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Abstract

We present a new analytical tool for three queueing systems which have defied exact analysis so
far: (i) the classical M/G/k multi-server system, (ii) queueing systems with fluctuating arrival and
service rates, and (iii) the M/G/1 round-robin queue. We argue that rather than looking for exact
expressions for the mean response time as a function of the job size distribution, a more fruitful
approach is to find distributions which minimize or maximize the mean response time given the first
n moments of the job size distribution.
We prove that for the M/G/k system in light-traffic asymptote and given first n (= 2, 3) moments
of the job size distribution, analogous to the classical Markov-Krein Theorem, these ‘extremal’ dis-
tributions are given by the principal representations of the moment sequence. Furthermore, if we
restrict the distributions to lie in the class of Completely Monotone (CM) distributions, then for
all the three queueing systems, for any n, the extremal distributions under the appropriate “light
traffic” asymptotics are hyper-exponential distributions with finite number of phases. We conjecture
that the property of extremality should be invariant to the system load, and thus our light traffic
results should hold for general load as well, and propose potential strategies for a unified approach
to finding moments-based bounds for queueing systems. By identifying the extremal distributions,
our results allow numerically obtaining tight bounds on the performance of these queueing systems.





1 Introduction

Most results in queueing theory are concerned with obtaining explicit expressions for the performance
metric of interest (e.g., mean response time) as a function of the distribution of some system parameter
(e.g., job size distribution) under suitable assumptions to make the analysis tractable. However, there
are many fundamental queueing systems for which such explicit results are not possible. In this paper
we consider three such queueing systems: (i) theM/G/k First-Come-First-Serve multi-server model,
(ii) the M/G/1 round-robin scheduling model, and (iii) systems with time-varying load, and present
a fresh approach towards their analysis: via obtaining tight bounds on the performance metric, given
a partial characterization of the system parameter in terms of the first n moments.

Motivation

Due to the abundance of work surrounding the M/G/k multi-server model, we use it as an example
to motivate our approach. An M/G/k system consists of k identical servers and a First-Come-First-
Serve (FCFS) queue. The jobs (or customers) arrive according to a Poisson process and their service
requirements are assumed to be independent, identically distributed (i.i.d.) random variables having
a general distribution. If an arriving job finds an idle server, it immediately enters service; otherwise
it waits in the FCFS queue. When a server becomes idle, it chooses the next job to process from the
head of the FCFS queue. We will use ρ to denote the average number of busy servers. Our focus
will be on the metric of mean waiting time, denoted as E

[
WM/G/k

]
, and defined to be the expected

time from the arrival of a customer to the time it enters service.

To the best of our knowledge, the first approximation for E
[
WM/G/k

]
dates back to 1959 and was

given by Lee and Longton [19]. Their approximation only involves the first two moments of the job
size distribution, is exact for k = 1, and was shown to be asymptotically exact in heavy traffic by
Köllerström [18]. However, the inaccuracy of the Lee-Longton approximation was realized by many
authors who proposed new closed-form approximations, but which still involved at most the first two
moments of the job size distribution and for which no tightness guarantees were proved. Recently, it
was proved that no approximation based on only the first two moments of the job size distribution
can be accurate for all job size distributions with the given moments [14].

Burman and Smith [7] proved a light-traffic approximation for WM/G/k which involves the entire job
size distribution, and Boxma et al. [6] used it to obtain tighter approximations for E

[
WM/G/k

]
for

job size distributions with low variance (squared coefficient of variation < 1). This was achieved
by interpolating the mean waiting time under deterministic jobs sizes, and under exponentially
distributed job sizes, with the Burman-Smith approximation as the weighting function. However,
extrapolating the Burman-Smith approximation yields inaccuracies when the job size distribution
has high variance as is common in applications in computer science.

Bounds on the mean waiting time for M/G/k queues (and more generally, for GI/G/k queues) have
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mainly been obtained via two approaches (e.g., see Section 11-7 from Wolff [29]). The first approach
is by assuming various orderings (stochastic ordering, increasing convex ordering) on the service
distributions (see [25, 20, 26, 27, 8]), but these tend to be very loose as approximations. Moreover,
one does not always have the required strong orderings on the service distribution. The second,
and more practical, approach that started with the work of Kingman [17] is obtaining bounds on
mean waiting time in terms of the first two moments of the inter-arrival and service distributions.
The best known bounds of this type for E

[
WGI/G/k

]
are presented by Daley [9]. Scheller-Wolf and

Sigman [23] derive bounds on for the case ρ <
⌊
k
2

⌋
by reducing the GI/G/k waiting time recursion

into an equivalent single-server recursion with dependent service times. Foss and Korshunov [12] and
Scheller-Wolf and Vesilo [24] use dependent D/GI/1 queues to bound a GI/G/k system, and obtain
necessary and sufficient conditions under which higher (even fractional) moments of delay are finite.

Another approach used in the literature to establish bounds is by formulating a semidefinite program
(SDP) with joint moments of service and inter-arrival time distribution forming the constraint set,
and moments of waiting time as the objective function. With this approach, Bertsimas and Popescu
[3] prove that the Markov inequality (using only the first moment) is tight, improve the Tchebycheff
inequality (using the first two moments) to rediscover the corresponding tight inequality, and establish
the analogous tight inequality that involves the first three moments. SDPs have also been used
to obtain bounds on performance metrics for several queueing models. Recently, Bertsimas and
Natarajan [2] have obtained numerical bounds on the moments WGI/G/K given the information of
moments of the service and the inter-arrival time distributions. Although most of the prior work
obtains numerical bounds, Osogami and Raymond [22] use SDPs to establish closed-form bounds on
the waiting time in a transient GI/G/1 queue. However, there are insufficient experimental results
on the tightness of the resulting bounds.

Our Approach

Rather than trying to obtain explicit expressions for the performance metric as a function of the
job size distribution, or obtaining approximations/bounds as functions of some moments of the job
size distribution for which no tightness guarantees can be proved, we argue that a more fruitful
approach is the following: We first obtain a partial characterization of the job size distribution,
say, in terms of the first n moments. We then look at the set of all distributions which satisfy this
partial characterization, and identify those distributions in this set that maximize or minimize the
performance metric of interest. Once these extremal distributions are identified, numerical algorithms
can be used to obtain provably tight bounds on the performance. That is, the bounds so obtained
are the tightest achievable bounds given the partial characterization of the job size
distribution, not just arbitrary approximations or bounds. Our approach has the added benefit
that many times the entire job size distribution is not available, while estimating first few moments
via sampling is a much easier task. By quantifying the gap between the upper and lower bounds
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given these first few moments, it can be determined if a more refined characterization, say, in terms
of higher order moments, is necessary.

In this paper, we take the first step towards obtaining tight bounds on the mean response time of
the three queueing systems by analytically investigating suitable asymptotic regimes (to be made
precise later). The asymptotic regimes are chosen so that the effect of the entire distribution of the
system parameter of interest is evident (unlike heavy-traffic asymptotes). Next, rather than using
the asymptotic approximations to obtain quantitative behavior (by extrapolating to non-asymptotic
regime), we extract qualitative properties by identifying distributions which minimize or maximize
the performance metric in the asymptotic regime. The intuition behind the validity of this approach
is the conjecture that increasing the arrival rate to anM/G/k system, for example, should not change
the extremality property the job size distributions, and thus extremal distribution in the asymptotic
regime should remain extremal in non-asymptotic regime as well (this is a non-trivial conjecture
because there exist examples where the relative performance of two job size distributions is sensitive
to the arrival rate for M/G/k).

The idea of obtaining tight bounds on the performance of a queueing system based on partial char-
acterization of the system parameters was first advocated by Eckberg [10] (and extended in Whitt
[28]) for GI/M/1 model. However, these authors used the available implicit expressions for the per-
formance of GI/M/1 as a function of the Laplace transform of the inter-arrival time distribution.
The queueing systems we consider in this paper do not even have such implicit expressions.

Summary of Results

We now briefly describe the three queueing systems, the “light traffic” asymptote we look at, and
our results.

The M/G/kM/G/kM/G/k multi-server system
Model: Recall that an M/G/k system consists of k identical servers and a FCFS queue. The arrival
process is Poisson with rate λ, and the job sizes are assumed to be i.i.d random variables. We will
use X to denote such a generic random variable. We are interested in obtaining bounds on the mean
waiting time, E

[
WM/G/k

]
, as a function of the job size distribution X.

Asymptotic Regime: We let the arrival rate λ → 0, and look at E
[
WM/G/k

]
of a random arrival

conditioned on the event that the arrival finds all servers busy. This can be seen as the first term in
the Taylor series expansion of E

[
WM/G/k

]
around λ = 0.

Results: We start with the Burman-Smith [7] light-traffic approximation, and prove the following:
1. Given the first n = 2 or 3 moments of the job size distribution, the extremal distributions are
given by the principal representations of the moment sequence (defined in Section 2).
2. If we restrict the job size distribution to lie in the class of completely monotone (CM) distributions,
then given the first n moments, the extremal distributions are given by the principal representations
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of the moment sequence within the hyperexponential class of distributions (mixtures of approximately
n
2 exponential distributions; to be made formal in Section 2).
Finally, we illustrate the utility of our results by presenting numerical results that demonstrate that
while two moments of the job size distribution are insufficient for approximating E

[
WM/G/k

]
for real

world heavy-tailed distributions, three moments usually suffice, especially if we add the knowledge
of complete monotonicity.

The M/G/1M/G/1M/G/1 round-robin queue
Model: The M/G/1 round-robin queue consists of a single server and an infinite buffer. The arrival
process is Poisson with rate λ, and new arrivals join the back of the buffer. Job sizes are assumed
to be i.i.d., with X used to denote a generic job size. Jobs are given q units of service at a time
(called the quantum size), and if the job does not finish service, it joins the back of the buffer. For
analytical simplicity we assume that quantum sizes are exponentially distributed random variables.
That is, each time a job gets to the server, its service quantum is an i.i.d. sample from an exponen-
tial distribution with rate ν. We will be interested in obtaining bounds on the mean response time,
E
[
TM/G/1/RR

]
, in terms of moments of X.

Asymptotic Regime: We let the arrival rate λ → 0, and look at the coefficient of Θ(λ) in the
expression for E

[
TM/G/1/RR

]
.

Results: 1. We derive the light-traffic approximation for E
[
TM/G/1/RR

]
when the job size distribu-

tion is hyperexponential with finite number of phases.
2. We use our light-traffic result to prove that if the job size distribution is restricted to lie in the
class of CM distributions, then given the first n moments, the extremal distributions are given by the
principal representations of the moment sequence within the hyperexponential class of distributions.

Systems with fluctuating arrival and service rates
Model: We analyze anM/M/1 system whose arrival and service rates are controlled by an exogenous
environment process with two states: L and H. The job sizes are exponentially distributed. While in
the H state, the arrival process is Poisson with rate λH , and server serves jobs at rate µH . During the
L states, the arrival process is Poisson with rate λL, and the server’s service rate is µL. The durations
of stay in the L state during each visit are i.i.d. random variables with general distribution; we use τL
to denote such a generic random variable. Similarly, we use τH to denote a generic random variable
for the duration of stay in the H states during each visit. We will be interested in obtaining bounds
on the mean number of jobs, E[N ], in terms of moments of τL and τH . (As mentioned later, we
expect our results to hold for systems where evolution during L and H states is governed by arbitrary
Markov processes satisfying mild conditions.)
Asymptotic Regime: We consider the “fast-switching” asymptote. In particular, we index our
time-varying load system with a parameter α, where in the αth system the durations of stay in L
and H states are i.i.d. and given by ατL and ατH , respectively. We then analyze E[N ] in the limit
α → 0. Note that as α → 0 and our systems switches very fast, the zeroth order behavior is given
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by an M/M/1 with the average arrival and service rates. We will be interested in the coefficients of
higher order terms in the expansion of E[N ] around α = 0.
Results: 1. We derive the first fast-switching asymptote approximation for the time-varying load
system when the distributions of τL and τH are hyperexponential with finite number of phases. In
particular, we prove the following interesting result: The coefficient of αi is a function of only the
first (i+ 1) moments of τL and τH . Further, this coefficient is linear in E

[
τ i+1
L

]
and E

[
τ i+1
H

]
.

2. The above result immediately implies that if τL and τH are restricted to lie in the CM class,
then given the first n moments, the number of jobs in the system (equivalently, the mean response
time) in the fast-switching asymptote is extremized by CM distributions with extremal (n + 1)st
moment. These are again given by principal representations of the moment sequence in the class of
hyperexponential distributions.
3. Our light-traffic result, and hence the result on extremal distributions, easily extend to general
distributions, but we choose not present them here since the analysis is almost identical but proof
ideas are easy to illustrate for CM distributions.
Finally, we illustrate the utility of our results in obtaining provable bounds on the performance of the
N model for work-stealing (or the N-sharing system). While the N-sharing system can be modeled
by a Markov chain, there are no exact numerical algorithms for solving it since the Markov chain is
infinite in two dimensions.

A note on completely monotone class of distributions

A probability density function fX(·) is said to belong to the class of completely monotone (CM)
distributions if all derivatives of fX exist and (−1)nf (n)

X (x) ≥ 0 for all x > 0 and n ≥ 1. It is
well known that mixture of exponential distributions are dense in the CM class. That is, for any
distribution function F in the CM class, there exist hyperexponential distributions F (n) with n phases
such that F (n) ⇒ F as n → ∞ [11, Theorem 3.2]. In fact, FX(·) is a CM probability distribution
function if and only if

FX(x) =
∫ ∞

0
e−µxdG(µ),

where G is a proper probability distribution function, and commonly called the spectral distribution
of F . It can be shown that this denseness is sufficient to approximate arbitrarily many moments of a
CM distribution via mixture of exponential distributions. It has been established that many heavy-
tailed distributions used to model computer systems workloads fall in the CM class, e.g., Pareto
distributions, Weibull distributions with shape parameter less than 1 (heavier than exponential),
and Gamma distributions with shape parameter less than 1 [11]. Further, there are several results
on conditions under which the convergence of the inter-arrival and service-time distributions imply
convergence in distribution of waiting time (see e.g. Borovkov [5, page 118], Stoyan [25]), although
care must be exercised since convergence in distribution does not necessarily imply convergence of
moments. To prove results about CM distributions, we will therefore restrict to looking for extremal
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distributions within hyperexponential distributions.

Outline

We introduce the concepts of Tchebycheff systems of functions and principal representations of mo-
ment sequences in Section 2. Section 2 also states the classical Markov-Krein Theorem which we
use as a tool to prove our results for CM distributions. In Sections 3, 4 and 5, we present our re-
sults on tight moment-based bounds for (i) the M/G/k multi-server model, (ii) M/G/1 round-robin
scheduling, and (iii) systems with time-varying load, respectively, under “light-traffic” asymptote.
We present conjectures on bounds under non-asymptotic regimes for these three queueing systems
in Section 6. In Section 7, we present some approaches for proving our conjectures, and introduce a
novel moment problem as a unified framework for analyzing the question of moment-based bounds
for general queueing systems.

2 Principal Representations, Tchebycheff systems, and the
Markov-Krein Theorem

The classic Tchebycheff inequality concerns with bounds on the tail probability of a random variable
X, given E[X] and E[X2]. In other words, given the expectations of functions f1(x) = x and f2(x) =
x2, one asks for bounds on the expectation of g(x) = 1|x−E[X]|>a. The theory of Tchebycheff systems
[16] generalizes this question by asking for bounds on the expectation of some given function g(·) of
a random variable, given a partial characterization of the random variable in terms of generalized
moment constraints expressed as expectations of some functions f1(·), . . . , fn(·). In this section we
will be concerned with the case fi(x) = xi. Below we present a special case of the results from this
area. We will begin with the case where random variables are restricted to bounded support [0, B]
and where the results are easy to state. We then present results for the case where the support is
[0,∞) and details are a little delicate. For a detailed treatment, we refer the reader to [16].

2.1 Random variables with support on [0, B]

We first introduce the notion of upper and lower principal representations as presented in [10]. Define
the function f0(x) = 1, 0 ≤ x ≤ B, and denote the moment space associated with {f0, f1, . . . , fn} as

Mn+1
B =

{
m ∈ Rn+1

∣∣∣ ∃µ ∈ D,mi =
∫ B

0
fi(u)dµ(u), 0 ≤ i ≤ n

}

where D is the set of all non-decreasing right continuous functions for which the indicated integrals
exist. For a point m0 in the interior ofMn+1

B , we define the lower and upper principal representation
(pr) to be distributions with a particular number of mass probabilities, some of which are restricted
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to be at 0 or B, in such a way that the first n moments of these distributions agree with m0. In
particular the constraints are:

Upper pr (µ̄) Lower pr (µ)

n even n
2 mass points in (0, B), one at B n

2 mass points in (0, B), one at 0

n odd n−1
2 mass points in (0, B), one at 0, one at B n+1

2 mass points in (0, B)

The upper and lower principal representations are uniquely determined when the functions {f0, . . . , fn}
satisfy certain linear independence constraints mentioned later. To see this, consider the case of up-
per pr for n even. We have n + 1 constraints, one each for mi, 0 ≤ i ≤ n. If we are allowed n

2 + 1
probability masses, then we have n+2 degrees of freedom – n

2 +1 for the locations of the probability
masses, and n

2 + 1 for the actual probability values. Since one of the probability mass is constrained
to be at B, we lose one degree of freedom, and thus the number of constraints match the degrees of
freedom, where these constraints are “linearly independent” in a sense made precise next.

Definition 1 Functions {h0, h1, . . . , hn} form a Tchebycheff system over [a, b] provided the determi-
nants

U

 0, 1, · · · , n
x0, x1, · · · , xn

 =

∣∣∣∣∣∣∣∣∣∣∣∣

h0(x0) h0(x1) · · · h0(xn)
h1(x0) h1(x1) · · · h1(xn)

... ... ...
hn(x0) hn(x1) · · · hn(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
are strictly positive whenever a ≤ x0 < x1 < · · · < xn ≤ b.

In other words, any non-trivial linear combination of h0, . . . , hn must have at most n zeros in the
interval [0, B]. Systems of polynomials: hi(x) = xαi (0 ≤ α0 < α1 < . . . < αn) indeed form
Tchebycheff systems.

The proof of the following theorem can be found in [16, Chpt. V, Sec. 5]:

Theorem 1 (Markov-Krein) If {f0, . . . , fn} and {f0, . . . , fn, g} are Tchebycheff systems on [0, B],
then

βl ≡ inf
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n} =
∫ B

0
g(u)dµ(u) ,

βu ≡ sup
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n} =
∫ B

0
g(u)dµ̄(u) ,

where µ and µ̄ are the unique lower and upper pr’s, respectively, of m = {1,m1, . . . ,mn}, and µX
denotes the measure induced by X on <.
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2.2 Random variables with support on [0,∞)

As before, denote the moment space associated with {f0, f1, . . . , fn} as

Mn+1
∞ =

{
m ∈ Rn+1

∣∣∣∃µ ∈ D,mi =
∫ ∞

0
fi(u)dµ(u), 0 ≤ i ≤ n

}
where D is the set of nonnegative regular measures of bounded variation for which the indicated
integrals exist.

The definition of lower pr remains unchanged when we extend the support to [0,∞) as there are no
atoms placed at the upper bound of the support. Hence, for a large enough B, the lower pr of m0 on
[0, B] will coincide with the lower pr on [0,∞). In particular, for n even, the lower pr will constitute
of n

2 mass points in (0,∞) and one mass point at 0; for n odd, there will be n+1
2 mass points in

(0,∞).

To define the upper pr, µ̄,we first need another definition.

Definition 2 Functions {h0, h1, . . . , hn} form a Tchebycheff system of Type II over [0,∞) provided:
(i) {h0, . . . , hn−1} and {h0, . . . , hn} are Tchebycheff systems on [0,∞); and
(ii) there exists A > 0 such that hn(x) > 0 for x ≥ A, and

lim
x→∞

hi(x)
hn(x)

= 0 for i < n.

If {f0, . . . , fn} is a Tchebycheff system of Type II, then for m0 in the interior of Mn+1
∞ , the upper

pr puts one mass at ∞,
⌊
n
2

⌋
mass points in (0, B), and additionally one at 0 if n is odd. The

following example might help readers uncomfortable with the idea of mass at infinity: Consider the
case fi(x) = xi and n = 2. In this case, the upper pr can be seen as a limit ε→ 0 of distributions with
support [0, 1

ε
] which put Θ(ε2) mass on 1

ε
. Thus, this mass at ∞ is needed to satisfy the constraint

corresponding to fn, but does not contribute to constraints for f0, . . . , fn−1 when {f0, . . . , fn} is a
Tchebycheff system of Type II.

Theorem 2 (Markov-Krein) [16, Theorem V5.1] If {f0, . . . , fn} and {f0, . . . , fn, g} are Tcheby-
cheff systems on [0,∞), and m0 lies in the interior ofMn+1

∞ , then there exists

βl ≡ inf
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n}

which is achieved uniquely for µX = µ, the lower pr of m0.
The upper bound

βu ≡ sup
µX∈D

{E[g(X)] | Pr[X ∈ [0, B]] = 1;E[fi(X)] = mi, 0 ≤ i ≤ n}
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in general may not be attained, or may be infinite. However, if {f0, . . . , fn} is a Tchebycheff system
of Type II, and

lim
x→∞

g(x)
fn(x)

= γ <∞,

then βu exists and is “achieved” by the upper pr of m0.

In the last sentence of the theorem, we say “achieved” to emphasize the fact that the upper pr has
a mass point at ∞ and thus it is not a finite measure. However, βu exists and is achieved as a limit.

The Markov-Krein Theorem has been successfully applied in the context of queueing systems [10, 28].
In particular, for a GI/M/1 system, Theorem 1 proves that given the first n moments of the inter-
arrival time distribution, the mean number of jobs in the system is extremized by inter-arrival time
distributions which correspond to the upper and lower pr’s. The proof follows by noting that the
mean number of jobs in a GI/M/1 queue with i.i.d. inter-arrival times given by a random variable
A is an increasing function of the Laplace-Stieltjes transform of the inter-arrival time distribution
(Ã(s) = E

[
e−sA

]
), and the functions gs(x) = e−sx form Tchebycheff system with fi(x) = xi.

Principal representations within Hyperexponential distributions Consider the following
random variable with an n-phase hyperexponential distribution:

X ∼


Exp

(
1
x1

)
with probability q1

...
Exp

(
1
xn

)
with probability qn

We can now define another random variable Y with distribution given by the inverse spectrum of X:

Y ∼


x1 with probability q1
...
xn with probability qn

We have the following straightforward relationship between moments of X and Y : E
[
Y i
]

= E
[
Xi
]

i! .
We define the upper and lower principal representation for a moment sequence m1,m2, . . . ,mn within
the class of hyperexponential distributions as the distributions whose inverse spectrum are the upper
and lower principal representations, respectively, for the moment sequence m1,

m2
2! , . . . ,

mn
n! .

3 Bounds for the M/G/k Multi-server Model

In this section we present our results on tight moment-based bounds for the M/G/k model in light
traffic. Recall that the arrival process is Poisson with rate λ, and the job sizes are i.i.d. according
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to a random variable X. The load of the system is defined as ρ = λE[X] and denotes the time
average number of busy servers. The waiting time of a job is defined to be the time between when
a job arrives to the system and when it enters service, and is denoted by WM/G/k. We will analyze
E
[
WM/G/k

]
in the light traffic asymptote ρ→ 0 while holding X and k unchanged.

In Section 3.1, we present our results on bounds for general job size distributions given first 2 or 3
moments, and in Section 3.2 for completely monotone distributions given any number of moments.
In Section 3.3, we present numerical results on bounds obtained using principal representations for
common heavy-tailed job size distributions.

3.1 Bounds for general distribution

We begin with a well-known result on the light traffic approximation for WM/G/k.

Theorem 3 (Burman Smith [7]) Under the assumption that the job size distribution is phase-
type, as ρ→ 0, the probability that an arrival finds all servers busy is asymptotically given by 1

k!

(
ρ
k

)k
,

and conditioning on this event, WM/G/k is distributed as the minimum of k independent copies of
the stationary excess of X, denoted by Xe. The survival function of Xe is given by FXe(x) =
Pr[Xe > x] =

∫∞
u=xPr[X > u]du

E[X] .

Theorem 4 Given the first n (n = 2 or 3) moments of the job size distribution X, E
[
WM/G/k

]
under

light traffic is extremized by service distributions given by the lower and upper principal representations
of the moment sequence.

Proof: Due to lack of space we present the proof for the case n = 3, where the lower pr minimizes,
and upper pr maximizes E

[
WM/G/k

]
. Denote FXe = h for succinctness. Since 1−h(x) =

∫ x
0 Pr[X > u]du

E[X]
is the integral of a bounded, non-negative, decreasing function, (1 − h(x)) is a continuous, non-
decreasing, concave function. The problem of extremizing E

[
WM/G/k

]
in the light-traffic asymptote

can thus be equivalently formulated as:

min/max
∫ ∞

0
h(u)kdu

subject to h(·) continuous, non-negative, non-increasing, convex ;

h(0) = 1 ; |h′(0+)| = Pr[X > 0]
E[X] ≤ 1

E[X] ;∫ ∞
0

h(u)du = E[X2]
2E[X] ;

∫ ∞
0

u · h(u)du = E[X3]
12E[X] .

(Note that a solution to the above problem exists because 0 ≤ h(u)k ≤ h(u), and
∫
h(u)du is finite.)

Let h represent the survival functions of Xe corresponding to the lower pr of X for the given moment
sequence. Now, suppose that h is not the solution to the minimization problem above, and the
solution is instead given by hmin. For n = 3, we have that the lower pr has 2 point masses, say at
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0 < x1 < x2 <∞, as shown below.

x1 x2

h

hmin

1

0

The absolute value of the slope of hmin at 0+ must be at most that of h since the lower pr has no mass
at 0 for n = 3, and because hmin is convex, it follows that δ = hmin − h satisfies (i)

∫∞
0 δ(u)du = 0

(i.e., areas under h and hmin are equal), (ii)
∫∞

0 u · δ(u)du = 0 (from moment conditions), and (iii)
δ(·) changes sign exactly twice, and the sequence of signs is +−+ (see the figure above). We obtain
a contradiction: ∫

hmin(u)kdu−
∫
h(u)kdu

=
∫
δ(u)

[
hmin(u)k−1 + hmin(u)k−2h(u) + . . .+ h(u)k−1

]
du

> 0

To see the last inequality, denote the function in the square brackets by `(·), and note that ` is
convex. Now

∫∞
0 δ(u)`(u)du = [δ(u)`′(u)]∞0 −

∫∞
u=0 `

′(u)
∫ u
v=0 δ(v)dvdu. The first term is zero because

δ(0) = δ(∞) = 0. Now assuming derivatives exist (by approximating by smoothed versions), we find
that `′(u) is an increasing function, and

∫
δ(v)dv is a function that changes sign only once, from +

to − and integrates to 0. Thus
∫∞
u=0 `

′(u)
∫ u
v=0 δ(v)dvdu < 0.

The proof for upper pr is identical except that the sequence of signs of δ in this case is − +−. For
n = 2, δ changes sign once.

3.2 Bounds for CM job size distributions

Theorem 5 If the job size distribution is constrained to lie in the CM class, then given the first
n moments of the job size distribution X, E

[
WM/G/k

]
under light traffic is extremized by the lower

and upper principal representations of the moment sequence within the hyperexponential class of
distributions.

Proof: The first step of the proof is to restrict our attention to hyperexponential distributions
with finite number of phases as they are dense in the CM class. We will now use the Markov-Krein
Theorem to prove the result. However, Theorem 1 does not apply directly to our problem because
as Theorem 3 shows, the mean waiting time in light traffic can not be written as E[f(X)] for any
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function f(·). Instead, we prove a stronger result.

Consider a tagged arrival that finds all the servers busy. We fix the distribution of the job sizes at
the first k − 1 servers to be exponential with arbitrary parameters (say ν1, ν2, . . . , νk−1). We will
now show that given the moments of the job size distribution for the job at the kth server, the
hyperexponential distributions that minimize or maximize the time until first departure, and hence
the waiting time of the arrival, are given by the pr’s irrespective of the choice of ν1, . . . , νk−1. Let the
job size distribution of the job at the kth server be:

X ∼


Exp

(
1
x1

)
with probability q1,

...
Exp

(
1
xn

)
with probability qn.

As defined in Section 2, let Y denote a random variable whose distribution is given by the inverse
spectrum of X, and let M = ∑k−1

j=1 νj. The mean waiting time of the tagged arrival, E[W ∗], is then
given by:

E[W ∗] =
n∑
i=1

qixi
E[X] ·

1
M + 1

xi

= 1
E[X]

n∑
i=1

qi

(
Mxi − 1
M2 + 1

M2(Mxi + 1)

)

= 1
M
− 1
M2E[Y ] + 1

M2E[Y ]E
[ 1
MY + 1

]

From Theorem 31 of [15], 1
Mx+1 forms a Tchebycheff system with the functions i!xi, and hence by

Theorem 1, the result follows.

Remark: The reader might wonder if we could use a similar proof outline as Theorem 5 to prove the
result for general distributions. To be more precise, we can arbitrarily fix the residual sizes of jobs at
the first k − 1 servers as u1 ≤ . . . ≤ uk−1. We may then ask the question: for given first n moments,
what job size distribution for X extremizes E[min{Xe, u1}]. The latter expectation can indeed be
written as E[f(X)], where f(·) is a piecewise polynomial function. However, even for n = 3, f(x)
does not form a Tchebycheff system with the moment functions x0, x1, x2 and x3. Thus, Theorem 4
can in some sense be seen as breaking the Tchebycheff system barrier.

3.3 Simulation and numerical evaluation

We conjecture that Theorem 4 extends to any number, n, of moments and to general traffic, and
Theorem 5 extends to general load. See Section 6 for the specific properties that we conjecture to
hold generally for moment-based tight bounds on E

[
WM/G/k

]
. In this section, we provide support for
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the conjectures and numerically study the quality of bounds obtained with principal representations.

Figure 3.3 provides numerical evidence in support of validity of Theorem 5 for general load. The
solid curves in Figure 3.3(a) and Figure 3.3(c) show E

[
WM/G/k

]
when the job size has a two-phase

hyperexponential (H2) distribution which allows us to vary E[X3] while holding the first two moments
fixed. The solid curves in Figure 3.3(b) and Figure 3.3(d) show E

[
WM/G/k

]
when the job size has a

degenerate three-phase hyperexponential (H?
3 ) distribution, which has two non-zero mean exponential

phases and a phase with zero mean. Within H?
3 distributions, we can vary E

[
X4
]
, while holding the

first three moments fixed. We set the number k of servers as indicated below each figure.

Observe that the solid curves lie between the mean waiting times attained when the job size dis-
tributions are given by principal representations within hyperexponential distributions (dashed line
and dotted line). The principal representations are determined by the first two moments of the H2

distribution in Figure 3.3(a) and Figure 3.3(c) and the first three moments of the H?
3 distribution

in Figure 3.3(b) and Figure 3.3(d). Also, observe that the solid curve is decreasing in E[X3] and
increasing in E

[
X4
]
. A detail is that, in Figure 3.3(a), the upper principal representation refines the

lower bound obtained from an exponential job-size distribution (line labeled with M/M/4). How-
ever, in Figure 3.3(c), the lower bound obtained with a principal representation coincides with the
lower bound obtained from an exponential job-size distribution. See Conjecture 1 in Section 6 for
the properties that we conjecture to hold generally for the bounds on E

[
WM/G/k

]
.

Figure 2 shows E
[
WM/G/k

]
and its bounds obtained with principal representations, when the job

size distribution is a Weibull distribution. We fix the parameters of the Weibull distribution such
that its probability density function is f(x) = 1

2x
−1/2 exp

(
−x1/2

)
for x ≥ 0. We also fix the number

of servers, k = 4, and vary the load, ρ ≡ λE[X], as indicated below each figure. The dashed line
shows the exact value of E

[
WM/G/k

]
, and the crosses and the dots show bounds on E

[
WM/G/k

]
obtained with principal representations. Specifically, a bound shown with a cross is the mean delay
in the M/G/k system whose job size distribution has a principal representation that is determined
by the moments of the Weibull distribution (see Theorem 4). A bound shown with a dot is obtained
analogously with a principal representation within hyperexponential distributions (see Theorem 5).
Notice that the Weibull distribution under consideration is completely monotonic (see [11]), so that a
principal representations within hyperexponential distributions give proper bounds. The horizontal
axis indicates the number of moments used to determine the principal representations. The moments
of the Weibull distribution under consideration are E[Xn] = (2n)! for n = 1, 2, . . ..

In all cases, E
[
WM/G/k

]
and the bounds shown with a cross are obtained via simulations; the bounds

shown with a dot are calculated via matrix analytic methods. For each data point, the simulation is
run 10 times and the average value of the 10 simulated mean waiting times is plotted. Each run of
simulation is continued for 10,000,000 events, where an event is either an arrival or a departure of
a job, and waiting times of the departed jobs are recorded (we ignore the first 100,000 departures).
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Figure 1: Mean delay in an M/G/k system when the job size has a hyperexponential distribution.
In (a) and (c), we vary E[X3], while keeping E[X] = 1 and E[X2] = 20. In (b) and (d), we vary
E
[
X4
]
, while keeping E[X] = 1, E[X2] = 20, and E[X2] = 8000.
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Figure 2: Bounding mean delay in an M/G/4 queue when the job size has a Weibull distribution.

Confidence intervals are sufficiently small and not shown.

In Figure 2, notice that, except for n = 2, either lower bounds or upper bounds are shown for each n,
where n is the number of moments used to determine the principal representation. This is because
the lower (respectively, upper) bound obtained with an even (respectively, odd) number n of moments
in general does not improve the corresponding lower (respectively, upper) bound obtained with n−1
moments. An exception is that the lower bound obtained with n = 2 moments improves upon that
with n = 1 for ρ = 3.6 (but not for ρ = 2.4). The lower bound with n = 2 moments is given by a
limiting distribution where one of mass points, B, approaches infinity. This lower bound corresponds
to the principal representation with B = 106. It appears that the mean delay with the principal
representation hardly changes in the interval between B = 104 and B = 106. For a B > 106, the
analysis of the mean delay suffers from numerical errors.

Observe in Figure 2 that the principal representations within hyperexponential distributions (dot) can
give bounds that are significantly better than the corresponding bounds obtained with the standard
principal representations (cross). The principal representations within hyperexponential distributions
provide bounds that are valid only for (job size) distributions that are completely monotonic. The
difference between a dot and a cross show the refinement of the bound that we gain from the knowledge
of complete monotonicity. Also observe that, as the number of moments used to determine principal
representations grows, the upper and lower bounds approach each other quickly particularly at high
load (Figure 2(b)). This makes intuitive sense, because E

[
WM/G/k

]
becomes insensitive to third and

higher moments in heavy-traffic.

3.4 A departure from Markov-Krein

The classical Markov-Krein theorem only enforces the condition that the moment constraint functions
{f0, . . . , fn} be linearly independent (modulo signs of functions). As mentioned earlier, this condition
holds for the power functions fi(x) = xαi , 0 ≤ α0 < . . . ≤ αn. In particular, note that αi need not be
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integral. However, here we see a departure in the behavior ofM/G/k from the classical Markov-Krein
characterization – If the moment constraints involve fractional moments, the relative performance of
upper and lower principal representations may flip as the arrival rate increases from light traffic to
heavy traffic. Further, the upper and lower pr’s may no longer provide bounds.

We will illustrate this point with an example. Consider the moment constraints m0 = E[X0] = 1,
m1 = E[X1] = 1, and m 3

2
= E

[
X

3
2
]

= 5, and let us restrict ourselves to the class of hyperexponential
distributions (since we have established the light traffic extremality results). The upper pr places
almost entire probability mass on the mean, and behaves as an exponential distribution in light
traffic. Therefore in light traffic, the mean sojourn time of the upper pr is smaller than the mean
sojourn time of the lower pr. However, due to the mass at ∞ in upper pr, the second moment is ∞
whereas the lower pr has all moments finite. Since the mean sojourn time in heavy traffic limit is
completely determined by the first two moments, the mean sojourn time of the upper pr in heavy
traffic is higher than the mean sojourn time of the lower pr. Further, the mean sojourn times of the
upper and lower pr will cross at some arrival rate λ∗, where the mean sojourn time is T ∗. Clearly,
there are distributions with the given moment constraints with mean sojourn time different than T ∗

at λ∗. Thus the pr’s do not provide bounds in this case. The same behavior is observed whenever
the cardinality of moment constraints in the interval (0, 2) is even.

The above discussion, while discomfiting, should be taken as an instructive caution. While we strive
to prove a Markov-Krein characterization forM/G/k mean sojourn time, conditions more than those
in Theorems 1 and 2 would be needed. We conjecture that the knowledge of the integral moments
suffices. However, fractional moments, in general, may not be admissible.

4 Bounds for M/G/1 Round-Robin

In this section we prove tight moment-based bounds for the mean response time, E
[
TM/G/1/RR

]
, of an

M/G/1 round-robin queue with exponentially distributed quantum sizes and CM job size distribution
in the limit when the arrival rate λ→ 0. Formally, we consider round-robin scheduling where every
time a job gets to the server, the server picks a quantum size i.i.d. from an Exp(ν) distribution..

Lemma 1 Consider a M/G/1 round-robin system with i.i.d. Exp(ν) quanta, arrival rate λ and the
following Hn job size distribution:

X ∼


Exp(γ1) with probability q1
...

Exp(γn) with probability qn
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As the arrival rate λ→ 0:

E
[
TM/G/1/RR

]
= E[X] (1 + λE[X]) + λ

2

n∑
i=1

n∑
j=1

qiqj(γi − γj)2

γiγj(γiγj + (γi + γj)ν)
+ o(λ).

Proof: As the arrival rate approaches 0, the coefficient of Θ(λ) term will be dominated by events
where (i) a job arrives to an empty system and is interrupted at most once during its stay, or (ii) a
job arrives to a system with a yet uninterrupted job already in service, and there are no more arrivals
during its sojourn.

Let us consider the case where an Exp(ξ) job is interrupted by an Exp(χ) job. In this case, the mean
residual response time of the interrupted Exp(ξ) job satisfies

Aξ,χ = 1
ξ + ν

+ ν

ξ + ν

(
1

χ+ ν
+ ν

χ+ ν
Aξ,χ + χ

χ+ ν

1
ξ

)

= 1
ξ

(
1 + ξν

(ξ + ν)(χ+ ν)− ν2

)
(1)

Similarly, the mean response time of the interrupting Exp(χ) job is given by:

Bχ,ξ = 1
χ

(
1 + χ2 + χν

(ξ + ν)(χ+ ν)− ν2

)
(2)

Returning to our original round-robin system, a tagged class i job arrives to an empty system with
probability (1−λE[X]), and stays there for Exp(γi+λ) time. With probability λ

λ+γi , the tagged class
i job gets interrupted by another arrival which is of class j with probability qj and spends additional
time Aγi,γj . With probability λE[X], the class i job arrives to a busy system and interrupts a class j
job with probability qj

γjE[X] , in which case the response time of the tagged class i job is Bγi,γj . Thus,
the overall response time of a class i job is given by:

E[Ti] = (1− λE[X])
 1
γi + λ

+ λ

γi + λ

∑
j

qjAγi,γj

+ λE[X]
∑
j

qj
γjE[X]Bγi,γj +O(λ2)

= 1 + λE[X]
γi

+ 1
γi

n∑
j=1

qj
γi − γj

γj(γiγj + (γi + γj)ν)
(3)

Calculating E
[
TM/G/1/RR

]
= ∑

i qiE[Ti], we get the expression in the theorem statement.

Theorem 6 Given the first n moments of the job size distribution X in the CM class, E
[
TM/G/1/RR

]
under light traffic is extremized by the lower and upper principal representations of the moment
sequence within the class of hyperexponential distributions.
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Proof: We will follow similar steps as in the proof of Theorem 5. The first is to restrict our attention
to hyperexponential distributions with finite number of phases as they are dense in the CM class. We
will then use the Markov-Krein Theorem to show that E

[
TM/G/1/RR

]
given in Lemma 1 is extremized

by the principal representations within the hyperexponential class of distributions. Let Y denote a
random variable with the same distribution as the inverse spectrum of the job size distribution X,
and let xi = 1

γi
. From Lemma 1 (ignoring o(λ) terms):

E
[
TM/G/1/RR

]
=E[X] (1 + λE[X]) + λ

2

n∑
i=1

n∑
j=1

qiqj(γi − γj)2

γiγj(γiγj + (γi + γj)ν)

=E[Y ] (1 + λE[Y ]) + λ

2

n∑
i=1

n∑
j=1

qiqj(xi − xj)2

(1 + (xi + xj)ν)

=E[Y ] (1 + λE[Y ]) + λ

2

n∑
i=1

qi
n∑
j=1

qj
ν2

(
νxj − 1 + ν2x2

i + νxi + 1
ν(xi + xj) + 1

)

=E[Y ] (1 + λE[Y ]) + λ

2

n∑
i=1

qi

[
νE[Y ]− 1

ν2 − ν2x2
i + νxi + 1
ν2 E[fi(Y )]

]

where fk(x) = 1
ν(x+xk)+1 . From Theorem 31 of [15], each fk(x) forms a Tchebycheff system with the

functions i!xi (and the same pr minimizes each E[fk(Y )], and similarly the other pr maximizes each
E[fk(Y )]), and hence by Theorem 1, the result follows.

5 Bounds for systems with time-varying load

In this section we prove tight moment-based bounds for an M/M/1 queue with arrival and service
rates controlled by a 2-state environment process. However, we believe the results extend to much
more general time-varying systems (see remark after Theorem 8). The asymptotic regime we consider
is what we call the “fast-switching asymptote”: we let the duration of stay in the environment states
on each visit approach 0. In Theorem 7, we prove the result when the distributions for the durations
of environment states are CM, but our proof extends to generally distributed durations. In Section 5.2
we show an application of our results to obtaining (conjectured) tight bounds on the performance
of work-stealing, an exact analysis of which is impossible due to the resulting 2-D infinite Markov
chain.

Formally, we consider a system with an exogenous environment process with states L and H. The
durations of the H states are i.i.d. according to a random variable τH , and those of L states are
i.i.d. according to τL. The job sizes are i.i.d. exponential with mean 1. However, during the L state,
the arrival process is Poisson with rate λL and the server’s service rate is µL. Similarly, during the
H states, the arrival process is Poisson with rate λH and the server’s service rate is µH . We define

18



µavg = µLE[τL]+µHE[τH ]
E[τL]+E[τH ] , λavg = λLE[τL]+λHE[τH ]

E[τL]+E[τH ] , and ρ = λavg
µavg

. We will consider a sequence of systems
indexed by a parameter α, where the durations of L and H states in the αth system are i.i.d. as ατL
and ατH , respectively. We will analyze the mean number of jobs in this sequence of systems, E[Nα],
as α→ 0.

5.1 Fast-switching asymptote and bounds

Theorem 7 Consider a time-varying load system with residence time in L and H states given by
ατL and ατH , respectively. Further, assume that the distributions of τL and τH are hyperexponential
with finite number of phases. Then the mean number of jobs in the system as α→ 0 is given by:

E[Nα] = ρ

1− ρ +
∞∑
i=1

φiα
i (4)

where φi are functions of the first i + 1 moments of τL and τH (and µs and λs), and are linear in
E
[
τ i+1
H

]
and E

[
τ i+1
L

]
.

Proof: We defer the details to Appendix A. Due to lack of space, we illustrate the main ideas by
instead looking at a finite buffer system with a buffer size of 1 (i.e., there can only be either 0 or
1 jobs in the system) with time-varying arrival and service rates. The proof easily extends to the
infinite buffer case as well.

Theorem 8 If τL and τH are constrained to lie in the CM class, then given the first n moments
of τL and τH , the mean number of jobs, E[N ], under the fast switching asymptote is extremized by
the lower and upper principal representations of the moment sequence within the hyperexponential
distribution.

Proof: Given the first n moments of τL and τH , the coefficients of αi for 0 ≤ i ≤ n− 1 are already
fixed. The distributions which extremize the mean number of jobs will be those that extremize the
coefficient of αn. Since this is linear in the (n+1)st moments, and moment functions fi(x) = xi form
a Tchebycheff system, the theorem follows from Theorem 1.

Remark: The result of this section easily extends to the case of general distributions for τL and τH .
The only fact that is needed is that for any finite x, the probability of i arrivals or departures in
duration αx is ci(αx)i− di(αx)i+1 + o(αi) for some constants ci and di – a simple consequence of the
Poisson process.

Remark: The results of this section should also extend to more general time-varying systems. For
example, during the L and H, the system could evolve according to arbitrary finite-state Markov
processes with generators QL and QH , respectively, as long as the characteristic polynomials of QL

and QH (φL(s) = det(sI −QL), φH(s) = det(sI −QH)) do not have repeated roots.

Remark: Unlike M/G/k and M/G/1 round-robin models where the heavy-traffic limits tend to be
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Figure 3: Dependency of φi (Theorem 7) on E
[
τ i+1
H

]

insensitive to the job size distribution beyond the first or second moments, for the time-varying load
model, we actually do have an interesting result in the “slow switching asymptote” (α → ∞): in
the special case when τH ∼ Exp(γ) and λH > µH . Under transient overload during H states, as
the mean durations of H and L states become long, the time-varying load system converges to a
fluid system. For the special case mentioned, it is not hard to see that the mean response time of
this fluid system can be derived from a GI/M/1 system with inter-arrival time distribution given by
τL. As stated earlier, characterization of bounds for GI/M/1 via principal representations is known
from the work of Eckberg [10]. We have proved that this characterization also holds under the fast
switching asymptote, irrespective of the choice of arrival and service rates, and when both L and H
state durations may be generally distributed.

We validate Theorem 7 numerically with Figure 3. Consider a time-varying load system with λL = 4,
λH = 8, µL = µH = 10. We let τL have an exponential distribution with rate 10 and vary τH as
is specified in the following. In Figure 3(a), τH has a two-phase hyperexponential (H?

2 ) distribution
having a non-zero exponential phase and a phase of zero mean. The H?

2 allows us to hold the mean at
0.1 and vary the second moment E[τ 2

H ], which is indicated along the horizontal axis. The vertical axis
shows ∆i ≡ (E[Nα]−E[N ′α])/αi for i = 1, where N ′α indicates Nα with E[τ 2

H ] = 0.02 (the lowest value
studied in Figure 3(a)). Throughout we set α = 10−3, so that o(αi+1) terms are negligible relative
to Θ(αi) term. Because E[τH ] is fixed, ∆1 shows (approximately) how φ1 depends on E[τ 2

H ]. Indeed,
we find that φ1 grows linearly with E[τ 2

H ]. In Figure 3(b), τH has a two-phase hyperexponential (H2)
distribution, which allows us to hold E[τH ] = 0.1 and E[τ 2

H ] = 0.2, and vary E[τ 3
H ], which is indicated

along the horizontal axis. The vertical axis in Figure 3(b) shows ∆2 (here, N ′α represents Nα with
E[τ 3

H ] = 0.601 (the lowest value studied in Figure 3(b))), which indicates (approximately) how φ2

depends on E[τ 3
H ]. Although the line in Figure 3(b) is not as straight as Figure 3(a) due to numerical

errors, we find that φ2 does decrease linearly with E[τ 3
H ].
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Figure 4: The service rate at the beneficiary queue is µB + µD when the donor queue is empty and
µB otherwise.

5.2 Application to analysis of N-sharing model

In this section, we apply the analysis of the time-varying load system to a work-stealing system
with two M/M/1 queues, beneficiary and donor (see Figure 4). The two queues are independent
except that the service rate at the beneficiary queue becomes larger when the donor queue is empty.
Let λB (respectively, λD) be the arrival rate at the beneficiary (respectively, donor) queue. Let µB
(respectively, µD) be the service rate at the beneficiary (respectively, donor) queue when the donor
queue is nonempty. When the donor queue is empty, the service rate at the beneficiary queue becomes
µB + µD. We assume that the jobs are preemptive, so that the service rate at the beneficiary queue
changes from µB + µD to µB immediately after a job arrives at the empty donor queue. The jobs
arriving at the donor queue see a standard M/M/1 system with arrival rate λD and service rate µD.

Observe that the jobs arriving at the beneficiary queue, which we refer to as beneficiary jobs, see
a time varying system, where λH = λL = λB, µH = µB, µL = µB + µD, τL has an Exponential
distribution with rate λD, and τH is the busy period of the M/M/1 system with arrival rate λD and
service rate µD. To analyze the response time of beneficiary jobs, we need to consider a Markov chain
that is infinite in two dimensions, where one dimension represents the number of beneficiary jobs and
the other dimension represents the number of donor jobs. Such a Markov chain cannot be solved
exactly, so that the prior work has investigated various approximations (e.g., truncation in [13] and
approximating the donor busy period with moment matching in [21]). However, such approximations
do not guarantee their accuracy and can be computationally expensive.

Now, because the busy period of an M/M/1 system has a hyperexponential distribution with a
continuous spectrum [1], our results in Section 5.1 suggest that the stationary mean response time
of beneficiary jobs, E[TB], is likely to be extremized by lower and upper principal representations,
given the first n moments of the busy period for n = 1, 2, . . .. Figure 5 shows E[TB] and the bounds
obtained with principal representations. We fix µB = µD = 1.0 and vary ρ = λD = λB as indicated
below each figure. The dashed line shows the exact value of E[TB], which is obtained by numerically
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Figure 5: Bounding mean response time of beneficiary jobs in the N-sharing model.

analyzing a Markov chain. Here the state space of the Markov chain is truncated so that the number
of jobs at the donor queue is at most a threshold, 200, and we verify that increasing the threshold
does not change the results of the analysis. The resulting Markov chain is a quasi-birth-and-death
(QBD) process that can be analyzed with a matrix analytic method.

A dot in Figure 5 shows a bound on E[TB] obtained by replacing the busy period with a principal
representation, where the number of moments used to determine the principal representation is shown
on the horizontal axis. Here again, the bound is numerically computed by analyzing a QBD process
via matrix analytic methods (but due to a small number of levels, the computational cost is much
lower than truncation). Observe that a principal representation using odd number (1, 3, and 5 are
shown in the figure) of moments gives a lower bound on E[TB], while an upper bound is given by
a principal representation using even number (2, 4, and 6 are shown in the figure) of moments.
When five or six moments are used, the upper bound and the lower bound give nearly exact value
(specifically, the two bounds differ by 0.62% in Figure 5(a) and 2.2% in Figure 5(b)).

The results in Figure 5 justify the approximation in [21], where the donor busy period is approximated
by matching its first three moments. The lower bound obtained with the first three moments gives
a nearly perfect approximation, and using fourth and higher moments do not significantly improve
the bound. In determining the principal representations for the busy period, B, we have used the
following expression obtained by manipulating the Laplace-Stieltjes transform of B (we omit the
details due to lack of space): E

[
Bk
]

= k!
µkD(1−ρD)2k−1 ξk, where ρD = λD/µD, ξ1 = ξ2 = 1, ξ3 = 1 + ρD,

ξ4 = 1 + 3ρD + ρ2
D, ξ5 = 1 + 6ρD + 6ρ2

D + ρ3
D, and ξ6 = 1 + 10ρD + 20ρ2

D + 10ρ3
D + ρ4

D.

6 Conjectures on tight bounds for general traffic

Let m = (m0 = 1,m1,m2, . . . ,mn) ∈ Rn
+ be such that there exists a positive random variable X

with E
[
X i
]

= mi, i = 0, . . . , n. For n odd, let D(m) denote the unique lower pr with moments
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m and support [0,∞) (and therefore has mass at ∞), and let D∗B(m) denote the unique upper
pr with moments m and support [0, B]. For n even, let D∗(m) denote the unique lower principal
representation with moments m and support (0,∞], and let DB(m) denote the unique upper pr with
moments m and support [0, B]. (The star in the superscript is to emphasize a point mass at 0, and
the B in the subscript emphasizes the point mass at the upper bound, B, of the support.)

Let

Th(m) = sup
µX∈D

{
E
[
T S(X)

] ∣∣∣E[X i
]

= mi, i = 0, . . . , n
}
,

Tl(m) = inf
µX∈D

{
E
[
T S(X)

] ∣∣∣E[X i
]

= mi, i = 0, . . . , n
}
.

where S(X) represents either the M/G/k (k ≥ 2) multi-server system, the M/G/1 round-robin
system, or the time-varying load system, with X as the random variable for the job size distribution
for the M/G/k and the M/G/1 round-robin models, or the duration of the L or H states for the
time-varying load model, and T denotes the response time.

Conjecture 1 Let m = (m0 = 1,m1, . . . ,mn), n ≥ 1, be a valid moment sequence for positive
distributions. Let m′ = (m0,m1, . . . ,mn−1). Then,
Case 1: n odd

(i) Th(m) = limB→∞E
[
T S(D∗B(m))

]
.

(ii) Tl(m) = E
[
T S(D(m))

]
.

(iii) Tl(m1, . . . ,mn−1, x) is strictly decreasing in x.

Case 2: n even

(i) Th(m) = E
[
T S(D∗(m))

]
.

(ii) Tl(m) = limB→∞E
[
T S(DB(m))

]
.

(iii) Th(m1, . . . ,mn−1, x) is strictly increasing in x.

Further, for the M/G/k system: for n odd, Th(m) = Th(m′); and for n even (and additionally for
the ρ < (k − 1) if n = 2), Tl(m) = Tl(m′). 1

To state in simple language, the conjectures would imply the following for the M/G/k multi-server
model: If we are given only the mean of the service distribution, we only have enough information to

1Intuitively, as we said before, this is true because the mass at ∞ is only present to satisfy the largest moment
constraint. Karlin and Studden write ([16], page 152), “Whenever mass at ∞ is present, this mass may be ignored
to obtain a measure representing only the moments m0,m1, · · · ,mn−1.” In the classical Markov-Krein framework,
this treatment suffices under some conditions on the function g(·) whose expectation we are extremizing. However
for queueing systems, whenever the sup/inf as defined above exist and involve the upper principal representation, we
need to be slightly more careful. For example, for the case of M/G/k with n = 2 and ρ ≥ (k − 1) we can not ignore
the mass at infinity and must define the sup/inf via the limit of a sequence of systems involving upper pr on finite
support. This fact is highlighted via M/G/1 where given n = 2, the mean sojourn time is completely determined.
However, if we ignore the mass at ∞ in the upper pr, we incorrectly obtain E

[
TM/D/1

]
!
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fix a lower bound on E
[
WM/G/k

]
. This lower bound is given by E

[
WM/D/k

]
. If we are additionally

given the second moment of the service distribution, we can fix an upper bound on E
[
WM/G/k

]
. (It

can be shown that this conjectured upper bound is given by m2
m2

1
E
[
WM/D/k

]
(see e.g., [14]). It can also

be shown that when ρ ≥ k− 1, we also refine our lower bound [14], as was also seen in the numerical
experiments in Section 3.3.) By determining the third moment of service distribution, we can refine
(tighten) our lower bound but this lower bound decreases as the third moment increases. The upper
bound remains unchanged. Similarly, knowledge of the fourth moment will refine the upper bound on
the mean waiting time (bring it down), and so forth for alternating higher even and odd moments.
Further, these bounds are achieved by mixtures of point masses as dictated by the upper and lower
pr’s.

7 Towards a unified approach for moment-based bounds

While our results offer an intuitive justification for tight moment-based bounds via principal repre-
sentations for the three queueing systems considered in the paper for general (i.e., non-asymptotic)
traffic conditions, we are still quite far from proving the desired result. Further, we believe that
similar results are likely to hold for other queueing systems as well. We now discuss some possible
lines of attack for proving moment-based bounds for general queueing systems.

One line of approach to proving such results would be similar to what we have tried to do in the
present paper. One would first prove the desired result in an “appropriate” asymptotic regime,
that is, where the effect of the entire distribution of the parameter of interest (e.g., the job size
distribution) is apparent. This is expected to be the easier step, and should offer insights into what
distributions are extremal. The remaining open question would then be to prove that the extremality
of the conjectured distributions is preserved when we are in non-asymptotic regime. This last step
seems very challenging because it is possible to come up with job size distributions whose relative
performance flip while going from light to heavy traffic. 2

While the above approach sounds promising in that obtaining extremal distributions in asymptotic
regimes would be tractable, proving such results for every new queueing system ab initio would be
far from elegant.

A second line of approach could be that of Eckberg [10] for obtaining bounds on the mean response
time of the GI/M/1 model. As we mentioned earlier, the mean response time of a GI/M/1 queue
can be written in terms of an implicit quantity that is an increasing function of the Laplace-Stieltjes
transform E

[
e−sA

]
of the inter-arrival time duration A. It is well known that the functions e−sx

2Indeed, consider moment sequences m = (m1,m2) and m′ = (m′1,m′2) with m1 = m′1 and (m1)2
< m2 < m′2. The

lower pr of m yields a higher mean sojourn time than the upper pr of m′ in light traffic. However, the mean sojourn
time in heavy traffic is completely determined by the first two moments, and hence the lower pr of m yields a lower
mean sojourn time than the upper pr of m′ in heavy traffic.

24



form a Tchebycheff system with moment functions xi. Therefore from Theorem 1, the principal
representations of the moment sequence would extremize the Laplace-Stieltjes transform point-wise,
and hence the mean response time of the GI/M/1 queue. Employing a similar approach for the
mean response time of queueing systems considered in this paper by expressing these quantities as
increasing functions of E[f(X)] for some function f which forms a Tchebycheff system with fi(x) = xi,
and then directly applying Theorem 1, eludes us (and in light of the discussion in Section 3.4, seems
not possible).

To overcome the above shortcomings, we propose a unified framework by posing the followingmoment
problem: Observe that the solution to any queueing system can be represented at some level by the
fixed point of a stochastic recursive sequence (SRS). That is, there exists Φ such that

W d= Φ(W, X), (5)

where W is the unknown random vector capturing the performance of the system, and d= denotes
equality in distribution. For example, for the GI/G/1/FCFS system, the distribution of the cus-
tomer average waiting time W is given by the Lindley recursion:

W
d= (W +X − A)+

where X is the job size distribution, and A is the inter-arrival time distribution. As another example,
for the GI/G/k/FCFS queueing system, let W = (W1,W2, . . . ,Wk) where W1 ≤ W2 ≤ . . . ≤ Wk

denote the Kiefer-Wolfowitz workload vector seen by arriving customer (equivalently, the ordered
vector of times at which the k servers will idle, assuming the customer arriving at time t = 0 has size
0 and and there are no further arrivals). The distribution of W is then given by:

W d= R
(
(W +X · e1 − A · e)+

)
where e1 is a k−vector whose first element is 1 and the rest are 0, e is a k-vector all of whose elements
are 1, and R is a function that reorders the elements of its argument in ascending order.

The final performance metric of interest would be E[g(W)] for some function g. Our goal is to seek
bounds on E[g(W)], given the first n moments of X. For what class of probability flows Φ(·) and
functions g(·) can these bounds be characterized along the Markov-Krein Theorem?

Even partial progress on the above moment problem promises to yield bounds on many interesting
queueing systems in a single shot – one only needs to check whether the SRS for the queueing system
satisfies certain conditions. Further, an understanding of this problem should give insights into the
common thread among queueing systems which share the Markov-Krein characterization property,
but are otherwise seemingly very different. For example, what is the fundamental difference between
the queueing systems described above and the following queueing system for which the principal
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representations achieve identical mean sojourn time (when n, the number of moment constraints, is
even), yet the mean sojourn time is sensitive to the job size distribution?

A queueing system where principal representations are non-extremal Consider a 2-server
system where each server follows the ideal Processor Sharing (PS) scheduling discipline. Jobs arrive
according to a Poisson process with rate λ, and join the shorter queue on arrival (ties broken randomly,
no jockeying between queues). It is easy to see that given any first nmoments with n even, the job size
distributions corresponding to the upper and lower pr’s yield identical mean sojourn time. Consider
the case n = 2 – the mass at ∞ in the upper p.r. does not influence the mean sojourn time; jobs
of size 0 in the lower p.r. depart the PS servers instantaneously on arrival. Thus both the upper
and lower p.r. systems effectively behave as if the job size distribution is deterministic (albeit, with
different means; the arrival process is still Poisson but with different rates). This in turn implies that
the distribution for the number of jobs in the upper and lower p.r. systems are identical, and thus
by Little’s law, so are the mean sojourn time.

While the upper and lower p.r. yield the same mean sojourn time, this system is known to be sensitive
to the job size distribution. Bonald and Proutiére [4] have proved that local balance is a necessary
and sufficient condition for insensitivity, whereas shortest queue routing with static node capacities
violates the local balance condition.

8 Conclusions

In this paper we have taken a significant step towards solving three queueing systems which have
not yielded exact analysis so far, one of them being the classical M/G/k multi-server system whose
analysis has remained open for more than 50 years. Our approach is different from prior attempts in
the literature in that instead of trying to obtain an explicit expression for the mean response time as
a function of the job size distribution, we found the job size distributions with given first n moments
which minimize or maximize the mean response time, thus obtaining tight lower and upper bounds
on the mean response time given a partial characterization of the job size distribution in terms of its
moments.

Our approach relied on looking at appropriate tractable asymptotic regimes where the effect of the
entire job size distribution is apparent (unlike heavy traffic regimes, for example), and extracting
the extremal distributions. For the M/G/k multi-server system, we proved that given the first
n = 2 or 3 moments, these extremal distributions are given by the principal representations of
the moment sequence. If we restrict the job size distribution to lie in the completely monotone
class of distributions, then given any first n moments, we proved the extremal distributions are the
principal representations within the hyperexponential class of distributions. We proved a similar
result for M/G/1 round-robin queue with Exponentially distributed quantum sizes, and for systems
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with fluctuating load (with the parameter being the durations of high and low load states) and
presented numerical evidence of the utility of our results.

Finally, analogous to the classical Markov-Krein theorem for scalar functions, we propose exploration
of Markov-Krein characterization of solutions of Stochastic recursive equations as a unified approach
to identify and study queueing systems permitting moment-based characterization of extrema via
principal representations of the moment sequence of the random variables driving them.
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A Proof of Theorem 7

As stated previously, to illustrate the main ideas behind the proof, we will instead consider an
M/M/1/1 system in the 2-state environment process defined in Section 5. For this case, we only
need to analyze the time average idle probability. Let pL and pH denote the idle probabilities at
the end of L and H states, respectively, and let pL and pH be the time average idle probabilities
during L and H states, respectively. Our focus is not on deriving the precise coefficients of αi for all
i because our goal is not to propose an approximation by extrapolating the fast-switching asymptote
(even though we can do so). Instead, we want to identify sufficient functional dependence of these
coefficient on the moments of τL and τH to be able to conclude that principal representations extremize
the performance metric of interest.

Let the distributions of τL be given by:

τL ∼


Exp(γ1) with probability q1
...
Exp(γn) with probability qn

We begin with a simple lemma.

Lemma 2 Consider an M/M/1/1 system with arrival rate λ and service rate µ. Let τ ∼ Exp(γ),
and let p(t) denote the idle probability at time t. Then:

p(τ) =
p(0) + µ

γ

1 + µ+λ
γ

(6)

Proof: The Chapman-Kolmogorov equation is given by:

dp(t)
dt

= −λp(t) + µ(1− p(t))

Integrating by parts:

p(τ) =
∫ ∞

0
γe−γup(u)du = p(0) + 1

γ
(µ− (λ+ µ)p(τ)) .
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By conditioning on the which of the n phases of the L state duration occurs and using the above
lemma, we can obtain pL in terms of pH for the αth system as:

pL =
n∑
j=1

qj
pH + αµL

γj

1 + αµL+λL
γj

(7)

= pH

(
1− α(µL + λL)E[τL] +

i+1∑
k=2

αkE
[
τ kL
]
ηk + Θ(αi+2)

)
+ αµLE[τL] +

i+1∑
k=2

αkE
[
τ kL
]
ζk + Θ(αi+2)

(8)

where ηk and ζk are constants (functions of µL and λL only). Similarly,

pH = pL

(
1− α(µH + λH)E[τH ] +

i+1∑
k=2

αkE
[
τ kH
]
θk + Θ(αi+2)

)

+ αµHE[τH ] +
i+1∑
k=2

αkE
[
τ kH
]
κk + Θ(αi+2) (9)

where, again, θk and κk are constants (functions of µH and λH only).

Eliminating pH ,

pL = pL (1− α [(µL + λL)E[τL] + (µH + λH)E[τH ]]

+
i∑

k=2
αkσk + αi+1

[
E
[
τ kL
]
ηk + E

[
τ kH
]
θk
]
+ Θ(αi+2)

)

+ α [µLE[τL] + µHE[τH ]] +
i∑

k=2
αkψk

+ αi+1
[
E
[
τ i+1
L

]
ζk + E

[
τ i+1
H

]
κk
]
+ Θ(αi+2) (10)

where σk and ψk for 2 ≤ k ≤ i involve µL, µH , λL, λH and E[τmL ] and τmH for 1 ≤ m ≤ i (importantly,
not E

[
τ i+1
L

]
, E

[
τ i+1
H

]
, or still higher moments). This gives

pL = µavg
µavg + λavg

1 + αi

E[τL] + E[τH ]

E
[
τ i+1
L

]
ζk + E

[
τ i+1
H

]
κk

µavg

+
E
[
τ i+1
L

]
ηk + E

[
τ i+1
H

]
θk

µavg + λavg

+
i∑

k=1
αkφk

+ Θ(αi+1) (11)

where again φk for 1 ≤ k ≤ i only involve µ, λ, and the first i moments of τL and τH . A similar
expression holds for pH . Note that as α→ 0, the idle probability of the finite buffer system is indeed
given by µavg

µavg+λavg .
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Finally, the expression for the time avergae idle probability during L states is obtained as:

pL = 1
E[τL]

n∑
j=1

qj
γj

(
pH + αµL

γj

)
1 + αµL+λL

γj

(12)

The contributions to the αi term in pL are made by O(αi) terms in pH , and also from α qjµL
γ2
j

term in
the numerator above. It is straightforward to see that the coefficient of the αi term will again depend
on only the first (i+ 1) moments, and will be linear in the (i+ 1)st moments of τL and τH .
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