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ABSTRACT
We consider the round robin (RR) scheduling policy where
the server processes each job in its buffer for at most a
fixed quantum, q, in a round-robin fashion. The processor
sharing (PS) policy is an idealization of the quantum-based
round-robin scheduling in the limit where the quantum size
becomes infinitesimal, and has been the subject of many
papers. It is well known that the mean response time in
an M/G/1/PS queue depends on the job size distribution
via only its mean. However, almost no explicit results are
available for the round-robin policy. For example, how does
the variability of job sizes affect the mean response time
in an M/G/1/RR queue? How does one choose the opti-
mal quantum size in the presence of switching overheads?
In this paper we present some preliminary answers to these
fundamental questions.

1. INTRODUCTION
We consider a single server M/G/1/RR queueing system.

The jobs arrive according to a Poisson process with rate λ,
and their sizes are assumed to be independent and iden-
tically distributed according to a random variable S with
mean E[S] = 1

µ
. The server picks a job from the head of

the queue and processes it for at most a time quantum of q
units. If the job finishes service within this quantum it leaves
the system, otherwise it rejoins at the end of the queue and
waits till every job in front of it has received a quantum.
Let ρ = λ

µ
denote the load of this system. Let C2 denote

the squared coefficient of variation (SCV) of the job size

distribution: C2 =
E
h
S2

i

E[S]2
− 1.

In the limit where the service quantum q approaches 0, the
scheduling discipline becomes the idealized processor sharing
(PS) policy. It is well known that the mean response time
of an M/G/1/PS system is given by

E
h
T PS

i
=

1

µ− λ

and is independent of any characteristic of the job size dis-
tribution beyond its mean. When q → ∞, the round-robin
system resembles a First-Come-First-Served queue for which
the mean response time is given by

E
h
T FCFS

i
=

1

µ− λ

�
1 + ρ

C2 − 1

2

�

In the presence of variable job sizes (high C2), PS is desirable
over FCFS, and hence one wants as small a quantum size
as possible. However, in a real system one must pay some

switching cost whenever the server finishes processing one
quantum of a job and starts processing a different job. For
example, in an operating system, at every preemption, the
kernel data structures managing the run queues have to be
modified. Also, switching to a job involves waiting for the
cache to be filled with the relevant data and instructions.

Naturally, there is a tradeoff involved in choosing the opti-
mal quantum size. A very small quantum size increases the
load of the system due to overheads, whereas a big quantum
exposes the effects of job size variability. The goal of this pa-
per is to address the following question: What is the optimal
quantum size? To be able to answer the question of opti-
mal quantum size, we must first consider the question, how
does the sensitivity of the mean response time to the job size
variability vary as one increases the quantum size? While
M/G/1/RR has received some attention in the literature,
no simple answers are yet available to these fundamental
questions.

Outline
In Section 2, we look at an approximation of the M/G/1/RR
system to obtain insights into the interplay of variability and
quantum size on the mean response time. In Section 3 we
briefly outline the analysis of M/G/1/RR and present sim-
ple and essentially tight bounds on the mean response time.
For simplicity, we restrict ourselves to job size distributions
with support on integral multiples of the quantum size q.
Based on conjectured bounds in Section 3, we propose an
expression for the optimal quantum size in Section 4. Fi-
nally, we conclude in Section 5.

2. EFFECT OF JOB SIZE VARIABILITY IN
M/G/1/RR- AN APPROXIMATION

To gain intuition into the effect of job size variability (as
represented by C2) in an M/G/1/RR queue, we begin by
looking at an approximation of the M/G/1/RR. We make
the following two approximations which allow modeling the
system as a Markov chain:

1. We approximate the job size distribution by a degener-
ate hyperexponential distribution, H∗

2 , with mean 1/µ
and SCV C2. The desired distribution is given by 1

H∗
2 ∼

(
0 w.p. C2−1

C2+1

Exp
�

2µ
C2+1

�
w.p. 2

C2+1

1Exp(µ) denotes an exponential random variable with mean
1/µ.
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Figure 1: Illustration of the effect of varying the H2

distribution on the mean response time in an M/H2/1/RR

system with exponential quanta. The parameters of the

job size distribution held constant were µ = 1 and C2 = 19

with load ρ = 0.9 and ν = 10. The X-axis denotes the load

made up the branch with the smaller mean of the two

branches of the H2 distribution.

2. The quantum size is picked in an i.i.d. fashion from an
exponential distribution with mean 1

ν
.

It is an easy exercise to verify that the mean response time
for the system under the above assumptions is given by:

E
h
T RR∗i

= E
h
T PS

i "
1 +

C2 − 1

C2 + 1
· λ

ν + 2
C2+1

µ

#
(1)

We make the following observations:

1. For a fixed ν, the mean response time monotonically
increases from 1

µ−λ
to 1

µ−λ

�
1 + λ

ν

�
as C2 increases

from 1 to ∞. Further, the mean response time as-
ymptotes to the upper limit for relatively low values
of C2.

2. For a fixed C2, the mean response time increases monoton-
ically from E

�
T PS

�
to E

�
T FCFS

�
as the mean quan-

tum size 1/ν increases.

Our numerical results indicate that among all two-phase
hyperexponential distributions (denoted by H2 and defined
as mixture of two independent exponential distributions)
with a given mean and SCV , the H∗

2 distribution yields the
maximum response time. Figure 1 shows the mean response
time in an M/H2/1/RR with exponential quanta while fix-
ing λ = 0.9, µ = 1, ν = 10 and C2 = 19 and varying the
remaining degree of freedom of the H2 distribution. The
X-axis denotes r, the load made up by the branch with the
smaller mean of the two branches of H2 (r = 0 represents
the H∗

2 distribution). We will use this intuition to conjec-
ture bounds on the mean response time in an M/G/1/RR
in Section 3. The expression in (1) is also important be-
cause it is a very simple and accurate approximation to the
conjectured upper bound (Conjecture 1).

3. M/G/1/RRANALYSIS AND BOUNDS
Let q denote the quantum size. To keep the analysis clean

we restrict our attention to distributions with support on
integral multiples of q, in particular, on {0, q, 2q · · · , Kq}
for some positive integer K. Let pi be the probability mass
on iq and define

P≥i =

KX
j=i

pj

Let Di be the expected delay experienced by a job while
waiting to receive its ith quantum (given its size is at least
iq). That is, the time spent in queue from the time a job
finishes its (i − 1)st quantum to the time it is served next.
Under our assumptions, the analysis in [3] simplifies so that
Di satisfy the following linear system of equations:

D1 = λq

" 
KX

j=1

DjP≥j

!#
+ q

ρ

2

and for 2 ≤ i ≤ K,

Di = λq

" 
K−i+1X

j=1

DjP≥j+i−1

!
+

 
i−1X
j=1

DjP≥i−j

!#
+ qρ

The mean delay (time in queue) is then given by

E[TQ] = p0D1 +

KX
i=1

DiP≥i

Theorem 1 gives bounds on Di and the mean response time
under the above assumptions.

Theorem 1. Let the job size distribution have support
{0, q, 2q, · · · , Kq}. Then,

ρ(1 + ρ)

2(1− ρ)

�
q

1 + λq

�
≤ D1 ≤

ρ(1 + ρ)

2(1− ρ)
q

ρ

(1− ρ)

�
q

1 + λq

�
≤ Di ≤

ρ

1− ρ
q . . . i ≥ 2

This gives the following bounds on the mean response time:�
1− ρ

2
+

1

2
· 1 + ρ

1 + λq

�
≤ E[T (K, q)]

E
�
T PS

� ≤
�
1 +

(1 + ρ)λq

2
− ρ(1 + ρ)

2K

�
Proof. We briefly outline the proof here. The solution

for D = [D1 · · · DK ] can be seen as solving the fixed point
of a monotone linear system of equations:

D = DAP + b = fP (D)

where we have subscripted the function with P to indi-
cate the dependence on the job size distribution. Let D′ =
[D′

1 · · · D′
K ] and D∗ = [D∗

1 · · · D∗
K ] where D′

i and D∗
i de-

note the lower and upper bounds, respectively, on Di men-
tioned in the theorem statement. It is straightforward to
verify that,

fP (D∗) � D∗ , fP (D′) � D′.

Since fP is a monotone linear function, it follows

D′ � D � D∗

where we use � and � to imply componentwise ordering.
Bounds on mean response time follow by observing

0 ≤ p0 ≤ 1− 1

µKq
.

The lower bound is tight due to Proposition 1, and the
upper bound is tight within a factor of (1 + ρ/K) due to
Proposition 2.



Proposition 1. Let 1/µ = iq for some i ∈ {1, · · · , K}.
For the deterministic distribution with mean 1/µ, the mean
response time is given by:

E[T1(K, q)] = E
h
T PS

i �1− ρ

2
+

1

2
· 1 + ρ

1 + λq

�
.

Proposition 2. For the distribution with support only
on 0 and Kq, the mean response time is given by:

E[T2(K, q)] =
E
�
T PS

�
(1 + ρ/K)

�
1 +

(1 + ρ)λq

2
− ρ2

K

�
.

Note that the upper bound in Theorem 1 is increasing in
K. Taking the limit K →∞, we obtain the following upper
bound on the mean response time in an M/G/1/RR queue:

E
�
T (q)

�
=

1

µ− λ

�
1 +

(1 + ρ)λq

2

�
(2)

We will use the expression in (2) to obtain the optimal quan-
tum size in Section 4.

Based on observations made in Section 2, and many nu-
merical experiments, we also conjecture the following stronger
statement:

Conjecture 1. Among the job size distributions with a
given mean 1/µ and SCV C2, the mean response time in
an M/G/1/RR queue is maximized by the distribution with
support only on 0 and (C2 + 1)/µ.

Note that we do not restrict the distribution to have support
on integral multiples of q in Conjecture 1. Besides display-
ing many extremal properties, the distribution mentioned in
Conjecture 1 has been shown to maximize the mean response
time in a GI/M/1 queue given the first two moments of the
interarrival time distribution [2], and conjectured to maxi-
mize the mean response time in an M/G/K queue given the
first two moments of the job size distribution [1].

4. CHOOSING THE OPTIMAL QUANTUM
In this section, we will address the question of choosing

the optimal quantum size to balance the tradeoff between
excessive overhead and high variability of the job size distri-
bution. Based on Theorem 1, we have the following upper
bound on the mean response time in an M/G/1/RR queue
when there are no switching overheads:

E
�
T (q)

�
=

1

µ− λ

�
1 +

(1 + ρ)λq

2

�

Let there be an overhead h at the end of every quantum. To
incorporate the overhead into the mean response time, we
make the following changes:

q → q + h , µ → µ

1+ h
q

We still use ρ = λ/µ to denote the system load under no
switching overhead. Let β = h

h+q
, and

β∗ = arg min
β

1

(1− β)µ− λ

�
1 +

1

2

�
1 +

λ

(1− β)µ

�
λh

β

�

The optimal β is approximated by:

β∗ ≈ ρ(1− ρ)

1 +
q

1 + 2
1+ρ

1−ρ
µh
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Figure 2: Comparison of q∗ against the numerically ob-

tained optimal quantum size for varying values of hµ from

1% to 10%. The job size distribution was chosen to be H2

with mean 1, C2 = 19 and r = 0.5 (balanced means) with

load ρ = 0.8. The red circles denote our approximation q∗

for the optimal quantum size and the blue crosses denote

the numerically obtained optimal quantum size.

For the common case: 1−ρ
hµ

� 1

q∗ ≈

0
@ 1

ρ
q

1−ρ2

2

1
A
s

h

µ

Above, we approximated the optimal quantum size by
minimizing the worst-case mean response time given the sys-
tem load. The remarkable accuracy of this approximation is
illustrated in Figure 2, where we compare our approximation
for the optimal quantum size to the numerically obtained
optimum for an H2 job size distribution with C2 = 19 and
r = 0.5.

5. CONCLUSIONS
In this paper, we addressed the important question of how

does one choose a good quantum size in a quantum-based
round-robin system to balance the tradeoff between switch-
ing overhead and the effect of job size variability. This re-
quired us to first perform a sensitivity analysis to under-
stand the effect of job size variability in a quantum-based
round-robin system. We presented an approximate sensitiv-
ity analysis and tight bounds on the effect of variability in
an M/G/1/RR system. Based on these results, we provide
simple and accurate expressions for choosing a good quan-
tum size. It will be interesting to extend the results in this
paper to other variants of processor sharing. For example,
for a practical implementation of multi-level processor shar-
ing (MLPS) our expression for q∗ indicates that one might
want to choose a different quantum size for each level.
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