∗
s,b ≡ the number of small jobs at the end of a bad period, that is, when the system switches

from a bad to a good period

• Ns,g ≡ the time stationary number of small jobs during a good period

• Ns,b ≡ the time stationary number of small jobs during a bad period

• ∆b′ ≡ the increment in the number of small jobs during a bad′ period (when small jobs have
(K − 1) servers available)

• ∆b′(n) ≡ the increment in the number of small jobs during a bad′ period given that the bad′

period begins with n small jobs

• ∆b′′ ≡ the increment in the number of small jobs during a bad′′ period (where the service of
small jobs has been blocked)

16



• ∆b = ∆b′(0) + ∆b′′

We denote the fraction of time spent in a good, bad, bad′ and bad′′ phase by Pr[g], Pr[b], Pr[b′]
and Pr[b′′] respectively.

By the law of total probability,

E[Ns] = E[Ns,g]Pr[g] + E[Ns,b]Pr[b] (7)

In Section 5.5.1, we derive stochastic upper bounds on Ns,g and Ns,b, which give us an upper bound,
(9), on E[Ns]. In Sections 5.5.2 and 5.5.3, we derive expressions for the quantities appearing in (9).
These are used to obtain the final upper bound on E[Ns] in Section 5.5.4.

5.5.1 Stochastic Bounds

Obtaining a stochastic upper bound on Ns,g : Let Φ(A) be a mapping between non-negative
random variables where Φ(A) gives the random variable for the number of small jobs at the end of
a good period, given that the number at the beginning of the good period is given by A. Let N̄∗

s,g

be the solution to the following fixed point equation:

N̄∗
s,g

d= Φ(N̄∗
s,g + ∆b) (8)

Lemma 10

Ns,g
d= N∗

s,g ≤st N̄∗
s,g

Proof sketch: The first relation follows since the length of a good period is exponential and its
termination is independent of the number of small jobs. Hence, by conditional PASTA [42] (see
also [16] for a similar use of conditional PASTA),

Ns,g
d= N∗

s,g

Intuitively, ∆b stochastically upper bounds the increment in the number of small jobs during a bad
period since it assumes there were zero small jobs at the beginning of the bad period and hence
ignores the departures of those small jobs. Therefore, solving the fixed point equation (8) gives a
stochastic upper bound on N∗

s,g. A formal proof of the stochastic inequality is in Appendix A.

Obtaining a stochastic upper bound on Ns,b : The required upper bound is given by the
following lemma.

Lemma 11

Ns,b ≤st N̄∗
s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)

where Aλ (Tb′′e) is the number of arrivals of a Poisson process (with rate λ) during a random time
interval Tb′′e denoting the excess of the length of a bad′′ period, and where Ib′′|b denotes an indicator
random variable which is 1 with probability Pr[b′′]/Pr[b].

Proof sketch: Observe that the first term in the upper bound is a stochastic upper bound on the
number of small jobs at the beginning of a bad period. The second term denotes a stochastic upper
bound on the increment in the number of small jobs during a bad′ phase. Finally, the third term
denotes the “average increment” in the number of small jobs during a bad′′ phase. See Appendix A
for the complete proof.
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Combining the bounds on Ns,g and Ns,b, we get an upper bound on E[Ns]:

E[Ns] ≤ E
[
N̄∗

s,g

]
Pr[g] + E

[
N̄∗

s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)
]
Pr[b] (9)

To complete the proof, we need expressions for each of the quantities in equation (9). In Section 5.5.2
we will obtain expressions for E[∆b′(0)] for the cases ρ < K−1

K and ρ ≥ K−1
K . In Section 5.5.3 we

will obtain E
[
N̄∗

s,g

]
. However, to do this, we will need the first two moments of ∆b, E[∆b] and

E
[
∆2

b

]
, which are also derived in Section 5.5.2.

To obtain Pr[b], recall that the large jobs form an M/M/1 system. Hence (see Lemma 5 for
expressions for p and µ`),

Pr[b] = Pr[≥ 1 large job] =
λ(1− p(ε))

µ
(ε)
`

=
3Kρ(C2 − 1)2ε

2
+ Θ(ε2) (10)

The following asymptotic behavior of Pr[b′′]
Pr[b] E[Aλ (Tb′′e)] is proved in the proof of Lemma 14:

Pr[b′′]
Pr[b]

E[Aλ (Tb′′e)] = Θ(1) (11)

In Section 5.5.4, we perform the final calculations by substituting the above quantities into (9).

5.5.2 Obtaining E[∆b] and E
[
∆2

b

]

Recall that we defined,

∆b = ∆b′(0) + ∆b′′

where ∆b′(0) is the random variable for the number small jobs at the end of a bad′ phase given
that it starts with 0 small jobs and ∆b′′ is the number of small of jobs that arrive during a bad′′

phase.

Lemma 12 gives the expressions for E[∆b′(0)] and E
[
∆2

b′(0)
]
. Lemma 14 gives the asymptotic

expressions for E[∆b′′ ] and E
[
∆2

b′′
]

which will be sufficient for our purposes of obtaining E[Ns]
within o(1).

Lemma 12
Case: ρ < K−1

K

E[∆b′(0)] = O(1)

E
[
∆2

b′(0)
]

= O(1)

Case: ρ > K−1
K

E[∆b′(0)] =
K

(
ρ− K−1

K

)

3(C2 − 1)ε
+ Θ(1)

E
[
∆2

b′(0)
]

=
2
9

K2
(
ρ− K−1

K

)2

(C2 − 1)2ε2
+ Θ

(
1
ε

)
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Proof: We can think of ∆b′(0) as the number of jobs in an M/M/K−1 with arrival rate λs = λp
and service rate µs at time T ∼ Exp (β) (β = λ(1− p) + µ`) given that it starts empty. Let us call
this NM(λs)/M(µs)/K−1(T ). Let NM(λs)/M((K−1)µs)/1(T ) be the number of jobs in an M/M/1 with
arrival rate λs and service rate (K − 1)µs at time T given that it starts empty. Then,

NM(λs)/M((K−1)µs)/1(T ) ≤stN
M(λs)/M(µs)/K−1(T ) ≤st NM(λs)/M((K−1)µs)/1(T ) + (K − 1) (12)

To see why (12) is true, first note that using coupling, NM(λs)/M(µs)/K−1(T ) can be (stochasti-
cally) sandwiched between NM(λs)/M((K−1)µs)/1(T ) and the number of jobs in an M/M/K − 1
where the service is stopped when the number of jobs goes below K − 1. Finally, again us-
ing coupling, the number of jobs in this latter system can be stochastically upper bounded by
NM(λs)/M((K−1)µs)/1(T ) + (K − 1).

Therefore, using (12), we only need to evaluate the first and second moments of NM(λs)/M((K−1)µs)/1(T )
to obtain E[∆b′(0)] and E

[
∆2

b′(0)
]

within an error of Θ(1) and Θ(E[∆b′(0)]), respectively. We do
this next.

Case: ρ < K−1
K

For this case the M/M/K − 1 system is stable during bad′ phases, and hence

E[∆b′(0)] = O(1)

E
[
∆2

b′(0)
]

= O(1).

Case: ρ > K−1
K

The following lemma gives the expressions for the first and second moments of NM(λs)/M((K−1)µs)/1(T )
for the case ρ > K−1

K .

Lemma 13 Let T ∼ Exp(β) and λs > (K − 1)µs. Then,

E
[
NM(λs)/M((K−1)µs)/1(T )

]
=

λs − (K − 1)µs

β
+ Θ(1)

E
[
(NM(λs)/M((K−1)µs)/1(T ))2

]
= 2

(
λs − (K − 1)µs

β

)2

+ Θ
(

1
β

)
.

Proof of Lemma 13: See Appendix A.

Now, using the inequality (12) and Lemma 13, and substituting in the expressions for µs, λs and
µ` from Lemma 5 :

E[∆b′(0)] = E
[
NM(λs)/M(µs)/K−1(T )

]

≤ E
[
NM(λs)/M((K−1)µs)/1(T )

]
+ O(1)

=
λs − (K − 1)µs

β
+ Θ(1)

=
λp− (K − 1)µs

λ(1− p) + µ`
+ Θ(1)

=
λ(1−Θ(ε2))− (K − 1)(1 + Θ(ε))

λΘ(ε2) + (3(C2 − 1)ε + Θ(ε2))
+ Θ(1)

=
K

(
ρ− K−1

K

)

3(C2 − 1)ε
+ Θ(1)
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and,

E
[
∆2

b′(0)
]

= E
[(

NM(λs)/M(µs)/K−1(T )
)2

]

≤ E
[(

NM(λs)/M((K−1)µs)/1(T )
)2

]
+ O

(
1
ε

)

= 2
(

λs − (K − 1)µs

β

)2

+ Θ
(

1
β

)
+ O

(
1
ε

)

= 2

(
K

(
ρ− K−1

K

)

3(C2 − 1)ε

)2

+ Θ
(

1
ε

)

Lemma 14 The asymptotics for the first and second moments of ∆b′′ are given by:

E[∆b′′ ] = O(1)

E
[
∆2

b′′
]

= Θ
(

1
ε

)

Proof: See Appendix A.

5.5.3 Obtaining E
[
N̄∗

s,g

]

We will use the following lemma to obtain E
[
N̄∗

s,g

]
.

Lemma 15 Consider an M/M/K system with arrival rate λ and mean job size µ−1. We interrupt
this M/M/K system according to a Poisson process with rate α, and at every interruption, a random
number of jobs are added to the system. The number of jobs injected are i.i.d. random variables
which are equal in distribution to some non-negative random variable ∆. Let N (Int) denote the
number of jobs in this M/M/K system. If E[∆] = o

(
1
α

)
, we have,

E
[
N (Int)

]
= E

[
NM/M/K

]
+

α
2 E

[
∆2

]

Kµ− λ
+ o(1).

Proof in Appendix A.

To use the above lemma, we will consider an M/M/K with arrival rate λp(ε), mean job size 1

µ
(ε)
1

,

α = λ(1−p(ε)) and ∆ d= ∆b. Using the expression for E[∆b] derived in Section 5.5.2, one can check
that the condition of Lemma 15 is met. Therefore,

E
[
N̄∗

s,g

]
= E

[
NM/M/K

]
+

1
2

λ(1− p)E
[
∆2

b

]

Kµ− λ
+ o(1) (13)

Substituting E
[
∆2

b

]
from Section 5.5.2 and using Lemma 5,

Case: ρ < K−1
K

E
[
N̄∗

s,g

]
= E

[
NM/M/K

]
+

1
2

λ
(

9
2(C2 − 1)3ε2

)
Θ

(
1
ε

)

Kµ− λ
+ o(1)

= E
[
NM/M/K

]
+ o(1)
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Case: ρ > K−1
K

E
[
N̄∗

s,g

]

=E
[
NM/M/K

]
+

1
2

λ
(

9
2(C2 − 1)3ε2

)(
2
9

K2(ρ−K−1
K )2

(C2−1)2ε2

)

Kµ− λ
+ o(1)

=E
[
NM/M/K

]
+

K2ρ

1− ρ

[
ρ− K − 1

K

]2 C2 − 1
2

+ o(1)

5.5.4 Putting it together: Upper bound on E[Ns]

Recall the expression for upper bound on E[Ns] from equation (9):

E[Ns] ≤ E
[
N̄∗

s,g

]
(1−Pr[b]) + E

[
N̄∗

s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e)
]
Pr[b]

Substituting the expressions for E
[
N̄∗

s,g

]
from Section 5.5.3, E[∆b′(0)] from Lemma 12, Pr[b] from

Equation (10) and Pr[b′′]
Pr[b] E[Aλ (Tb′′e)] from Equation (11) into the above equation, we get:

Case: ρ < K−1
K

E[Ns] ≤ E
[
NM/M/K

]
+ o(1)

Case: ρ > K−1
K

E[Ns] ≤
(

E
[
NM/M/K

]
+

K2ρ

1− ρ

[
ρ− K − 1

K

]2 C2 − 1
2

)

+

(
K

(
ρ− K−1

K

)

3(C2 − 1)ε
+ Θ(1)

)(
3Kρ(C2 − 1)2ε

2

)
+ o(1)

= E
[
NM/M/K

]
+

K2ρ

1− ρ

[
ρ− K − 1

K

]2 C2 − 1
2

+ K2ρ

[
ρ− K − 1

K

]
C2 − 1

2
+ o(1)

= E
[
NM/M/K

]
+

Kρ

1− ρ

[
ρ− K − 1

K

]
C2 − 1

2
+ o(1)

Case: ρ = K−1
K

The critical case ρ = K−1
K is difficult to handle directly. However, we can infer the limit

lim
ε→0

E
[
NM/H

(ε)
2 /K

]
= E

[
NM/M/K

]

from the preceding analysis to obtain upper bounds for the cases ρ < K−1
K and ρ > K−1

K , and the
matching lower bounds obtained via analysis of the system described in Section 5.6 as follows. For
each ε, let f (ε) : [0, 1) → <+

0 denote the function mapping the load ρ to the mean number of jobs

in an M/H
(ε)
2 /K system, E

[
NM/H(ε)/K

]
. Let f(·) be the point-wise limit of f (ε)(·) as ε → 0. Since

each f (ε) is a monotonic function, f is also monotonic. Further,

lim
ρ↑K−1

K

f(ρ) = lim
ρ↓K−1

K

f(ρ) = E
[
NM/M/K

]
.

Thus we conclude,

f

(
K − 1

K

)
= lim

ε→0
E

[
NM/H

(ε)
2 /K

]∣∣∣
ρ=K−1

K

= E
[
NM/M/K

]
.
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at a total rate of (K−1)

large jobs

Large job completes service
Normal service of small jobs
resumes

Second large job arrives
Instantaneously completes
service

µs
(ε)

0 large jobs 1 large job 0 large jobs

Large job arrives

All existing jobs instantaneously
complete service

Arriving small jobs receive service

Number of

Figure 5: Construction of system L(ε) which lower bounds the number of jobs in an M/H
(ε)
2 /K

5.6 Construction of L(ε): the lower bounding system

Case: ρ > K−1
K

Figure 5 shows the behavior of system L(ε) for this case. As before, denote the periods where there
are no large jobs in the system as good periods, and periods when there is at least 1 large job as
bad periods. During a good period, the small jobs receive service according to a normal K server
FIFO system. As soon as a large job arrives to begin the bad period, all the small jobs currently
in the system instantaneously complete service. That is, the system restarts with 1 large job. Any
large jobs that arrive during this bad period complete service instantaneously. Further, whenever
there are fewer than (K − 1) small jobs in the system during a bad period, they are collectively
served at a total rate of (K − 1)µ(ε)

s .

Case: ρ ≤ K−1
K

For this case we can consider an alternate lower bounding system which simplifies the analysis. In
the lower bounding system, L(ε), all large jobs instantaneously complete service on arrival. Thus
the number of large jobs is always 0 and the number of small jobs behaves as in an M/M/K with
arrival rate λp(ε) and mean job size 1

µ
(ε)
s

.

Lemma 16 The number of small jobs in an M/H
(ε)
2 /K system, N

M/H
(ε)
2 /K

s , is stochastically lower
bounded by the number of small jobs in the corresponding system L(ε), NL(ε)

s .

Proof: Straightforward using stochastic coupling.

Sketch of Analysis of L(ε)

Case: ρ > K−1
K

The analysis of system L(ε) is simplified because the large jobs form an M/M/1/1 system indepen-
dent of the small jobs. The length of a bad period is distributed as Exp

(
µ

(ε)
`

)
and the length of a

good period is distributed as Exp
(
λ(1− p(ε))

)
. Further, during a bad period, the number of small

jobs behaves as in an M/M/1 queue with arrival rate λp(ε) and service rate (K − 1)µ(ε)
s starting

with an empty system. Therefore, the distribution of the number of small jobs at the end of bad
periods (and hence, by conditional PASTA, the distribution of the time average number of small
jobs during the bad periods) in system L(ε) can be derived along the lines of proof of Lemma 12.
To complete the proof we need to find the stationary mean number of small jobs at the end of
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good periods (and hence, by conditional PASTA, the stationary mean number of small jobs during
the good periods). This is equivalent to finding the mean number of jobs in an M/M/K at time
T ∼ Exp (λ(1− p)), starting at t = 0 with number of jobs sampled from the distribution of the
number of small jobs at the end of bad periods. To do this, we start with Eqn. (43), proceed as in
the proof of Lemma 13 by finding the root of the denominator in the interval [0, 1) and equating
the numerator to zero at this root. We then follow the proof of Lemma 15 to obtain the mean
number of jobs at time T .

Case: ρ ≤ K−1
K

As stated earlier, in constructing the lower bound system L(ε), we assume that the large jobs
complete service instantaneously on arrival. Therefore, the number of large jobs in the system is
0 with probability 1. The distribution of the time average number of small jobs in the system is
given by the stationary distribution in an M/M/K FCFS system.

6 Effect of higher moments

In Theorems 1 and 2, we proved that the first two moments of the job size distribution alone are
insufficient to approximate the mean waiting time accurately. In Section 3, by means of numerical
experiments, we observed that within the H2 class of distributions, the normalized third moment
of the job size distribution has a significant impact on the mean waiting time. Further, we observed
that for H2 job size distributions, increasing the normalized third moment causes the mean waiting
time to drop. It is, therefore, only natural to ask the following questions: Are three moments of the
job size distribution sufficient to accurately approximate the mean waiting time, or do even higher
moments have an equally significant impact? Is the qualitative effect of 4th and higher moments
similar to the effect of the 3rd moment or is it the opposite? In this section, we touch upon these
interesting and largely open questions.

C2 = 19 C2 = 99
E[W ] θ3 E[W ] θ3

2-moment approx. (Eqn. 1) 6.6873 - 33.4366 -
Weibull 6.0691 4.2 25.9896 8.18

Truncated Pareto (α = 1.1) 5.5241 4.24 24.5788 6.30
Lognormal 4.9937 20 19.5548 100

Truncated Pareto (α = 1.3) 4.8770 7.59 18.8933 16.85
Truncated Pareto (α = 1.5) 3.9504 20 10.5404 100

Table 2: Results from simulating an M/G/K with K = 10 and ρ = 0.9 (confidence intervals
omitted). All job size distributions have E[X] = 1.

We first revisit the simulation results of Table 1. Table 2 shows the simulation results of Table 1
again, but with an additional column – the normalized third moment of the job size distribution.
We have omitted the confidence intervals in Table 2. Observe that the lognormal distribution and
the Pareto distribution with α = 1.5 have identical first three moments, yet exhibit very different
mean waiting times. This behavior is compounded when the system load is reduced to ρ = 0.6
(Table 3). As we saw in Section 3, the disagreement in the mean waiting time for the lognormal
and the truncated Pareto distribution can be partly explained by the very different looking ρ(x)
curves for these distributions, shown in Figure 6. The bulk of the load in the lognormal distribution
is comprised of larger jobs as compared to the truncated Pareto distribution.

The example of lognormal and Pareto (α = 1.5) distributions suggests that even knowledge of
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C2 = 19 C2 = 99
E[W ] θ3 E[W ] θ3

2-moment approx. (Eqn. 1) 0.2532 - 1.2662 -
Weibull 0.1374 4.2 0.4638 8.18

Truncated Pareto (α = 1.1) 0.0815 4.24 0.2057 6.30
Lognormal 0.0854 20 0.2154 100

Truncated Pareto (α = 1.3) 0.0538 7.59 0.0816 16.85
Truncated Pareto (α = 1.5) 0.0355 20 0.0377 100

Table 3: Results from simulating an M/G/K with K = 10 and ρ = 0.6 (confidence intervals
omitted). All job size distributions have E[X] = 1.

three moments of the job size distribution may not be sufficient for accurately approximating the
mean waiting time. So what is the effect of higher moments on the mean waiting time? To begin
answering this question, we will follow a similar approach as in Section 3 where we looked at the H2

job size distribution. However, we first need to expand the class of job size distributions to allow us
control over the 4th moment. For this purpose, we choose the 3-phase degenerate hyperexponential
class of distribution, denoted by H∗

3 . Analogous to the H∗
2 distribution, H∗

3 is the class of mixtures
of three exponential distributions where the mean of one of the phases is 0 (see Definition 2).
Compared to the H2 class, the H∗

3 class has one more parameter and thus four degrees of freedom,
which allows us control over the 4th moment while holding the first three moments fixed.

We now extend the numerical results of Figure 1 by considering job size distributions in the H∗
3

class with the same mean and SCV as the example illustrated in Figure 1. However, to demonstrate
the effect of the 4th moment, we choose two values of θ3 and plot the E[W ] curves as a function of
the 4th moment in Figure 7. As a frame of reference, we also show the mean waiting time under the
H2 job size distribution (with the same first three moments as H∗

3 ) and that under H∗
2 distribution

(with the same first two moments as H∗
3 ).

As is evident from Figure 7, the fourth moment can have as significant an impact on the mean
waiting time as the third moment. As the 4th moment is increased, the mean waiting time increases
from E

[
WM/H2/K

]
to E

[
WM/H∗

2 /K
]
. Therefore, the qualitative effect of the 4th moment is opposite

to that of the third moment.

The effect of the fourth moment also helps explain the disagreement between the mean waiting
time for the lognormal, the truncated Pareto (α = 1.5) and the H2 distributions. For the case
C2 = 19, the lognormal distribution has a much higher 4th moment (E

[
X4

]
= 64× 106) than the

Pareto (E
[
X4

]
= 5.66 × 106) and the H2 (E

[
X4

]
= 4.67 × 106) distribution with θ3 = 20. While

this is a possible cause for a higher mean waiting time under the lognormal distribution, there is
still disagreement between the mean waiting time under the lognormal distribution and the H∗

3

distribution (see Figure 7) with the same first 4 moments, indicating that even higher moments are
playing an important role as well!

In conclusion, by looking at a range of distributions including hyperexponential, Pareto and log-
normal distributions, we see that the moments of the job size distribution may not be sufficient
to accurately predict the mean waiting time. Further, for distributions such as the lognormal dis-
tribution which are not uniquely determined by their moments, no finite number of moments may
suffice. Other characteristics, such as the distribution of load among the small and large job sizes,
may lead to more accurate approximations. (We make stronger conjectures on the exact effect of
the higher moments in [15].)

24



0.01 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

x

ρ(
x)

lognormal (C2=99)

Pareto (α=1.5, C2=99)lognormal (C2=19)

Pareto (α=1.5, C2=19)

Figure 6: The distribution of load as a function of job size for the lognormal and bounded Pareto
(α = 1.5) distributions for two values of squared coefficient of variation. Although the lognormal
and Pareto distributions have identical first three moments, the distribution of load among different
job sizes is drastically different.

7 On tight bounds for E
[
WM/G/K

]

In Theorem 1 we proved a lower bound on WC2

h and an upper bound on WC2

l , respectively, by
considering two-point job size distributions. In Theorem 2 we proved bounds on WC2

h and WC2

l by
considering job size distributions which are mixtures of two exponential random variables. However,
all known tight bounds for GI/GI/1 involving the first two moments of the job size distribution are
obtained by considering two-point distributions. Thus, we conjecture that the bounds in Theorem 1
are tight, whereas the bounds in Theorem 2 can be tightened as described in the conjecture below:

Conjecture 1 For any finite C2,

WC2

h =
(
C2 + 1

)
E

[
WM/D/K

]
for all ρ < 1

and,

WC2

l =

{
E

[
WM/D/K

]
if ρ < K−1

K

E
[
WM/D/K

]
+ 1

1−ρ

[
ρ− K−1

K

]
C2

2 if K−1
K ≤ ρ < 1

where E
[
WM/D/K

]
is the mean waiting time when all the jobs have a constant size 1.

8 Conclusions

In this paper, we addressed the classical problem of approximating the mean waiting time of
an M/G/K queueing system. While there is a huge body of work on developing closed-form
approximations for the mean waiting time, all such approximations are based only on the first two
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Figure 7: Illustration of the effect of 4th moment of the service distribution on mean waiting time
of an M/H∗

3/10 system for two values of the normalized third moment. Dashed line shows the
mean waiting time under an H2 service distribution with the same first three moments and the
light dotted line shows the mean waiting time under an H∗

2 service distribution with the same first
two moments as the H∗

3 distribution. The mean and squared coefficient of variation of the job size
distribution were held constant at E[X] = 1 and C2 = 19 with load ρ = 0.9 (same as Figure 1).

moments of the job size distribution. In this work, we proved that it is impossible to develop any
approximation, based on only the first two moments, that is accurate for all job size distributions.
Specifically, we proved that specifying the first two moments of the job size distribution insufficiently
limits the range of possible values of mean waiting time: The maximum value of this range can be
as much as (C2 + 1) times the minimum value.

Further, we suggest that moments are not the ideal job size characteristic on which to base ap-
proximations for mean waiting time5. The moment sequence can be useful if one of the moments
(appropriately normalized) is small. As an example, if the job size distribution has a small nor-
malized third moment, then an approximation based on only the first two moments is likely to
be accurate. However, there are also many job size distributions like the lognormal distribution
(whose moments are all high), for which moments are not useful in accurately predicting mean
waiting time. Other characteristics, such as the distribution of load among different job sizes, may
be more representative for the purpose of approximating mean waiting time.
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A Proofs

Proof of Claim 1: The proof will proceed in two steps. We first show that the H∗
2 distribution

lying in {H2|C2} has the smallest third moment in {H2|C2} for all C2 > 1. Then we will give a
method, which given any n-phase hyperexponential distribution for n > 2, allows one to create an
(n − 1)-phase hyperexponential distribution with the same first two moments but a smaller third
moment. Using this method one can, in the end, obtain an H2 distribution with a smaller third
moment and combine it with first step of the proof to prove the claim.

Step 1: Let X be a random variable distributed according to the following H2 distribution:

X ∼
{

Exp (µ1) w.p. p

Exp (µ2) w.p. 1− p
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The expressions for first 3 moments of X are given by:

E[X] =
p

µ1
+

1− p

µ2
(14a)

E
[
X2

]
= 2

p

µ2
1

+ 2
1− p

µ2
2

(14b)

E
[
X3

]
= 6

p

µ3
1

+ 6
1− p

µ3
2

(14c)

Performing (14c)
6 × (14a)

1 − (14b)
2 × (14b)

2 , we obtain the following relation between the moments of X
and the parameters of the distribution:

E
[
X3

]
E[X]

6
− E

[
X2

]2

4
=

p(1− p)
µ1µ2

[
1
µ1
− 1

µ2

]2

It is easy to see that since the right hand side is non-negative, 3E
�
X2
�2

2E[X] is a lower bound on the
smallest possible value of E

[
X3

]
given the first two moments, and this lower bound is realized by

letting µ1 →∞ (or µ2 →∞), that is, by the degenerate hyperexponential distribution.

Step 2: If the Hn distribution has a phase with mean 0, then pick any two phases with non-zero
mean. Replace these two phases with the H∗

2 distribution with the same first two moments as those
of the conditional distribution, conditioned on being in these two phases. Merge the phases with 0
mean. Using step 1 above, this replacement necessarily creates an (n− 1)-phase hyperexponential
distribution with smaller third moment while preserving the first two. If the Hn distribution has
no phase with mean 0, perform the above step twice to reduce the number of phases by 1.

Proof of Lemma 5: Suppressing the superscript, we have the following equations from Defini-
tion 3:

p

µs
+

1− p

µ`
= 1 (15a)

p

µ2
s

+
1− p

µ2
`

=
C2 + 1

2
(15b)

p

µ3
s

+
1− p

µ3
`

=
1
6ε

(15c)

Performing (15b)− (15a)× (15a):

p(1− p)
(

1
µs
− 1

µ`

)2

=
C2 − 1

2
(16)

Performing (15c)× (15a)− (15b)× (15b):

p(1− p)
µsµ`

(
1
µs
− 1

µ`

)2

=
1
6ε
− (C2 + 1)2

4
(17)

The above two equations give:

µsµl =
C2−1

2

1
6ε − (C2+1)2

4

(18)
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From equations (15a) and (15b),

p(µ` − µs) = µsµ` − µs

p(µ2
` − µ2

s) + µ2
s =

C2 + 1
2

(µsµ`)
2

Substituting p(µ` − µs) as µsµ` − µs in the second equation gives:

µs + µ` = 1 +
C2 + 1

2
µsµ`

= 1 +
C2+1

2 · C2−1
2

1
6ε − (C2+1)2

4

Finally,

µsµ` =
C2−1

2

1
6ε − (C2+1)2

4

= 3(C2 − 1)ε
(

1− 3(C2 + 1)2

2
ε

)−1

= 3(C2 − 1)ε
[
1 +

3
2
(C2 + 1)2ε +

9
4
(C2 + 1)4ε2 + Θ(ε3)

]

µs + µ` = 1 +
C2+1

2 · C2−1
2

1
6ε − (C2+1)2

4

= 1 +
3
2
(C2 + 1)(C2 − 1)ε

(
1− 3(C2 + 1)2

2
ε

)−1

= 1 +
3
2
(C2 + 1)(C2 − 1)ε

[
1 +

3
2
(C2 + 1)2ε +

9
4
(C2 + 1)4ε2 + Θ(ε3)

]

It is straightforward to verify that the expressions for µs and µ` in Lemma 5 satisfy the above
equations. The expression for p then follows from p = 1− µ`

µs−1
µs−µl

.

Proof of Lemma 7: Recall that N`
(ε) is defined to be the steady-state number of customers in

an M
(
λ(1− p(ε))

)
/M

(
µ

(ε)
`

)
/1 queue with service interruptions where the server is interrupted for

the duration of the busy period of an M(λ)/M(1)/K queue. The busy period of an M(λ)/M(1)/K
queue has finite second moment [41], and hence the second moment of the service interruptions is
also finite. Let Bλ,1,K be the busy period of this queue. Define ρ

(ε)
` = λ(1− p(ε))/µ

(ε)
` .

Our aim is to prove:

E
[
N`

(ε)
]

= o(1)

The lemma follows by specializing results for the M/G/1 queue with server breakdowns to the
special case considered here, see e.g. Adan & Resing [1, page 101]. For completeness, we provide
a new proof of the M/G/1 queue with breakdowns by viewing it as a special case of an M/G/1
with setup times [39, page 130]. Let G be a so-called generalized service time, which is the service
time of a large customer plus the total duration of service interruptions while that customer was in
service. Let α = λ(1−p(ε)) denote the arrival rate of the customers. The breakdowns (busy periods
of the M(λ)/M(1)/K queue) arrive at a rate λ when the system is “up”, and let B̃λ,1,K(s) denote
the Laplace transform of the duration of these breakdowns. We can now view the M(α)/M(µ(ε)

` )/1
queue with breakdowns as an M/G/1 queue with service distribution given by the generalized
service time, G, and a setup time I at the beginning of each busy period, where the Laplace
transform of I, Ĩ(s), satisfies:

Ĩ(s) =
α

α + λ
+

λ

α + λ
· B̃λ,1,K(α) · Ĩ(s) +

λ

α + λ
· α

α− s

(
B̃λ,1,K(s)− B̃λ,1,K(α)

)
(19)
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In the above equation, the first term denotes the event that the customer arrives before the break-
down, the second term denotes the event that the breakdown arrives before the customer, but no
customers arrive during this breakdown, and the third term denotes the event that the breakdown
arrives before the customer and a customer arrives during this breakdown. By differentiating (19)
with respect to s once and twice, and evaluating at s = 0, the first two moments of I are obtained,
respectively, as:

E[I] =
(

λ

α + λ

)
· E[B1,λ,K ]− 1− eB1,λ,K(α)

α

1− λ
α+λ · B̃1,λ,K(α)

(20)

E
[
I2

]
=

(
λ

α + λ

) E
[
B2

1,λ,K

]
− 2E

�
B1,λ,K

�
α + 21− eB1,λ,K(α)

α2

1− λ
α+λ · B̃1,λ,K(α)

(21)

Define V`
(ε) to be the system time (response time) of large customers in the modified queue. From

[39, page 130], we get

E
[
V`

(ε)
]

= E[G] +
(

ρG

1− ρG

)
E

[
G2

]

2E[G]
+

2E[I] + αE
[
I2

]

2(1 + αE[I])

= E[G] +
(

ρG

1− ρG

)
E

[
G2

]

2E[G]
+

(
λE[Bλ,1,K ]

1 + λE[Bλ,1,K ]

) E
[
B2

λ,1,K

]

2E[Bλ,1,K ]
. (22)

Here ρG = ρ
(ε)
` (1 + E[Bλ,1,K ]/λ). The first two moments of G are given by

E[G] =
1

µ
(ε)
`

(
1 +

E[Bλ,1,K ]
λ

)
(23)

and that

E
[
G2

]
=

2(
µ

(ε)
`

)2

(
1 +

E[Bλ,1,K ]
λ

)2

+
1

µ
(ε)
`

λE
[
B2

λ,1,K

]
. (24)

From these equations, it follows that E[G] = Θ(1/ε) and E
[
G2

]
= Θ(1/ε2). This implies E

[
V`

(ε)
]

=

Θ(1/ε). By Little’s law, E
[
N`

(ε)
]

= λ(1− p(ε))E
[
V`

(ε)
]
, which implies E

[
N`

(ε)
]

= Θ(ε).

Proof of Lemma 9: Consider a further modification of system U (ε) where the small jobs are
not served during the entire bad period. That is, even when there is only a single large job in the
system, we stop serving small jobs. The fraction of time this modified system U (ε) is busy with
large jobs is given by λ1−p(ε)

µ
(ε)
`

= Kρ1−p(ε)

µ
(ε)
`

. The load of the small jobs is less than ρ. Thus, system

U (ε) will be stable if ρ < 1−Kρ1−p(ε)

µ
(ε)
`

.

Since p(ε) ≤ 1 and µ
(ε)
s ≥ 1, we have

1− p(ε)

(
µ

(ε)
`

)2 ≤
C2 + 1

2

1− p(ε)

(
µ

(ε)
`

)3 ≥
1
6ε
− 1
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Now,

1− p(ε)

µ
(ε)
`

=

(
1−p(ε)
�
µ

(ε)
`

�2

)2

1−p(ε)
�
µ

(ε)
`

�3

≤

(
C2+1

2

)2

1
6ε − 1

Thus,

ε <
1
6

[
Kρ(C2 + 1)2

4(1− ρ)
+ 1

]−1

=⇒ Kρ

(
C2+1

2

)2

1
6ε − 1

< 1− ρ

=⇒ Kρ
1− p(ε)

µ
(ε)
`

< 1− ρ

Proof of Lemma 10: Recall that Φ(A) was defined as the mapping between non-negative
random variables where Φ(A) gives the random variable for the number of jobs at the end of a
good period given that the number at the beginning of the good period is A. Let Ψ(A) be another
mapping between random variables defined by:

Ψ(A) = ∆b′′ +
∞∑

i=0

(i + ∆b′(i))I{A=i}

That is, Ψ(A) gives the number of small jobs at the end of a bad period given that the number at
the start is A. Further, the following facts can be easily verified via coupling:

1. A1 ≤st A2 =⇒ Φ(A1) ≤st Φ(A2)

2. ∆b′(0) ≥st ∆b′(1) ≥st . . .∆b′(i) ≥ ∆b′(i + 1) ≥ . . .

The last fact implies Ψ(A) ≤st A + ∆b′(0) + ∆b′′
def
= A + ∆b. This gives us a way to stochastically

upper bound N∗
s,g. We defined N̄∗

s,g to be the solution to the following fixed point equation:

N̄∗
s,g

d= Φ(N̄∗
s,g + ∆b)

Also,

N∗
s,g

d= Φ(Ψ(N∗
s,g))

Let Y (0) = Ȳ (0) = 0. Further, let Y (n + 1) = Φ(Ψ(Y (n))) and Ȳ (n + 1) = Φ(Ȳ (n) + ∆b). Since
the Markov chains defined by the transition functions Φ(Ψ(·)) and Φ(·+ ∆b) are positive recurrent
(we proved system U (ε) stable for ε < ε′ but the proof implies the stability of this system as well)
and irreducible,

N∗
s,g = lim

n→∞Y (n)

N̄∗
s,g = lim

n→∞ Ȳ (n)
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Since Y (n) ≤st Ȳ (n) for all n by induction, N∗
s,g ≤st N̄∗

s,g.

Proof of Lemma 11: Let Ns,b′ denote the number of small jobs during the bad′ phase and Ns,b′′

denote the number of jobs during the bad′′ phase. We will stochastically bound Ns,b′ and Ns,b′′

separately using stochastic coupling.

Bound for Ns,b′: We know that the lengths of bad′ phases of system U (ε) are i.i.d. random
variables. Let Tb′ denote a random variable which is equal in distribution to these. It is easy to see
that Ns,b′ is equal in distribution to the number of small jobs in the following regenerative process.
The system regenerates after i.i.d. periods whose lengths are equal in distribution to Tb′ . At each
regeneration the system starts with a random number of small jobs sampled from the distribution
of N∗

s,g and then the system evolves as an M/M/K − 1 with arrival rate λp and service rate µs

until the next renewal.

Now, Ns,b′ can be stochastically upper bounded by the number in system in another regenerative
process where the renewals happen in the same manner but at every renewal the system starts with
a random number of jobs sampled from the distribution of N̄∗

s,g. These jobs never receive service.
However, we also start another M/M/K − 1 from origin (initially empty) with arrival rate λp and
service rate µs and look at the total number of small jobs.

Finally, since Tb′ is an exponential random variable, by PASTA, the distribution of number of jobs
at a randomly chosen time (or as t → ∞) is the same as the number of jobs at a random chosen
renewal. Therefore,

Ns,b′ ≤st N̄∗
s,g + ∆b′(0) (25)

Bound for Ns,b′′: To obtain a stochastic upper bound on Ns,b′′ , we follow the same procedure
as above. It is easy to see that Ns,b′′ is stochastically upper bounded by the number of jobs
in the following regenerative system. The renewals happen after i.i.d. intervals which are equal
in distribution to Tb′′ , the random variable for the length of a bad′′ phase in system U (ε). At
every renewal, the system starts with a random number of jobs sampled from the distribution of
N̄∗

s,g + ∆b′(0) and external arrivals happen at a rate λ (there are no departures) until the next
renewal. Let Tb′′e denote the age (and equal in distribution to the excess) of Tb′′ and Aλ(T ) denote
the number of arrivals in time T of a Poisson process with rate λ. This gives us the following
stochastic bound on Ns,b′′ ,

Ns,b′′ ≤st N̄∗
s,g + ∆b′(0) + Aλ (Tb′′e) (26)

The excess of Tb′′ comes into the picture because we need the number of jobs at a randomly chosen
instant of time during the bad′′ phase. The time elapsed since the starting of a bad′′ phase until
this randomly chosen instant of time is distributed as Tb′′e, the excess of Tb′′ . Finally, combining
(25) and (26),

Ns,b ≤st N̄∗
s,g + ∆b′(0) + Ib′′|bAλ (Tb′′e) (27)

Proof of Lemma 13: The z-transform of NM(λs)/M((K−1)µs)/1(T ) is given by [16, Theorem 4]:

N̂M(λs)/M((K−1)µs)/1(T )(z) =
βz − (K − 1)µs(1− z)p0

βz − ((K − 1)µs − λsz)(1− z)
(28)

where,

p0 =
βξ

(K − 1)µs(1− ξ)
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and ξ is the root of the polynomial in the denominator of N̂M(λs)/M((K−1)µs)/1(T )(z) in the interval
(0, 1). Let η be the other root (lying in (1,∞)). Therefore, we can write (28) as,

N̂M(λs)/M((K−1)µs)/1(T )(z) =
βz − (K − 1)µs(1− z) βξ

(K−1)µs(1−ξ)

−λs(z − ξ)(z − η)

=
β

−λs(1− ξ)(z − η)

=
1− η

z − η
(29)

The last step follows since N̂M(λs)/M((K−1)µs)/1(T )(z)|z=1 = 1. By differentiating the transform in
(29) and evaluating the derivatives at z = 1, we have

E
[
NM(λs)/M((K−1)µs)/1(T )

]
=

1
η − 1

E
[
(NM(λs)/M((K−1)µs)/1(T ))2

]
=

2
(η − 1)2

+
1

η − 1

Factoring the denominator of (28), we can write η as the larger root of the quadratic equation:

z2λs − z(λs + β + (K − 1)µs) + (K − 1)µs

That is,

η =
λs + β + (K − 1)µs +

√
(λs + β + (K − 1)µs)2 − 4λs(K − 1)µs

2λs

=
λs + β + (K − 1)µs +

√
(λs + β − (K − 1)µs)2 + 4β(K − 1)µs

2λs

=
λs + β + (K − 1)µs + (λs + β − (K − 1)µs)

√
1 + 4 β(K−1)µs

(λs+β−(K−1)µs)2

2λs

=
λs + β + (K − 1)µs + (λs + β − (K − 1)µs)

(
1 + 2 β(K−1)µs

(λs+β−(K−1)µs)2
+ Θ(β2)

)

2λs

= 1 +
β

λs
·
(

1 +
(K − 1)µs

(λs + β − (K − 1)µs)

)
+ Θ(β2)

= 1 +
β

λs − (K − 1)µs
+ Θ(β2)

which results in the expressions in the lemma.

Proof of Lemma 14: Recall that ∆b′′ is the random variable denoting the number of small jobs
that arrive during time Tb′′ , where Tb′′ is the random variable for the length of the bad′′ phase of a
bad period. Using Aλ(T ) to denote the number of Poisson (with rate λ) arrivals in a random time
interval T , we have ∆b′′ is equal in distribution to Aλp(Tb′′). The following equalities are easy to
prove:

E[Aλ(T )] = λE[T ] (30)

E
[
(Aλ(T ))2

]
= λ2E

[
T 2

]
+ λE[T ] (31)
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Thus we need the first two moments of Tb′′ to obtain the first two moments of ∆b′′ . The Laplace
transform of Tb′′ , T̃b′′(s), is given by:

T̃b′′(s) =
µ`

µ` + λ(1− p)
+

λ(1− p)
µ` + λ(1− p)

B̃2(s) (32)

where B̃(s) is the Laplace transform for the length of busy periods of an M/M/1 with arrival rate
λ(1−p) and service rate µ`. To see this, note that with probability µ`

µ`+λ(1−p) , the large job starting
the bad phase leaves before another large job arrives and thus bad′′ phase has length 0. With
probability λ(1−p)

µ`+λ(1−p) , a large job arrives and starts the bad′′ phase. In this case, the length of the
bad′′ phase is the time for an M/M/1 with arrival rate λ(1 − p) and service rate µ` to become
empty starting with 2 jobs in the system. This is just the sum of two independent M/M/1 busy
periods.

By differentiating the transform in (32) and evaluating at s = 0, we obtain:

E[Tb′′ ] =
λ(1− p)

µ` + λ(1− p)

(
2

µ` − λ(1− p)

)
= Θ(1) (33)

E
[
T 2

b′′
]

=
λ(1− p)

µ` + λ(1− p)

(
4µ`

(µ` − λ(1− p))3

)
= Θ

(
1
ε

)
(34)

Obtaining E[∆b′′ ] and E
[
∆2

b′′
]
: Substituting λ ≡ λp and T ≡ Tb′′ in (30)-(31) and using (33)-(34),

we get the following asymptotics which will be sufficient for our purposes:

E[∆b′′ ] = λpE[Tb′′ ] = Θ(1) (35)

E
[
∆2

b′′
]

= λ2p2E
[
T 2

b′′
]
+ λpE[Tb′′ ] = Θ

(
1
ε

)
(36)

Obtaining E[Aλ (Tb′′e)]: Aλ (Tb′′e) denotes the number of Poisson (with rate λ) arrivals in a
random time interval given by Tb′′e – the stationary age (equivalently excess) of a renewal process
where renewals intervals are i.i.d. according to Tb′′ . Note that A (Tb′′e) is not equal in distribution
to ∆b′′ since Tb′′ is not an exponential random variable. From (30),

E[Aλ (Tb′′e)] = λE[Tb′′e]

From the formula for stationary age (equivalently excess) of a renewal process [33],

E[Tb′′e] =
E

[
T 2

b′′
]

2E[Tb′′ ]
= Θ

(
1
ε

)

Combining, we get the following asymptotics for E[Aλ (Tb′′e)] which will be sufficient for our pur-
poses:

E[Aλ (Tb′′e)] = Θ
(

1
ε

)
(37)

Pr[b′′]
Pr[b]

E[Aλ (Tb′′e)] =
E[Tb′′ ](

1
µ`−λ(1−p)

)E[Aλ (Tb′′e)] = Θ(1) (38)

Proof of Lemma 15: Recall that N (Int) denotes the number of jobs in the interrupted M/M/K

system. Let N̂ (Int)(z) be the z-transform of N (Int) and let ∆̂(z) be the z-transform of ∆. Since
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the interruptions happen according to a Poisson process, N (Int) also denotes the random variable
for the number of jobs just before the interruptions. Let f map the z-transform of the distribution
of number of jobs in an M/M/K at time t = 0 to the z-transform of the distribution of number
of jobs after the M/M/K system has run (uninterrupted) for T ∼ Exp (α) time. The solution for

N̂ (Int)(z) is given by the following fixed point equation:

N̂ (Int)(z) = f
(
N̂ (Int)(z)∆̂(z)

)

Our next goal is to derive the function f(·). Let pi(t) denote the probability that there are i jobs
in the M/M/K system at time t. We can write the following differential equations for pi(t):

d

dt
p0(t) = −λp0(t) + µp1(t) (39)

d

dt
pi(t) = λpi−1(t)− (λ + iµ)pi(t) + (i + 1)µpi+1(t) . . . 1 ≤ i ≤ K − 1 (40)

d

dt
pi(t) = λpi−1(t)− (λ + Kµ)pi(t) + Kµpi+1(t) . . . i ≥ K (41)

Let Π̂(z, t) =
∑∞

i=0 pi(t)zi. Multiplying (39) by z0 and the set of equations (40) and (41) by zi and
summing, we have:

∂

∂t
Π̂(z, t) = Π̂(z, t)

[
Kµ

(
1
z
− 1

)
+ λ (z − 1)

]
(42)

+ µ

(
1− 1

z

) [
Kp0(t) + (K − 1)zp1(t) + . . . + zK−1pK−1(t)

]

Let Π̂α(z) =
∫∞
0 Π̂(z, t)αe−αtdt and pi,α =

∫∞
0 pi(t)αe−αtdt. Integrating by parts, we get:

Π̂α(z) =
∫ ∞

0
Π̂(z, t)αe−αtdt =

∫ ∞

0

(
Π̂(z, t)

) (
d

(−e−αt
))

=
[
−Π̂(z, t)e−αt

]∞
t=0

−
∫ ∞

t=0

(−e−αt
) (

dΠ̂(z, t)
)

= Π̂(z, 0) +
1
α

∫ ∞

t=0
αe−αt

(
Π̂(z, t)

[
Kµ

(
1
z
− 1

)
+ λ (z − 1)

]

+µ

(
1− 1

z

) [
Kp0(t) + (K − 1)zp1(t) + . . . + zK−1pK−1(t)

])

= Π̂(z, 0) +
Π̂α(z)

α

[
Kµ

(
1
z
− 1

)
+ λ (z − 1)

]
+

µ

α

(
1− 1

z

) [
Kp0,α + . . . + zK−1pK−1,α

]

(43)

To obtain N̂ (Int)(z), we substitute Π̂α(z) = N̂ (Int)(z), Π̂(z, 0) = N̂ (Int)(z)∆̂(z) and pi,α = pi =
Pr

[
N (Int) = i

]
. This gives:

N̂ (Int)(z) =
µ

[
Kp0 + (K − 1)zp1 + . . . + zK−1pK−1

]

(Kµ− λz)− αz
(

1−b∆(z)
1−z

) (44)

Since N̂ (Int)(1) = 1, and limz→1
1−b∆(z)

1−z = E[∆], we get

Kp0 + (K − 1)p1 + . . . + pK−1 = K − λ + αE[∆]
µ

(45)
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The sum on the left is precisely the expected number of idle servers at T ∼ Exp (α). Let

C = 0 ·K · p0 + (K − 1) · 1 · p1 + (K − 2) · 2 · p2 + . . . + 1 · (K − 1) · pK−1

Then,

E
[
N (Int)

]
=

d

dz
N̂ (Int)(z)

∣∣∣∣
z=1

=
µ d

dz

[
Kp0 + (K − 1)zp1 + . . . + zK−1pK−1

]

(Kµ− λz)− αz
(

1−b∆(z)
1−z

)
∣∣∣∣∣∣
z=1

− µ
[
Kp0 + (K − 1)zp1 + . . . + zK−1pK−1

]
(
(Kµ− λz)− αz

(
1−b∆(z)

1−z

))2

d

dz

(
(Kµ− λz)− αz

(
1− ∆̂(z)

1− z

))∣∣∣∣∣∣∣
z=1

=
µC

Kµ− λ− αE[∆]

− N̂ (Int)(1)
Kµ− λ− αE[∆]


−λ− α

1− ∆̂(z)
1− z

− αz


1− ∆̂(z)− (1− z)db∆(z)

dz

(1− z)2







∣∣∣∣∣∣
z=1

and applying L’Hospital’s rule to the last term,

=
µC

Kµ− λ− αE[∆]

− 1
Kµ− λ− αE[∆]


−λ− αE[∆]− α


− d

dz ∆̂(z)− (1− z)d2 b∆(z)
dz2 + d

dz ∆̂(z)
−2(1− z)




∣∣∣∣∣∣
z=1




=
µC

Kµ− λ− αE[∆]
− 1

Kµ− λ− αE[∆]

(
−λ− αE[∆]− α

E
[
∆2

]−E[∆]
2

)

=
µC

Kµ− λ− αE[∆]
+

λ + α
2

(
E

[
∆2

]
+ E[∆]

)

Kµ− λ− αE[∆]
(46)

To calculate C we need the following relations obtained by matching the coefficients of zi, i =
0, . . . , K − 1, from (43):

−λp0,α + µp1,α = α [p0,α − p0(0)]
λpi−1,α − (λ + iµ)pi,α + (i + 1)µpi+1,α = α [pi,α − pi(0)] . . . 1 ≤ i ≤ K − 1

which yields pi,α = p0,α
1
i!

(
λ
µ

)i
+Θ(α). Let πi be the stationary probabilities of an M/M/K system

with arrival rate λ and mean job size 1
µ . We can use (45) to write:

Kπ0 + (K − 1)π1 + . . . + πK−1 = K − λ

µ

or equivalently,

π0

(
K · 1 + (K − 1) · λ

µ
+ . . . + 1 · 1

(K − 1)!

(
λ

µ

)K−1
)

= K − λ

µ

38



Rewriting (45) and using the facts pi = p0
1
i!

(
λ
µ

)i
+ Θ(α) and αE[∆] = o(1):

p0

(
K · 1 + (K − 1) · λ

µ
+ . . . + 1 · 1

(K − 1)!

(
λ

µ

)K−1
)

+ Θ(α) = K − λ + o(1)
µ

which gives p0 = π0 + o(1), and hence pi = πi + o(1) for i ≤ K − 1. Using this, we have:

µC + λ

Kµ− λ− αE[∆]
=

µ
(∑K−1

i=0 i(K − i)pi

)
+ λ

Kµ− λ + αE[∆]

=
µ

(∑K−1
i=0 i(K − i)πi

)
+ λ + o(1)

Kµ− λ + o(1)

=
µ

(∑K−1
i=0 i(K − i)πi

)
+ λ

Kµ− λ
+ o(1)

= E
[
NM/M/K

]
+ o(1)

where E
[
NM/M/K

]
is the mean number of jobs in a stationary M/M/K queue with arrival rate

λ and service rate µ. To see that E
[
NM/M/K

]
can be written in the above form, note that when

∆ ≡ 0, E
[
N (Int)

]
= µC+λ

Kµ−λ but E
[
N (Int)

]
= E

[
NM/M/K

]
. Finally,

E
[
N (Int)

]
= E

[
NM/M/K

]
+

α
2 E

[
∆2

]

Kµ− λ
+ o(1)

since αE[∆] = o(1).

B Proof of Proposition 1

Our aim is to prove that for K ≥ 2, ρ ≥ (K − 1)/K and C2 > 1

C2 − 1
2

E
[
WM/M/K

]
>

1
1− ρ

[
ρ− K − 1

K

]
C2 − 1

2
. (47)

Recall that we take E[X] = 1 without loss of generality so that ρ ≥ (K − 1)/K is equivalent to
λ ≥ K − 1. Let C(K,λ) be the probability of wait in an M/M/K. It is easily shown that

E
[
WM/M/K

]
=

C(K, λ)
K − λ

. (48)

Therefore, using ρ = λ
K , (47) holds if (we have assumed C2−1

2 > 0)

C(K, λ) > [λ− (K − 1)] . (49)

It is known that C(K, λ) is a strictly convex function in λ on [0,K] (see [27]). Since (49) trivially
holds for λ = K − 1, and since the right hand side of (49) has derivative (w.r.t. λ) 1, it suffices to
show that

d

dλ
C(K, λ)

∣∣∣∣
λ→K

< 1. (50)

Let Aλ be a random variable that is Poisson with mean λ. It is well known ([24], page 103) that

C(K,λ) =
1

ρ + (1− ρ)P (Aλ≤K)
P (Aλ=K)

. (51)
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Using this expression, we find that

d

dλ
C(K,λ)

∣∣∣∣
λ→K

=
d

dλ

1
λ
K +

(
1− λ

K

) P (Aλ≤K)
P (Aλ=K)

∣∣∣∣∣∣
λ→K

= −
1
K − 1

K
P (Aλ≤K)
P (Aλ=K) +

(
1− λ

K

)
d
dλ

P (Aλ≤K)
P (Aλ=K)(

λ
K +

(
1− λ

K

) P (Aλ≤K)
P (Aλ=K)

)2

∣∣∣∣∣∣∣
λ→K

=
1
K

P (AK ≤ K − 1)
P (AK = K)

=
1
K

K−1∑

k=0

P (AK = k)
P (AK = K)

.

Now, note that at λ = K

P (AK = K − 1)
P (AK = K)

=
KK−1/(K − 1)!

KK/K!
= 1.

If k < K − 1 we find that
P (AK = k)

P (AK = k + 1)
=

k + 1
K

< 1,

which implies that

P (AK = k)
P (AK = k + 1)

< 1, k < K − 1.

Consequently, for K ≥ 2, we see that

d

dλ
C(K, λ)

∣∣∣∣
λ→K

=
1
K

K−1∑

k=0

Kk/k!
KK/K!

< 1, (52)

which completes the proof of the proposition.
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