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ABSTRACT
We obtain the Laplace transform of the fluid level prob-
ability density function, in terms of the on-period density
function, for a fluid queue (or reservoir) with on-off input
at equilibrium. We further obtain explicit expressions for
the moments of fluid level in terms of the moments of the
on-period and hence derive an algorithm for the moments of
fluid level at every queue in a tandem network. It turns out
that to calculate the kth moment at the ith queue, only the
first k + 1 moments of the on-period of the input process to
the first queue are required.

1. INTRODUCTION
Markov modulated fluid queues provide a simple model

for shared resources with high intensity input processes; for
example routers characterised by bit-rate. They have the ad-
vantage of being able to describe correlated input processes,
which is often an essential requirement in the modelling of
internet traffic and the address traces typical in large-scale
storage systems [4, 3]. They are particularly important in a
compositional analysis of networks of fluid queues based on
a ‘building block’ queue [2]. The internal flows in the net-
work are approximated by simple (i.e. with small numbers
of states) Markov modulated arrival processes (MMAPs).
The net input to each node is the superposition of an ex-
ternal fluid flow together with the output processes feeding
into the node from other nodes in the network. These out-
put processes themselves are approximated by MMAPs and
the superposition may be aggregated into a single MMAP
under the approximating assumption that the constituent
flows are independent. The building block for each node is
then defined by the mapping of a single input MMAP into a
single output MMAP. This compositional approach has led
to accurate approximations in simple networks – remarkably
so in tandem networks.

The first contribution of this paper is to find an exact rela-
tionship between the Laplace transforms of the probability
density functions of the on-period and fluid level random
variables in a fluid queue at equilibrium, with constant ser-
vice rate and exponential off-periods. Since a corresponding
relationship between on-period and busy period is known
already, it is in principle possible to determine the Laplace
transform of the fluid level distribution at any queue in a
tandem network, fed by an on-off process at the first node.
Such a relationship is complex but we find an explicit algo-
rithm for calculating the moments of fluid level exactly at
each queue, finding that one more moment is required of the
on-period at each queue (i.e. the busy period of a previous

queue) in the tandem; and this in turn requires the same
number of moments of the on-period of the source at the
first queue.

2. FLUID LEVEL IN A SINGLE RESERVOIR
We now consider a single fluid queue, comprising a server

that outputs fluid at a constant rate when it has a posi-
tive quantity of fluid stored in its reservoir, or buffer, and
a time-homogeneous on-off input (or arrival) stream. Off-
periods are exponential random variable and on-periods are
general. The fluid input rate is the constant λ during on-
periods and zero during off-periods, the fluid output rate
from the reservoir is the constant µ when the reservoir is
non-empty and the rate of switching from off to on state in
the input process is γ, also constant. Thus the net input
rate in an on-period is r+ = λ − µ and the net output rate
during an off period is r− = µ. We define the following
random variables for positive integers n:

Lt fluid level at time t;
Tn time at which nth on-period begins;
Xn ≡ LTn fluid level at time Tn;
An increment in fluid level during the nth on-

period;
Bn length of nth on-period;
B length of a generic on-period;
En length of nth off-period, exponentially dis-

tributed with parameter γ.

This fluid queue is well known to have an equilibrium state
if and only if λ < µ(1 + γE[B]), which condition we assume
to hold.

For a generic continuous random variable Z, we denote its
probability distribution function by Z(t) = Pr[Z ≤ t] and
the Laplace-Stieltjes transform (LST) of this distribution
by Z∗(θ) = E

�
e−θZ

�
. We denote the density function by

z(t) = Z′(t), the derivative of the distribution function, with
Laplace transform Z∗(θ).

2.1 Fluid level at the beginning of on-periods
at equilibrium

Proposition 1. Assuming that the fluid reservoir defined
above is at equlibrium, the probability density function of the
fluid level at the beginning of an on-period has Laplace trans-
form

X∗(θ) =
θr−(1− γE[B]r+/r−)

θr− − γ(1−B∗(r+θ))
Proof. We first note that

Xn+1 = max(0, Xn + r+Bn − r−En)



Therefore
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since Xn and Bn are independent. Thus

(γ − θr−)X∗
n+1(θ) = γX∗

n(θ)B∗
n(r+θ)

− θr−X∗
n(γ/r−)B∗

n(γr+/r−)

Differentiating at θ = 0 gives

γE[Xn+1] + r− = γ(E[Xn] + r+E[Bn])

+ r−X∗
n(γ/r−)B∗

n(γr+/r−)

Now, assuming the system has an equilibrium state, as n →
∞, let Xn(t) → X(t) and X∗

n → X∗, so we have, noting all
the Bn are i.i.d. as B,

(γ−θr−)X∗(θ) = γX∗(θ)B∗(r+θ)−θr−X∗(γ/r−)B∗(γr+/r−)

and

X∗(γ/r−)B∗(γr+/r−) = 1− γE[B]r+/r−

We therefore obtain the required result.
Note that X is equal in distribution to the stationary

workload of an M/G/1 queue with arrival rate γ
r− and job

sizes equal in distribution to r+B. Using this observation,
we can obtain explicit solutions for a much larger class of
arrival processes than considered in this paper.

2.2 Steady state probabilities
The stochastic process describing the fluid reservoir under

consideration is regenerative – the beginnings or ends of on-
periods, with any given fluid level, are regeneration points
– and the end of an off-period occurs as a Poisson process
(conditional on being in an off-period) with rate γ. The
“Conditional PASTA” result of [5] therefore holds and we
have

lim
t→∞

Pr[Lt ≤ x | St = off] = lim
n→∞

Pr
h
L

T−n
≤ x

i
where St ∈ {on, off} is the state of the arrival process at
time t. By Proposition 1, this has LST X∗(θ).

Now suppose that in the interval [0, t], the source state is
off/on for total time toff/ton respectively, and that the fluid

level is less than or equal to x for total time t1 during off-
periods and for total time t2 during on-periods. Then by the
regenerative property, writing L(x) = limt→∞Pr[Lt ≤ x],
with LST L∗(θ),

L(x) = lim
t→∞

t1 + t2
t

= lim
t→∞

t1
toff

toff
t

+ lim
t→∞

t2
ton

ton
t

=
L(x|off)

1 + γE[B]
+

γE[B]L(x|on)

1 + γE[B]

where L(x|off) = limt→∞Pr[Lt ≤ x | St = off], L(x|on) =
limt→∞Pr[Lt ≤ x | St = on], with LSTs L∗(θ|off), L∗(θ|on).

The fluid level at an arbitrary, random time U after the
start of an on-period is the fluid level at the beginning of
the on-period plus r+U . Therefore, asymptotically,

L∗(θ|on) = X∗(θ)E
h
e−θr+U

i
= X∗(θ)U∗(r+θ)

=
X∗(θ)(1−B∗(r+θ))

r+E[B]θ

by the backwards recurrence time (or age) formula of re-
newal theory.

This finally yields

Proposition 2.

L∗(θ) =
(r+θ + γ(1−B∗(r+θ)))(r− − γE[B]r+)

r+(θr− − γ(1−B∗(r+θ)))(1 + γE[B])

Proof.

L∗(θ) =
X∗(θ)

1 + γE[B]
+

γE[B]X∗(θ)(1−B∗(r+θ))

(1 + γE[B])r+E[B]θ

=
X∗(θ)(r+θ + γ(1−B∗(r+θ)))

(1 + γE[B])r+θ

3. MOMENTS

3.1 Moments of ON periods
We now consider the following problem: Given n fluid

queues in tandem with an on-off source of the kind described
in Section 2 at the input queue (queue 1), we wish to obtain
the kth moment of the fluid level at every queue. From
Proposition 2, this moment can be obtained for the input
queue, and further it requires only the first k + 1 moments
of the ON period duration. The question therefore is, how do
we extend this analysis to subsequent queues in the tandem
network?

The input to queue 2 is the output of queue 1 and is
again an on-off source, but the ON periods now are the busy
periods of queue 1. The OFF periods of queue 2 are also
distributed i.i.d. as Exp(γ). To determine the kth moment
of the fluid level at queue 2, we therefore have to find the
first k + 1 moments of the busy periods of queue 1. We
show below (Section 3.2) that the first k moments of the
busy period of such a fluid queue are completely determined
by the first k moments of the ON periods of its source. By
successively applying this result to each queue in the tandem
network, we can see that the kth moment of the fluid level
of each queue is completely determined by the first k + 1
moments of the durations of the ON periods of the source at
queue 1.



3.2 Busy period of a fluid queue with on-off
source

The busy period of a single, constant rate fluid queue
with on-off source having exponential on-periods is well un-
derstood, see for example [2, 1].

Proposition 3. Consider an on-off fluid process with ex-
ponentially distributed OFF period, parameter γ, constant
fluid input rate λ in the ON periods and constant fluid out-
put rate µ when the fluid level is positive. Let the ON period
(respectively, busy-period) random variable be denoted by B
(respectively, W ), with Laplace transform of probability dis-
tribution B∗(θ) (respectively, W ∗(θ)). Then

W ∗(θ) = B∗ (θη + γ(η − 1)(1−W ∗(θ)))

where η = λ/µ > 1.

A more general result of [1] determines the Laplace trans-
form of the busy period density when there are multiple
MMOAP arrival streams, each of which has on-rate greater
than the service rate of the node. This result could be
needed to extend our approach to multiple on-off sources.
However, for the present study of tandem and treelike net-
works, the above proposition suffices.

Analogously to the M/G/1 queue, there are no explicit
expressions for the Laplace transform of the busy period.
However, expressions for the moments of the busy period
can be derived directly by differentiation at θ = 0. The first
three moments w1, w2, w3 of the busy period that we require
are now obtained thus, and an algorithm for the kth moment
(k = 1, 2, . . .) can be obtained using Leibnitz’s rule:

w1 =
ηb1

1− γ(η − 1)b1

w2 =
(η + γ(η − 1)w1)

2b2

1− γ(η − 1)b1

w3 =
(η + γ(η − 1)w1)

3b3 + 3γ(η − 1)b2w2

1− γ(η − 1)b1

where b1, b2, b3 are the first three moments of the on-period.

3.3 Moment recurrences for a tandem network
of fluid queues

In this section we use the Laplace transform for the fluid
level derived in Section 2 to give explicit expressions for
the moments of the stationary fluid level distribution, in
terms of the moments of the source’s on-periods. We thus
provide a recursive method to obtain the moments of the
stationary fluid level distribution at all the queues in the
tandem network in terms of the moments of the on-periods
of the source at queue 1.

Let,
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The first three moments of the fluid level that we require are
now obtained thus, and an algorithm for the kth moment
(k = 1, 2, . . .) can again be obtained using Leibnitz’s rule:

E[L] = x1 +
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1 + γb1
u1

E
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In fact, we do not need to iterate in this way to get the busy
period moments at each queue – we can just use the ON
period of the source that feeds the first queue in the tandem.
Essentially, this is because there will always be a backlog of
fluid at any busy node n > 1 whether this queue is fed by
the previous queue or by the external source directly, since
there are never any upstream hold-ups (the upstream fluid
output rates being greater than at queue n). This provides
a small simplification for our method.

4. CONCLUSION
The remarkable accuracy of the mean fluid levels obtained

in [2] for tandem networks is not surprising in view of the
result we have proved that only the first two moments of the
source are required; these were known exactly and second
moments of on-period were matched exactly throughout the
tandem. Whilst the present contribution is restricted to
tandem networks only, it provides a further generalisation in
that both the on-period of the source and all service times
can be general. A further generalisation planned includes
multiple input streams at the source. These would allow
both correlation in input traffic to be represented and the
possibility of priority classes, which are needed in modelling
internet traffic and address-trace traffic in large-scale data
storage.
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