
Deterrence with Imperfect Attribution∗

Sandeep Baliga

Kellogg SOM, Northwestern University

Ethan Bueno de Mesquita

Harris School, University of Chicago

Alexander Wolitzky

Department of Economics, MIT

February 12, 2019

Abstract

Motivated by recent developments in cyberwarfare, we study deterrence in a world where

attacks cannot be perfectly attributed to attackers. In the model, each of n attackers may attack

the defender. The defender observes an imperfect signal that probabilistically attributes the at-

tack. The defender may retaliate against one or more attackers, and wants to retaliate against

the guilty attacker only. We note an endogenous strategic complementarity among the attackers:

if one attacker becomes more aggressive, that attacker becomes more “suspect” and the other

attackers become less suspect, which leads the other attackers to become more aggressive as

well. Despite this complementarity, there is a unique equilibrium. We identify conditions under

which improving attrubution strengthens deterrence—namely, improving attack detection inde-

pendently of any effect on the identifiability of the attacker, reducing false alarms, or replacing

misidentification with non-detection. However, we show that other improvements in attribution

can backfire, weakening deterence—these include detecting more attacks where the attacker is

difficult to identify or pursuing too much certainty in attribution. Deterrence is improved if the

defender can commit to a retaliatory strategy in advance, but the defender should not always

commit to retaliate more after every signal.
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“Whereas a missile comes with a return address, a computer virus generally does not.”

–William Lynn, U.S. Deputy Secretary of Defense, 2010

The ability to maintain peace through deterrence rests on a simple principle: the credible threat

of sufficiently strong retaliation in response to an attack prevents forward-looking adversaries from

initiating hostilities in the first place (Schelling 1960; Snyder 1961; Myerson 2009). The traditional

concern about the effectiveness of deterrence is that retaliation might not be credible. But tech-

nological changes, especially the rise of cyberwarfare, have brought a new set of considerations to

the fore. Central among these new issues is the attribution problem: the potential difficulty in

determining who is responsible for an attack, or even if an attack occurred at all.

Obviously, attribution problems weaken deterrence “by reducing an assailant’s expectation of

unacceptable penalties” (Kello (2017, p. 130); see also Clark and Landau (2010), Edwards et al.

(2017), Goldsmith (2013), Lindsay (2015), and Nye (2011)): multiplying a penalty by the probabil-

ity of correct attribution reduces the expected penalty. But the effects of imperfect attribution on

deterrence are much richer than this, and the precise effects—as well as how a state can optimally

deter attacks under imperfect attribution—have yet to be studied. As General Michael Hayden

(2011), former director of the National Security Agency, put it in testimony before Congress,

“[c]asually applying well-known concepts from physical space like deterrence, where attribution is

assumed, to cyberspace, where attribution is frequently the problem, is a recipe for failure.” The

current paper takes up Hayden’s challenge by analyzing deterrence under imperfect attribution.

While attribution problems are endemic to cyberwarfare, they also arise in many other envi-

ronments where deterrence matters. Even in conventional warfare, it can sometimes be difficult

to determine who initiated a given attack.1 The problem is amplified in counterinsurgency, where

there is often uncertainty as to which of multiple terrorist or insurgent factions is responsible for an

attack (Berman, Shapiro and Felter 2011; Shaver and Shapiro Forthcoming; Trager and Zagorcheva

2006). Turning to non-conflict environments, it is possible to measure pollution, but it may be dif-

ficult to assign responsibility to one potential polluter over another (Segerson 1988; Weissing and

Ostrom 1991). Similar issues can arise in other areas of law and economics (Shavell 1985; Png

1986; Lando 2006). Without minimizing these alternative applications, the current paper focusses

on cyberwarfare.

We offer a model of deterrence with imperfect attribution with multiple potential attackers and

1For example, the soldiers who entered Ukraine in March 2014 wore no insignia, and Russia initially denied
involvement (Shevchenko 2014).
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one defender. An attacker gets an opportunity to strike the defender. The defender observes a noisy

signal, which probabilistically indicates whether an attack occurred and who attacked. Attribution

problems include three kinds of potential mistakes. There is a false alarm if the defender perceives

an attack when none occurred. There is a detection failure if the defender fails to detect an attack

that did occur. And there is misidentification if the defender assigns responsibility for an attack

to the wrong attacker. In our model, the defender suffers a cost if she is attacked. She receives a

private benefit that defrays some of this cost if she retaliates against the right attacker, but she

suffers an additional cost if she retaliates against the wrong one. Each attacker gets a private

benefit from attacking but suffers a cost if the defender retaliates against him. There are no direct

externalities among attackers—one attacker’s payoff does not depend on whether another attacker

attacks or faces retaliation.

A first observation is that the attribution problem generates an endogenous strategic comple-

mentarity among the potential attackers. This effect makes deterrence under imperfect attribution

inherently multilateral. To see the idea, suppose attacker i becomes more aggressive. Then, when-

ever the defender detects an attack, her belief that attacker i was responsible increases, and her

belief that any other potential attacker was responsible decreases. This makes the defender more

likely to retaliate against attacker i and less likely to retaliate against all other attackers. But this

in turn leads the other attackers to become more aggressive—in effect, all other attackers can “hide

behind” the aggressiveness of attacker i. Thus, a rise in the aggressiveness of a single attacker

increases the probability with which every attacker attacks in equilibrium. However, despite this

complementarity, our model has a unique equilibrium, which substantially simplifies the analysis.

Given that attribution problems create challenges for deterrence, a standard intuition in both

academic and policy circles is that improving attribution will improve deterrence (Panetta 2012;

Department of Defense 2015). We examine this idea and show that, while some types of improve-

ment in the defender’s information structure do always improve deterrence, others can backfire and

actually increase attacks. For example, improving detection always reduces attacks if the perpe-

trator responsible for the newly detected attacks can also be unambiguously identified, or if the

processes of detecting an attack and identifying the responsible party are statistically independent.

Reducing false alarms also always strengthens deterrence. However, improving detection can in-

crease attacks if those responsible for the newly detected attacks are especially difficult to identify;

this follows because misidentification is “worse” than non-detection, since the defender is reluctant

to retaliate against other attackers after a signal that could result from misidentification. It is also
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not always true that giving the defender more information in the sense of Blackwell (1951) improves

deterrence: in particular, the defender need not benefit from further refinements of a signal that is

already strong enough to cause retaliation. This implies that it is often a mistake to pursue too

much certainty in attribution.

We consider two additional applications of our model to problems in contemporary cyber strat-

egy. The National Cyber Strategy of the United States (2018) allows the use of conventional or

cyber weapons in response to a cyberattack. When is this flexibility welfare-improving for the

defender? In our model, we show that the defender always benefits from gaining access to a new re-

taliatory weapon, provided it is more destructive than all previously feasible means of retaliation; in

contrast, gaining access to a new, less destructive weapon can sometimes undermine deterrence. We

also consider the possibility that attackers can launch “false-flag” operations, attempting to mimic

a different attacker. Such attacks seem particularly prevalent in the cyber domain (Bartholomew

and Guerrero-Saade 2016). Here, we find that more aggressive attackers are more likely to be mim-

icked, as are attackers whose attacks are easier to detect and attribute. These predictions of the

model are consistent with descriptions of known false-flag operations in the qualitative literature.

Finally, we characterize the optimal deterrence policy when the defender can commit to a

retaliatory strategy in advance. We show that deterrence is stronger when the defender can commit,

in that every attacker attacks with lower probability. However, the defender should not necessarily

commit to retaliate more after every signal. This is because a signal’s information content changes

when the attackers become less aggressive. Specifically, under commitment there may be a greater

chance of misidentification or false alarm after some signals, and the defender may want to back off

after such signals. In general, the optimal policy balances the commitment to large punishments

from traditional deterrence theory à la Schelling with the risk of retaliating in error as discussed

in the newer informal literature on cyberwarfare à la Kello (2017) or Singer and Friedman (2014).

These results also suggest a critique of the strategic shift articulated in the US Department of

Defense’s 2018 Cyber Strategy, which calls for a narrower focus on America’s most aggressive

and capable cyber adversaries, China and Russia (Department of Defense 2018). By contrast, we

find that the optimal deterrence policy should target additional retaliation not against the most

aggressive attackers but against those who are most deterrable—that is, those whose attacks are

particularly easy to attribute and whose behavior is most responsive to changes in the likelihood

of facing retaliation.
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As further background for our study, we note that false alarms, detection failures, and misiden-

tification have all arisen in major cyber incidents.

In one of the best-known and most successful cyberattacks to date, the Stuxnet worm was

used to disrupt the Iranian nuclear facility at Natanz by causing centrifuges to malfunction over

the course of more than a year. During the attack, the Iranians believed the problems with their

centrifuges were the result of faulty parts, engineering incompetence, or domestic sabotage (Singer

and Friedman 2014). Stuxnet was eventually uncovered not by the Iranians, but by European

cybersecurity researchers who found a worm that was infecting computers all over the world but

was configured to do damage only in very specific circumstances tailored to the facility at Natanz.

This was a startling case of detection failure.

In 1998, the United States Department of Defense discovered a series of attacks exploiting

operating system vulnerabilities to retrieve large amounts of sensitive data from military computer

networks. The United States was preparing for possible military action in support of UN weapons

inspections in Iraq, and the cyberattacks emanated from Abu Dhabi. A Department of Defense

investigation, referred to as Solar Sunrise, initially attributed the attacks to Iraq. The U.S. went so

far as to send a strike team to Abu Dhabi, only to find a room full of computer servers through which

the attacks had been routed. Ultimately, the attacks turned out to be the work of two sixteen-year

olds in San Francisco and an eighteen-year old Israeli (Adams 2001; Kaplan 2016). Conversely, the

hacking of the Democratic National Committee servers during the 2016 U.S. Presidential election

was initially attributed to a lone Romanian hacker who went by the moniker Guccifer 2.0. Later,

U.S. authorities determined the hack was done by Russian security agencies who had tried to cover

their tracks by pretending to be Guccifer 2.0 (see the findings in ThreatConnect 2016). These are

cases of misidentification.

Finally, in 2008, a worm on Department of Defense computers was found to have gained access

to an enormous quantity of US war planning materials. The leading theory to emerge from the

resulting clean up and forensic operation, known as Buckshot Yankee, was that the worm was the

work of a foreign intelligence agency (probably Russian) that infiltrated the “air gap” surrounding

military computer networks through a USB drive sold to an American soldier in Afghanistan.

In response, the Department of Defense banned all USB drives for years. But others point to

the worm’s relative unsophistication and argue it could have accidentally made its way onto the

computer networks without malicious intent (Shachtman 2010). This may, then, have been a case

4



of a false alarm.2

The key mechanism of our model—“less suspect” attackers’ desire to hide their attacks behind

“more suspect” attackers—is also reflected in several incidents. According to American authorities,

the Russian military agency GRU executed a cyberattack during the opening ceremony of the

2018 Pyeongchang Winter Olympics. In a false-flag operation, the GRU used North Korean IP

addresses to deflect suspicion onto North Korea (Nakashima 2018), which was already highly suspect

because of its hack of Sony Pictures and a variety of other cyber operations. Looking ahead, the

International Olympic Committee (I.O.C.) can respond by expelling one or more countries from

the next Olympics. As in our model, it is natural to think that the I.O.C. loses on net if it expels

an innocent country, but benefits if it expels the guilty one. We discuss additional examples after

presenting the model.

This paper relates to several literatures. A large literature explores aspects of deterrence other

than the attribution problem. Schelling (1960) explained the logic of deterrence and the importance

of commitment. Jervis (1978) noted that, when the motives of a player who acquires arms for

deterrence are not known to his opponent, the opponent may react by arming to protect himself

from predation. This “security dilemma” equally applies to cyberweapons (Buchanan 2017). The

security dilemma has been formalized using the idea that arms might be strategic complements

rather than substitutes (Kydd 1997; Baliga and Sjöström 2004; Chassang and Padró i Miquel

2010). For example, Chassang and Padró i Miquel (2010) show that, in a coordination game,

arms acquisition can increase preemptive incentives to go to war faster than it reduces incentives

to predate. Hence, arming may cause escalation rather than deterrence. Acemoglu and Wolitzky

(2014) incorporate an attribution problem into a dynamic coordination game with overlapping

generations. A player does not know whether an ongoing conflict was started by the other “side”

or by a past member of his own side. This leads to cycles of conflict as players occasionally

experiment with peaceful actions to see if the other side plays along.3 Another literature explores

the search for credibility, especially the role played by domestic politics (see, for example, Fearon

1997; Powell 1990; Smith 1998; Di Lonardo and Tyson 2018). We abstract from these themes in

order to focus on the implications of attribution problems for deterrence with multiple attackers.

2Another interesting false alarm occurred in the run-up to the 2018 US midterm elections, when the Democratic
National Committee notified the F.B.I. that it had detected what appeared to be an attempt by Russian hackers to
infiltrate its voter database. The “attack” turned out to be the work of hackers hired by the Michigan Democratic
Party to simulate a Russian incursion (Sullivan, Weiland and Conger 2018).

3Rohner, Thoenig and Zilibotti (2013) study the impact of trust on trade in a two period game where one player
learns whether the other side is aggressive through its first period action.

5



Our model also relates to the literature on inspection games. In such a game, an inspectee may

or may not act legally, and an inspector decides whether to call an alarm as a function of a signal

of the inspectee’s action (see Avenhaus, von Stengel and Zamir 2002, for a survey). This literature

usually allows only one inspectee, though some of our comparative statics results also apply to that

case. In particular, we show that a Blackwell-improvement in information can make the defender

worse off (without commitment)—this appears to be a novel result for inspection games. Some

inspection game models do allow multiple inspectees, but these models study issues other than

attribution, such as the allocation of scarce detection resources across sites (Avenhaus, von Stengel

and Zamir 2002; Hohzaki 2007).

Inspection games appear in economics in the guise of “auditing games,” where a principal

tries to catch agents who “cheat.” These games have many interesting features. For example, the

principal might commit to random audits to save on auditing costs (Mookherjee and Png 1989).

The principal also faces a commitment problem, as she may not have an incentive to monitor the

agent ex post (Graetz, Reinganum and Wilde 1986; Khalil 1997). However, the attribution problem

we study does not arise in these models.

In law and economics, there is a question of whether deterrence is undercut by the fact that

even the innocent might be convicted (see Lando (2006) and Section 8 of Polinsky and Shavell

(2000)). This approach assumes full commitment to fines and subsidies. More importantly, it does

not fully formalize the strategic setting as a multi-player game, so key properties like strategic

complementarity cannot be analyzed. Indeed, the attackers in our model can be interpreted as

criminals and the principal as a judge who seeks to punish the guilty but not the innocent. Hence,

our model or some variant thereof might be of interest in law and economics.4

There is also a literature on “crime waves” that models crime as a game of strategic comple-

ments among criminals: the more potential criminals commit crimes, the more law enforcement

resources are strained, and the greater the incentive to commit additional crimes (Sah 1991; Glaeser,

Sacerdote and Scheinkman 1996; Schrag and Scotchmer 1997; Bar-Gill and Harel 2001; Freeman,

Grogger and Sonstelie 1996; Ferrer 2010; Bassetto and Phelan 2008; Bond and Hagerty 2010). This

complementarity is related to the one in our model, if we interpret the defender’s supply of “suspi-

cion” as a fixed resource: the more one attacker attacks, the more suspect he becomes, and the less

suspicion is left for other attackers. However, the crime waves literature emphasizes the possibility

4The one-inspectee inspection game also arises in law and economics. Tsebelis (1989) studies costly monitoring
by the police. The police cannot commit to monitoring effort, so in equilibrium the police mix between working and
shirking and criminals mix between criminality and law-abidingness.
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of multiple equilibria with different levels of crime, while our model has a unique equilibrium. This

is because suspicion is a special kind of resource, which in particular responds to the relative attack

probabilities of different attackers rather than the absolute attack probabilities: if all attackers

double their attack probabilities, they remain equally suspicious (in fact more suspicious, because

the relative probability of a false alarm has decreased), and thus face just as much retaliation. Our

analysis is thus quite different from this literature, despite sharing the common theme of strategic

complementarity.

Finally, repeated games with imperfect monitoring model multilateral moral hazard without

commitment (Radner 1986; Green and Porter 1984; Abreu, Pearce and Stacchetti 1990). Our

model collapses the infinite horizon into a principal who plays a best response. This approach

might also be a useful shortcut in other contexts. For example, Chassang and Zehnder (2016)

study a principal with social preferences who cannot commit to a contract and instead makes an

ex post transfer from an active agent to a passive agent towards whom the active agent may have

taken a pro-social action. Their approach is an alternative to relational contracting models of

intertemporal incentives (Baker, Gibbons and Murphy 1994).

1 A Model of Deterrence with Imperfect Attribution

There are n+ 1 players: n attackers and one defender. They play a two-stage game:

1. With probability γ ∈ (0, 1), one of the n attackers is randomly selected. That attacker chooses

whether to attack or not. With probability 1− γ, no one has an opportunity to attack.

2. The defender observes a signal s drawn from a finite set S. If attacker i attacked in stage

1, the probability of signal s is πsi . If no one attacked in stage 1 (i.e., if some attacker had

an opportunity to attack but chose not to, or if no one had an opportunity to attack), the

probability of signal s is πs0. The defender then chooses whether to retaliate against one or

more of the attackers.

The attackers differ in their aggressiveness. An attacker with aggressiveness xi ∈ R receives a

payoff of xi if he attacks. Each attacker also receives a payoff of −1 if he is retaliated against. Each

attacker i’s aggressiveness xi is his private information and is drawn from a continuous distribution

Fi with positive density on its support.
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The defender receives a payoff of −K if she is attacked. In addition, for each attacker i, if

she retaliates against i she receives an additional payoff of yi ∈ R+ if i attacked and receives an

additional payoff of yi − 1 if i did not attack. The vector y = (yi)
n
i=1 is the defender’s private

information and is drawn from a continuous distribution G with positive density on its support

and marginals (Gi)
n
i=1. We assume that Gi (K) = 1 for all i. This implies that the defender would

rather not be attacked than be attacked and successfully retaliate.

In general, a strategy for attacker i ∈ I := {1, .., n} is a mapping from his aggressiveness xi to his

probability of attack, pi (xi) ∈ [0, 1]. A strategy for the defender is a mapping from y = (yi)i∈I and

the signal s to the probability with which she retaliates against each attacker, rs (y) = (rsi (y))i∈I ∈

[0, 1]n.5 However, it is obvious that every best response for both the attackers and the defender takes

a cutoff form, where attacker i attacks if and only if xi exceeds a cutoff x∗i ∈ [0, 1], and the defender

retaliates against attacker i after signal s if and only if yi exceeds a cutoff ys∗i ∈ [0, 1].6 We can

therefore summarize a strategy profile as a vector of cutoffs (x∗, y∗) ∈ [0, 1]n×[0, 1]n|S|. Equivalently,

we can summarize a strategy profile as a vector of attack probabilities p = (pi)i∈I ∈ [0, 1]n for the

attackers and a vector of retaliation probabilities r = (rsi )i∈I,s∈S ∈ [0, 1]n|S| for the defender, as for

attacker i choosing attack probability pi is equivalent to choosing cutoff x∗i = F−1
i (1− pi), and for

the defender choosing retaliation probability rsi is equivalent to choosing cutoff ys∗i = G−1
i (1− rsi ).

The solution concept is sequential equilibrium (equilibrium henceforth).

We assume that S contains a “null signal,” s = 0, which probabilistically indicates that no

attack has occurred. The interpretation is that s = 0 corresponds to the defender perceiving

“business as usual”. We make the following two assumptions.

1. For each attacker i, the probability of each non-null signal s 6= 0 is greater when i attacks

than when no one attacks: for all i ∈ I and all s 6= 0, πsi ≥ πs0. Note that this implies π0
i ≤ π0

0

for all i ∈ I, as (πsi )s∈S and (πs0)s∈S must sum to 1.

2. It is not optimal for the defender to retaliate after receiving the null signal: for all i ∈ I,

Gi

(
n (1− γ)π0

0

n (1− γ)π0
0 + γπ0

i

)
= 1. (1)

5We implicitly assume that the defender’s −K payoff from being attacked is either measurable with respect to
her signals or arrives after she decides whether to retaliate, so that any actionable information the defender receives
from her payoff is captured by the signals.

6Behavior at the cutoff is irrelevant as Fi and Gi are assumed continuous. Our mains results go through when Fi

and Gi admit atoms, but the exposition is slightly more complicated.
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Note that this implies yi < 1 with probability 1, so the defender never benefits from retaliating

against an innocent attacker.

Finally, we assume that either (i) πs0 > 0 for all s ∈ S, or (ii) Fi (1) < 1 for all i ∈ I and

S =
⋃
i∈I∪{0},s∈S suppπsi . Either assumption guarantees that every signal s ∈ S arises with positive

probability in equilibrium (and hence the defender’s beliefs are determined by Bayes’ rule), which

is the only role of this assumption.

We offer a few comments on the interpretation of the model.

First, the assumption that yi ≥ 0 implies that retaliation would be credible for the defender if

she knew who attacked. We thus abstract from the classic “search for credibility” in the traditional

deterrence literature (Schelling 1960; Snyder 1961; Powell 1990) to isolate the new issue of how

imperfect attribution affects deterrence. In reality, there are several possible benefits of successful

retaliation. Retaliation can disrupt an ongoing attack. It can also provide reputational benefits vis

a vis other potential attackers and thus prevent additional attacks. And it can also satisfy a “taste

for vengeance,” which could result from psychological or political economy concerns (Jervis 1979;

McDermott, Lopez and Hatemi 2017).

Second, as the Stuxnet attack highlights, it is possible for a cyberattack to occur without the

defender recognizing she is under attack. The model captures the possibility of such detection

failures through the null signal.

The presence of the null signal is also important for the strategic complementarity at the heart of

our model. By Assumption 1, when attacker i becomes more aggressive, he becomes more “suspect”

after every non-null signal, and all other attackers become less suspect after every non-null signal.

By Assumption 2, this increases retaliation against attacker i and decreases retaliation against all

other attackers, as retaliation occurs only following non-null signals.

Third, we consider a static model where at most one potential attacker has an opportunity to

attack. This approach is equivalent to considering the Markov perfect equilibrium in a continuous-

time dynamic model where, for each attacker, an independent and identically distributed Poisson

clock determines when that attacker has an attack opportunity. As the probably that independent

Poisson clocks tick simultaneously is zero, in such a model it is without loss of generality to assume

that two attackers can never attack at exactly the same time. If multiple attackers can attack

simultaneously, our model continues to apply if the payoff consequences of each attack (and any

subsequent retaliation) are additively separable and signals are independent across attacks.

Fourth, the payoff functions admit several different interpretations. We have normalized both
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the cost to an attacker of facing retaliation and the cost to the defender of retaliating in error to

1. This means that xi and y measure the benefit of a successful attack/retaliation relative to the

cost of facing retaliation/retaliating in error. Thus, an increase in xi (for example) can represent

either an increase in the benefit of attacking or a decrease in the cost of facing retaliation.

There are of course a variety of benefits from successful cyberattacks. The Chinese were able

to use cyber-espionage to acquire plans for the F-35 stealth fighter from a US military contractor,

allowing them to build a copy-cat stealth fighter at accelerated speed and low cost. The United

States and Israel used cyberattacks to disrupt the Iranian nuclear program. Cyberattacks have

also been used to incapacitate an adversary’s military capabilities—for instance by disrupting com-

munications or intelligence—by the United States (against Iraqi insurgents), Russia (in Ukraine,

Georgia, and Estonia), Israel (against Syrian air defenses), and others. To the extent that retali-

ation to cyberattacks remains within the cyber domain, variation in the costs of retaliation could

derive from variation in the vulnerability of a country’s civil or economic infrastructure to cyber-

attack. Thus, for example, North Korea may be more aggressive in the cyber domain than the

United States because it does not have a vulnerable tech industry that could be disrupted by cyber

retaliation. Finally, as technologies for hardening targets, denying access, and improving security

improve, the distribution of benefits may worsen (Libicki, Ablon and Webb 2015).

Similarly, an increase in y can represent either an increase in the benefit of successful retaliation

or a decrease in the cost of retaliating in error. We have already mentioned several benefits of

successful retaliation. A change in y might result from technological innovations that alter the

extent to which the damage from an attack can be mitigated, or from political, economic, or strategic

shifts that affect the value of reputation, the risk of escalation, or the potential for spillovers to

civilian domains. A decrease in the cost of retaliating in error might result from either a decreased

fear of escalation beyond the cyber domain or a technological shift that allowed for more targeted

retaliation, among other possibilities.

Finally, a signal s should be interpreted as containing all information available to the defender

concerning the origin of a potential attack. This may include, for example, the systems targeted

by the attack, the location of the servers where the attack originated, and the language and style

of any malicious code.
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2 Equilibrium Characterization

In this section, we characterize equilibrium and show that the attackers’ strategies are endogenous

strategic complements: if one attacker attacks with higher probability, they all attack with higher

probability. This simple complementarity is a key factor in many of our results.

We first characterize the attackers’ cutoffs x∗ as a function of the defender’s retaliation proba-

bilities r (all missing proofs are in the Appendix). The following formula results because an attack

by i provides a benefit of xi, while raising the probability of facing retaliation from
∑

s π
s
0r
s
i to∑

s π
s
i r
s
i .

Lemma 1 In every equilibrium, for every i ∈ I, attacker i’s cutoff is given by

x∗i =
∑
s

(πsi − πs0) rsi . (2)

Next, we characterize the defender’s cutoffs y∗ as a function of the attackers’ attack probabilities

p. Note that, if attacker i attacks with probability pi when given the opportunity, his unconditional

probability of attacking is γ
npi. Therefore, given a vector of (conditional) attack probabilities

p ∈ [0, 1]n, the probability that attacker i attacked conditional on signal s equals

βsi (p) =
γpiπ

s
i

γ
∑

j pjπ
s
j +

(
n− γ

∑
j pj

)
πs0

. (3)

Now, at the optimum, the defender retaliates against attacker i after signal s if and only if her

benefit of retaliating against him (yi) exceeds her cost of doing so, which is 1−βsi (p), the probability

that he is “innocent.”

Lemma 2 In every equilibrium, for every i ∈ I and s ∈ S, the defender’s cutoff is given by

ys∗i = 1− βsi (p) . (4)

We also note that the defender never retaliates after the null signal, by Assumptions 1 and 2.

Lemma 3 In every equilibrium, r0
i = 0 for all i ∈ I.

Out first result combines Lemmas 1, 2, and 3 to give a necessary and sufficient condition for a

vector of attack and retaliation probabilities (p, r) ∈ [0, 1]n × [0, 1]n|S| to be an equilibrium.
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Proposition 1 A vector of attack and retaliation probabilities (p, r) is an equilibrium if and only

if

F−1
i (1− pi) =

∑
s 6=0

(πsi − πs0) (1−Gi (1− βsi (p))) (5)

=
∑
s 6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
− γpiπs0

nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
+ γpi (πsi − πs0)

 (6)

and

rsi = 1−Gi (1− βsi (p))

for all i ∈ I and s ∈ S.

Equation (5) is key for understanding our model. The left-hand side is attacker i’s cutoff

(recall, x∗i = F−1
i (1 − pi)). The right-hand side is the increase in the probability that attacker

i faces retaliation when he attacks, noting that the probability that an attacker faces retaliation

after any signal equals the probability that the defender’s propensity to retaliate (yi) exceeds the

probability that the attacker did not attack conditional on the signal (ys∗i = 1−βsi (p)). Equilibrium

equates these two quantities.

The strategic complementarity in our model can now be seen from the fact that βsi (p) is in-

creasing in pi and decreasing in pj for all j 6= i. To see the idea, suppose attacker i attacks with

higher probability: pi increases. This makes attacker i more “suspect” after every non-null signal

and makes every attacker j 6= i less suspect: for every s 6= 0, βsi increases and βsj decreases. In turn,

this makes the defender retaliate more against i and less against j: for every s 6= 0, rsi increases

and rsj decreases. Finally, this makes attacker j attack with higher probability: x∗j decreases. Intu-

itively, when one attacker becomes more likely to attack, this makes the other attackers attack with

higher probability, as they know their attacks are more likely to be attributed to the first attacker,

making it less likely that they will face retaliation following an attack. This complementarity is

the key multilateral aspect of deterrence with imperfect attribution.

Let us clarify a potential point of confusion. If attacker i attacks with higher probability (pi

increases) while all other attack probabilities are held fixed and the defender is allowed to respond

optimally, the effect on the total probability that another attacker j faces retaliation, evaluated ex

ante at the beginning of the game, is ambiguous: attacker j is less suspect (and therefore faces

less retaliation) after any given attack, but the total probability that an attack occurs increases.
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However, only the former effect—the probability of facing retaliation after a given attack—matters

for j’s incentives, because j cannot affect the probability that he is retaliated against in error

after one of i’s attacks. In other words, strategic complementarity operates entirely through the

“intensive” margin of the retaliation probability following a given attack, not the “extensive” margin

of the total number of attacks.

To formalize this endogenous strategic complementarity, it is useful to introduce a new function.

Definition 1 The endogenous best response function h : [0, 1]n → [0, 1]n is defined by letting hi (p)

be the unique solution p′i ∈ [0, 1] to the equation

p′i = 1− Fi

∑
s6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
− γp′iπs0

nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
+ γp′i (πsi − πs0)

 (7)

for all i ∈ I, and letting h (p) =
∏
i∈I hi (p).

Intuitively, if the attack probabilities of all attackers other than i are fixed at p−i ∈ [0, 1]n−1,

then hi (p) is the unique equilibrium attack probability for attacker i in the induced two-player

game between attacker i and the defender. Note that hi (p) is well-defined, as the right-hand side

of (7) is always between 0 and 1 and is continuous and non-increasing in p′i, and thus equals p′i at

a unique point in the unit interval. Note also that p ∈ [0, 1]n is an equilibrium vector of attack

probabilities if and only if it is a fixed point of h.

The following lemma formalizes the strategic complementarity described above: if attacker j

attacks more often, this makes attacker i less suspect, so attacker i also attacks more often.

Lemma 4 For all distinct i, j ∈ I, hi (p) is non-decreasing in pj.

Proof. Note that the right-hand side of (7) is non-decreasing in pj for all j 6= i. Hence, an increase

in pj shifts upward the right-hand side of (7) as a function p′i and thus increases the intersection

with p′i. Formally, the result follows from, for example, Theorem 1 of Milgrom and Roberts (1994).

3 Equilibrium Properties and Comparative Statics

This section establishes equilibrium uniqueness and presents comparative statics with respect to Fi

and Gi, the distributions of the attackers’ and defender’s aggressiveness.
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3.1 Unique Equilibrium

Notwithstanding the strategic complementarity in the model, there is always a unique equilibrium.

As discussed in the Introduction, this is in stark contrast to standard models of crime waves,

which emphasize multiple equilibria. To see the intuition, suppose there are two equilibria and

attacker i’s attack probability increases by the greatest proportion (among all attackers) in the

second equilibrium relative to the first. Then, because the defender’s beliefs are determined by

the attackers’ relative attack probabilities, attacker i is more suspect after every signal in the

second equilibrium. The defender therefore retaliates against attacker i more often in the second

equilibrium. But then attacker i should attack less in the second equilibrium, not more.

Theorem 1 There is a unique equilibrium.

Proof. We show that h has a unique fixed point.

By Lemma 4 (and the fact that hi (p) does not depend on pi), h is a monotone function on

[0, 1]n. Hence, by Tarski’s fixed point theorem, h has a greatest fixed point: that is, there is a fixed

point p∗ such that, for every fixed point p∗∗, p∗i ≥ p∗∗i for all i ∈ I.

Now let p∗ be the greatest equilibrium, and let p∗∗ be an arbitrary equilibrium. We show that

p∗ = p∗∗.

Fix i ∈ argmaxj∈I
p∗j
p∗∗j

. As p∗ is the greatest equilibrium, we have
p∗i
p∗∗i
≥ 1. Therefore, for every

s 6= 0,

βsi (p∗) =
γp∗iπ

s
i

nπs0 + γ
∑

j p
∗
j

(
πsj − πs0

)
=

p∗∗i
p∗i
γp∗iπ

s
i

p∗∗i
p∗i
nπs0 +

p∗∗i
p∗i
γ
∑

j p
∗
j

(
πsj − πs0

)
≥ γp∗∗i π

s
i

p∗∗i
p∗i
nπs0 + γ

∑
j p
∗∗
j

(
πsj − πs0

)
≥ γp∗∗i π

s
i

nπs0 + γ
∑

j p
∗∗
j

(
πsj − πs0

) = βsi (p∗∗) ,

where the first inequality holds because
p∗∗i
p∗i
≤ p∗∗j

p∗j
for all j ∈ I and πsj − πs0 ≥ 0 for all j ∈ I and
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s 6= 0, and the second inequality holds because
p∗∗i
p∗i
≤ 1. Notice this implies

p∗i = 1− Fi

∑
s 6=0

(πsi − πs0) (1−Gi (1− βsi (p∗)))


≤ 1− Fi

∑
s 6=0

(πsi − πs0) (1−Gi (1− βsi (p∗∗)))

 = p∗∗i .

As p∗ is the greatest equilibrium, this implies p∗i = p∗∗i . Since i ∈ argmaxj∈I
p∗j
p∗∗j

, this implies

p∗j ≤ p∗∗j for all j ∈ I. Hence, as p∗ is the greatest equilibrium, p∗ = p∗∗.

3.2 Complementary Aggressiveness

Lemma 4 shows that, if one attacker attacks with higher probability, this induces all attackers to

attack with higher probability. Of course, attack probabilities are endogenous equilibrium objects.

To understand how such a change in behavior might result from changes in model primitives, we

now turn to studying comparative statics with respect to the distributions Fi and G.

As we have already discussed, the parameter xi represents attacker i’s benefit from a successful

attack relative to the cost of facing retaliation. Similarly, the parameter yi represents the benefit

of successful retaliation relative to the cost of retaliating against the wrong target. Thus, a change

in the distributions Fi or Gi might result from an change in the distribution of benefits or the

distribution of costs. In what follows, we say that attacker i (resp., the defender) becomes more

aggressive if Fi (resp., Gi for all i ∈ I) increases in the first-order stochastic dominance sense.

3.2.1 Attackers’ Aggressiveness

If any attacker becomes more aggressive, then in equilibrium all attackers attack with higher

probability, and as a consequence the total probability of an attack increases. The intuition is as

above: if one attacker attacks more often, the other attackers become less suspect and therefore

face retaliation less often, which leads them to attack more often as well.

Proposition 2 Suppose attacker i becomes more aggressive, in that his type distribution changes

from Fi to F̃i, where F̃i (xi) ≤ Fi (xi) for all xi. Let (p, r) (resp., (p̃, r̃)) denote the equilibrium

attack and retaliation probabilities under Fi (resp., F̃i). Then,

1. pi ≤ p̃i and pj ≤ p̃j for every j 6= i.
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2. For every j 6= i, there exists s ∈ S such that rsj ≥ r̃sj .

Proof.

1. Let h (resp., h̃) denote the endogenous best response function under Fi (resp., F̃i). Note

that hj (p′) ≤ h̃j (p′) for all j ∈ I and p′ ∈ [0, 1]n. As h and h̃ are monotone, it follows that

hm ((1, . . . , 1)) ≤ h̃m ((1, . . . , 1)) for all m, where hm (resp., h̃m) denotes the mth iterate of

the function h (resp., h̃). As h and h̃ are also continuous, and p and p̃ are the greatest fixed

points of h and h̃, respectively, limm→∞ h
m ((1, . . . , 1)) = p and limm→∞ h̃

m ((1, . . . , 1)) = p̃.

Hence, p ≤ p̃.

2. Immediate from part 1 of the proposition and (5).

The logic of endogenous strategic complementarity plays a role throughout the paper, including

in our analysis of false-flag operations (Section 5.2) and the commitment solution (Section 6). In

those sections, we discuss how this mechanism appears consistent with a variety of accounts in the

qualitative literature.

3.2.2 Defender’s Aggressiveness

As compared to an increase in an attacker’s aggressiveness, an increase in the defender’s aggres-

siveness has the opposite effect on deterrence: all attackers attack with lower probability (because

retaliation is more likely), and consequently the total probability of an attack goes down. Thus,

greater aggressiveness on the part of the defender strengthens deterrence.

Proposition 3 Suppose the defender becomes more aggressive, in that her type distribution changes

from G to G̃, where G̃i (yi) ≤ Gi (yi) for all i ∈ I and all yi. Let (p, r) (resp., (p̃, r̃)) denote the

equilibrium attack and retaliation probabilities under G (resp., G̃). Then

1. pi ≥ p̃i for every i ∈ I.

2. For every i ∈ I, there exists s ∈ S such that rsj ≤ r̃sj .

Proof. Analogous to Proposition 2, noting that increasing G in the FOSD order shifts h down.

The effects of defender aggressiveness are important for our subsequent discussion of changes in

the defender’s retaliation technology (Section 5.1) and the commitment solution (Section 6). Those

sections discuss the match between these effects and descriptions in the qualitative literature.
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3.3 Equilibrium Mutes Attacker Heterogeneity

If we put a little more structure on the model, we can make two further observations about at-

tacker aggressiveness. First, not surprisingly, inherently more aggressive attackers attack with

higher probability in equilibrium. Second, notwithstanding this fact, equilibrium mutes attacker

heterogeneity—that is, inherently more aggressive attackers use a more demanding cutoff (i.e.,

a higher x∗i ). This follows because inherently more aggressive attackers are more suspect, and

therefore face more retaliation.

This result implies another sense in which settings with imperfect attribution are fundamentally

multilateral. Suppose attacker 1 is inherently much more aggressive than attacker 2. A näıve

analysis would suggest that attacker 2 can be safely ignored. But this neglects attacker 2’s great

advantage of being able to hide behind attacker 1: if all attacks were assumed to come from

attacker 1, attacker 2 could attack with impunity. Hence, equilibrium requires some parity of

attack probabilities, even between attackers who are highly asymmetric ex ante.

To isolate the effect of heterogeneous aggressiveness, in this subsection we restrict attention to

symmetric information structures. The information structure is symmetric if, for every permutation

ρ on I, there exists a permutation ρ′ on S\ {0} such that πsi = π
ρ′(s)
ρ(i) for all i ∈ I and s ∈ S\ {0}.

Proposition 4 Suppose the information structure is symmetric. Then, for every equilibrium and

every i, j ∈ I, the following are equivalent:

1. i attacks with higher probability than j: pi > pj .

2. i has a higher threshold than j: x∗i > x∗j .

3. i is “inherently more aggressive” than j: Fi (x∗i ) < Fj

(
x∗j

)
, and hence Fi (x) < Fj (x) for all

x ∈
[
x∗j , x

∗
i

]
.

4. i is “more suspect” than j: for every permutation ρ on I mapping i to j and every corre-

sponding permutation ρ′ on S\ {0}, βsi > β
ρ′(s)
j for all s ∈ S\ {0}.

Proposition 4 is relevant for assessing aspects of the US Department of Defense’s 2018 Cy-

ber Strategy (Department of Defense 2018). This policy document shifts US strategy, emphasizing

retaliation against the largest and most aggressive adversaries, especially Russia and China. Propo-

sition 4 emphasizes that such a shift should not be taken too far. The more the US focuses on

what are inherently the most aggressive adversaries, the more aggressive other actors become in
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response. We provide a more detailed discussion of the 2018 Cyber Strategy in the context of the

commitment model in Section 6.

4 Changes in the Information Structure

As we have seen, attribution problems significantly complicate deterrence. As such, a natural

intuition is that improving the defender’s information—and thus the ability to attribute attacks—

will improve deterrence. For instance, in a much discussed 2012 speech, then Secretary of Defense

Leon Panetta said the following regarding US cybersecurity (Panetta 2012):

Over the last two years, DoD has made significant investments in forensics to address

this problem of attribution and we’re seeing the returns on that investment. Potential

aggressors should be aware that the United States has the capacity to locate them and

to hold them accountable for their actions that may try to harm America.

This view was also ensconced in the Department of Defense’s 2015 Cyber Strategy (Department

of Defense 2015), which states:

Attribution is a fundamental part of an effective cyber deterrence strategy as anonymity

enables malicious cyber activity by state and non-state groups. On matters of intelli-

gence, attribution, and warning, DoD and the intelligence community have invested sig-

nificantly in all source collection, analysis, and dissemination capabilities, all of which re-

duce the anonymity of state and non-state actor activity in cyberspace. . . . [A]ttribution

can play a significant role in dissuading cyber actors from conducting attacks in the first

place. The Defense Department will continue to collaborate closely with the private sec-

tor and other agencies of the U.S. government to strengthen attribution. This work will

be especially important for deterrence as activist groups, criminal organizations, and

other actors acquire advanced cyber capabilities over time.

In this section, we probe this intuition by studying how changes in the defender’s information

structure—the matrix π = (πsi )i∈I∪{0},s∈S—affect deterrence. We will see that the conventional

wisdom that better information improves deterrence is not always correct, but we also provide

formal support for some more nuanced versions of this claim.

Roughly speaking, we show that the following types of improvements in the information struc-

ture always improve deterrence:
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1. Improving detection if the perpetrators of the newly detected attacks are always identified

correctly.

2. Replacing misidentification with non-detection.

3. Reducing false alarms.

4. Improving detection independently of identification.

However, two types of improvements can backfire and increase equilibrium attack probabilities:

1. Refining signals that are already strong enough to cause retaliation.

2. Improving detection if the perpetrators of the newly detected attacks are especially hard to

identify.

Thus, from a policy perspective, some care must be taken in investing in improved detection

and attribution technologies. In particular, a defender need not benefit from further refining a

signal that is already strong enough to spark retaliation, and improvements in detection technology

are only valuable if the newly detected signals can also be attributed with some degree of success.7

We organize our results as follows. First, we present two main results—Theorems 2 and 3—

that provide sufficient conditions for a change in the information structure to improve deterrence.

We then show how these results imply the four “positive” claims above as corollaries. Finally, we

provide examples showing that the conditions for Theorems 2 and 3 cannot be relaxed, which yield

the two “negative” claims above.

Throughout this section, we consider changes in the defender’s information structure from π

to π̃, and let variables with (resp., without) tildes denote equilibrium values under information

structure π (resp., π̃).

4.1 Sufficient Conditions for a Change in the Information Structure to Improve

Deterrence

This subsection presents general sufficient conditions for a change in the information structure to

improve deterrence.

7These results rely on the assumption that the attackers know the defender’s information structure: of course,
if the defender can improve her information without the attackers’ knowledge, this can only make her better off.
However, it is clear that the same effects would arise in a more realistic model where attackers observe the defender’s
information structure imperfectly. The case where attackers are completely unware of improvements in the defender’s
information strikes us as less reaslistic.
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Let rsi (p;π) be the probability that attacker i faces retaliation given signal s, prior attack

probabilities p, and information structure π:

rsi (p;π) = 1−Gi (1− βsi (p;π)) ,

where βsi (p;π) is given by equation (3), and we have made the dependence of β on π explicit. Let

xi (p;π) be the increase in the probability that attacker i faces retaliation when he attacks given

prior attack probabilities p and information structure π:

xi (p;π) =
∑
s 6=0

(πsi − πs0) rsi (p;π) .

Recall that, in equilibrium, x∗i = xi (p;π).

Our first main result is that, if the information structure changes such that the defender becomes

“more retaliatory,” in that all cutoffs xi (p;π) increase holding the attack probabilities fixed, then

in equilibrium all attack probabilities must decrease. Intuitively, this is a consequence of strategic

complementarity: if π changes so that each xi (p;π) increases for fixed p, strategic complementarity

then pushes all cutoffs even further up.

Theorem 2 Fix two information structures π and π̃, and let p (resp. p̃) be the vector of equilibrium

attack probabilities under π (resp. π̃). If xi (p; π̃) ≥ xi (p;π) for all i ∈ I, then p̃i ≤ pi for all i ∈ I.

If in addition xi (p; π̃) > xi (p;π) for some i ∈ I, then p̃i < pi.

An important consequence of this result is the following: Suppose, conditional on an attack by i,

weight is shifted from a signal s where i did not face retaliation to a signal s′ where no one else faced

retaliation. This always improves deterrence. The logic is that, holding the attack probabilities

fixed, such a change in the information structure induces weakly more retaliation against i (at

signal s′, since i has become more suspect at s′) and also induces weakly more retaliation against

everyone else (at signal s, since everyone else has become more suspect at s). Theorem 2 then

implies that all equilibrium attack probabilities must decrease.

Theorem 3 Suppose that, with information structure π, there is a signal s where attacker i faces

no retaliation (i.e. rsi = 0) and a signal s′ where no other attacker j faces retaliation (i.e. rs
′
j = 0

for all j 6= i). Suppose also that, conditional on an attack by i, information structure π̃ shifts weight

from signal s to signal s′: that is, πsi > π̃si , π
s′
i < π̃s

′
i , and πŝj = π̃ŝj for all (j, ŝ) 6= (i, s) , (i, s′).
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Then p̃j ≤ pj for all j ∈ I. Moreover, if either rs
′
i > 0 or rsj > 0 for some j 6= i, then p̃j < pj for

some j ∈ I.

4.2 Types of Changes that Always Improve Deterrence

We can now derive the “positive” results previewed above.

4.2.1 Improving Detection without Increasing Misidentification

First, shifting mass from the null signal to a signal that never sparks mistaken retaliation always

improves deterrence. For example, simultaneously improving both detection and identification—

in that some attacks that previously went undetected are now both detected and unambiguously

attributed—always improves deterrence.

Corollary 1 Suppose that, with information structure π, there is a non-null signal s where all

attackers j 6= i face no retaliation (i.e. rsj = 0 for all j 6= i).8 If, conditional on an attack by i, π̃

shifts weight from the null signal to signal s, then p̃j ≤ pj for all j ∈ I.

Proof. Since r0
i = 0 and rsj = 0 for all j 6= i, this follows from Theorem 3.

4.2.2 Replacing Misidentification with Non-Detection

Second, misidentification is worse than non-detection, in the following sense: if it is possible that

an attack by i is detected but is not attributed to i with enough confidence to cause retaliation, the

defender would be better off if this attack were not detected at all. The intuition is that this change

does not affect i’s incentive to attack, but it increases retaliation against everyone else because they

become more suspect after signals that previously could have resulted from an attack by i.

Corollary 2 Suppose that, with information structure π, there is a non-null signal s where attacker

i faces no retaliation (i.e. rsi = 0). If, conditional on an attack by i, π̃ shifts weight from signal s

to the null signal, then p̃j ≤ pj for all j ∈ I.

Proof. Since r0
j = 0 for all j 6= i, this follows from Theorem 3.

8A trivial condition on primitives that guarantees rsj = 0 for all j 6= i is πs
j = 0 for all j 6= i: that is, signal s can

only arise as a result of an attack by i or a false alarm.
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4.2.3 Reducing False Alarms

Third, reducing false alarms (i.e., decreasing πs0 for s 6= 0) always improves deterrence. When false

alarms are less frequent, each non-null signal invites greater suspicion, and hence more retaliation.

Also, the marginal impact of an attack on the probability of each non-null signal increases. Both

of these effects increase the marginal impact of an attack on the probability of facing retaliation,

and hence reduce the incentive to attack.

Corollary 3 Suppose false alarms decrease: πs0 ≥ π̃s0 for all s 6= 0 and π0
0 ≤ π̃0

0, while πi = π̃i for

all i ∈ I. Then p̃i ≤ pi for all i ∈ I. Also, r̃si ≥ rsi for all s 6= 0 and all i ∈ I.

Proof. By Theorem 2, it suffices to show that xi (p; π̃) ≥ xi (p;π) for all i. By the definition

of xi (p;π), since reducing false alarms increases πsi − πs0 for all s 6= 0, it suffices to show that

rsi (p; π̃) ≥ rsi (p;π) for all s 6= 0. For this, it is in turn enough to show that βsi (p; π̃) ≥ βsi (p;π) for

all s 6= 0. But this is immediate from equation (3).

4.2.4 Improving Detection Independently of Identification

Fourth, in the important special case of our model where the detection and identification processes

are independent, improving detection always improves deterrence. To formulate this special case,

suppose there exists a common detection probability δ ∈ [0, 1], a false alarm probability φ ∈ [0, 1],

and a vector of identification probabilities (ρsi ) ∈ [0, 1]n|S| such that

π0
i = 1− δ for all i 6= 0

πsi = δρsi for all i, s 6= 0

π0
0 = 1− φ

πs0 = φρs0 for all s 6= 0.

Corollary 4 If detection is independent of identification, improving detection decreases all equi-

librium attack probabilities.

Proof. By Theorem 2, it suffices to show that βsi (p; π̃) ≥ βsi (p;π) for all i and all s 6= 0. We have

βsi (p;π) =
γδpiρ

s
i

γδ
∑

j pjρ
s
j +

(
n− γ

∑
j pj

)
φρs0

.
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Clearly, βsi (p;π) is non-decreasing in δ.

Moreover, note that βsi (p;π) depends on the detection probability and the false alarm probabil-

ity only through their ratio δ/φ. Thus, when detection is independent of identification, improving

detection is strategically equivalent to reducing false alarms.

4.3 Types of Changes that Can Degrade Deterrence

We now give our “negative” results. We can organize these results by showing why the conclusion

of Theorem 3 can fail if either rsi > 0 or rs
′
j > 0 for some j 6= i.

4.3.1 Improving Detection while Worsening Identification

We first show how deterrence can be undermined by improving detection but simultaneously wors-

ening identification. That is, shifting weight from the null signal to a signal where someone other

than the attacker faces retaliation can reduce retaliation against both attackers and increase at-

tacks. This is a partial converse to the result that replacing misidentification with non-detection

improves deterrence (Corollary 2).

Example 1 There are two attackers and three signals. Let γ = 2
3 , so with equal probability

attacker 1 can attack, attacker 2 can attack, or no one can attack. The information structure

π = (πsi ) is

π0
0 = 1 π1

0 = 0 π2
0 = 0

π0
1 = 1

3 π1
1 = 2

3 π2
1 = 0

π0
2 = 1

3 π1
2 = 1

3 π2
2 = 1

3

Let x1 ∈
{
xL1 = 1

2 , x
H
1 = 1

}
, with Pr

(
x1 = xH1

)
= 4

5 .

Let x2 ∈
{
xL2 = 1

4 , x
H
2 = 1

}
, with Pr

(
x2 = xH2

)
= 1

2 .

Let y1 = y2 = 1
4 with probability 1.9

Claim 1 In the unique equilibrium with information structure π, attacker 1 attacks iff x1 = xH1 ,

attacker 2 attacks iff x2 = xH2 , the defender retaliates against attacker 1 iff s = 1, and the defender

retaliates against attacker 2 iff s = 2. Thus, p1 = 4
5 and p2 = 1

2 .

9This type distribution is discrete. However, if we approximate with a continuous distribution, the equilibrium
attack probabilities change continuously. The same remark applies to Examples 2 and 3 below.
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Now suppose the information structure changes to

π̃0
0 = 1 π̃1

0 = 0 π̃2
0 = 0

π̃0
1 = 0 π̃1

1 = 2
3 π̃2

1 = 1
3

π̃0
2 = 1

3 π̃1
2 = 1

3 π̃2
2 = 1

3

That is, when attacker 1 attacks, the attack is now always detected, but it may be “confused”

with an attack by attacker 2. In equilibrium, this causes the defender to stop retaliating after

s = 2, which leads the less aggressive type of attacker 2 to start attacking, which in turn causes

the defender to stop retaliating after s = 1 as well.

Claim 2 In the unique equilibrium with information structure π̃, both attackers attack whenever

they have the opportunity, and the defender never retaliates. Thus, p1 = p2 = 1.

4.3.2 Refining Signals that Already Cause Retaliation

Deterrence can also be undermined by refining a signal that is already strong enough to cause

retaliation. This can occur even if the signal refinement corresponds to a strict improvement in

the information structure in the sense of Blackwell (1951), and even if there is only one attacker,

so that the model is a classical inspection game (Avenhaus, von Stengel and Zamir 2002). That

is, a Blackwell-improvement in the defender’s information can reduce her payoff in an inspection

game.10

To see the intuition, suppose there is a single attacker and there are three possible signals:

null, imperfectly informative, and perfectly informative. Suppose the perfect signal is rare, so

that even certain retaliation following the perfect signal is not enough to deter an attack on its

own. The defender must then also be willing to retaliate following an imperfect signal. Moreover,

the imperfect signal is less indicative of an attack when the perfect signal is more likely, as the

probability that the imperfect signal is a false alarm is higher when the perfect signal is more likely.

Finally, for the defender to remain willing to retaliate following the imperfect signal when it is less

indicative of an attack, the attacker must be attacking with higher probability. Thus, the attacker

must attack with higher probability when the perfect signal is more likely.

10As far as we know, this is a novel observation. One somewhat related result is due to Crèmer (1995), who
shows that, in a principal-agent model, the principal may benefit from having less information about the agent’s
performance, because this makes it credible to carry out certain threats, such as failing to renegotiate the contract.
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Example 2 There is one attacker and three signals. Let γ = 1. The information structure is

π0
0 = 3

4 π1
0 = 1

4 π2
0 = 0

π0
1 = 1

4 π1
1 = 3

4 π2
1 = 0

.

Let x = 1
3 and y = 1

2 .

Claim 3 In the unique equilibrium with information structure π, the attacker attacks with proba-

bility 1
4 , and the defender retaliates with probability 2

3 when s = 1.

Suppose the information structure changes to

π̃0
0 = 3

4 π̃1
0 = 1

4 π̃2
0 = 0

π̃0
1 = 1

4 π̃1
1 = 1

2 π̃2
1 = 1

4

.

Now an attack is perfectly detected with probability 1
4 . Note that π̃ is Blackwell more informative

than π: by simply conflating signals 1 and 2, the defender can recover π from π̃.

Claim 4 In the unique equilibrium with information structure π̃, the attacker attacks with proba-

bility 1
3 , and the defender retaliates with probability 1

3 when s = 1 and retaliates with probability 1

when s = 2.

Thus, when the cost of being attacked K is sufficiently large, the defender is better off with less

information. The intuition is that, when weight shifts from π1
1 to π2

1, the attacker must attack with

higher probability to keep the defender willing to retaliate after signal 1.

More generally, deterrence is undermined by extra information in regions of the defender’s belief

space where the probability of retaliating against a given attacker is concave in the defender’s

posterior belief about whether that attacker attacked. Since this is typically the case when the

defender is almost certain the attacker attacked (as then she retaliates with probability close to 1),

this implies that pursuing too much certainty in attribution is usually a mistake.

5 Applications

We now explore two applications of particular relevance to contemporary discussions surrounding

cyber strategy.
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Section 5.1 considers the possibility that the defender may have multiple ways to retaliate,

for example with a less destructive weapon (like a reciprocal cyberattack) or a more destructive

one (like a conventional military, or even nuclear, attack). Our main result is that adding a

more destructive weapon to the defender’s arsenal always improves deterrence, while adding a less

destructive weapon can undermine deterrence.

Section 5.2 asks what happens when one attacker can attempt to mimic another attacker via a

false-flag operation. Here we show that more aggressive attackers are more likely to be mimicked, as

are (more surprisingly) attackers who are themselves easy to detect and identify when they attack.

5.1 Different Kinds of Retaliation

A central debate in cyber strategy concerns what weapons should be available for retaliation against

a cyber attack. This question was raised with new urgency by the 2018 United States Nuclear

Posture Review, which for the first time allowed the possibility of first-use of nuclear weapons in

response to devastating but non-nuclear attacks, including cyberattacks (Sanger and Broad 2018).

Less dramatically, the 2018 National Cyber Strategy puts both kinetic and cyber retaliation on the

table as possible responses to cyber activity (United States 2018).

Our model can capture many aspects of this debate, but not all of them. In particular, we

do model the fact that a more destructive form of retaliation is likely more costly to use in error,

but we cannot capture all possible objections to the Nuclear Posture Review, such as the potential

consequences of “normalizing” first-use of nuclear weapons. Nonetheless, in the context of our

model, we provide some support for the spirit of the Nuclear Posture Review by showing that adding

a more destructive weapon to the defender’s arsenal always improves deterrence. By contrast,

adding a less destructive weapon to the defender’s arsenal has competing effects and, as such, can

either weaken or strengthen deterrence.

We model introducing a new retaliation weapon into the defender’s arsenal as follows: There

is the original, legacy weapon `, and a new weapon, n. Each weapon a ∈ {`, n} is characterized

by three numbers: the damage it does to an attacker, wa (previously normalized to 1), the benefit

using it provides to a type-y defender, ya, and the cost to the defender of using it on an innocent

attacker, za (previously normalized to 1). Thus, when the defender observes signal s and forms

belief βsi that attacker i is “guilty,” she retaliates using the weapon a ∈ {0, `, n} that maximizes

ya − (1− βsi ) za,
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where a = 0 corresponds to not retaliating, with y0 = z0 = w0 = 0. We continue to assume that

K > ya for all y ∈ suppG and all a, so that deterring an attack is preferred to being attacked and

retaliating.

A couple points are worth noting. All else equal, a defender prefers to retaliate with a weapon

that provides higher retaliatory benefits (higher ya) and lower costs for mistaken retaliation (lower

za). It seems reasonable to assume that these two features of a weapon may co-vary positively—

stronger weapons provide both better retaliatory benefits and are more costly when misused. So

the defender may face a trade-off, and she will balance this trade-off differently following different

signals. In particular, her willingness to use a weapon with larger costs for mistakes depends on her

uncertainty about the identity of the perpetrator: When attribution is quite certain, the defender

is more willing to opt for a powerful response. When attribution is less certain, the defender will

want to respond in a way that limits costs in case of a mistake.

In light of this tradeoff, we ask when introducing the new weapon into the arsenal improves the

defender’s payoff.

First, it is easy to construct examples where introducing a weaker weapon (i.e., one with wn <

w`) into the defender’s arsenal makes her worse-off. For example, suppose that the new weapon

also imposes lower costs when used in error (zn < z`). Then there could be signals where the

defender would have used the legacy weapon, but now switches to the new weapon. (Indeed, if

yn > y` then the defender never uses the legacy weapon.) If w` − wn is sufficiently large this

undermines deterrence, and the defender is made worse-off overall if the cost of being attacked

(K) is sufficiently large. The intuition is that, when a weaker weapon is available, ex post the

defender is sometimes tempted to use it rather than the stronger weapon (in particular, when she

is uncertain of the identify of the perpetrator). This is bad for ex ante deterrence. The defender

can thus benefit from committing in advance to never retaliate with a less destructive weapon.

By contrast, introducing a new weapon that imposes greater costs on attackers (i.e., wn ≥ w`)

always benefits the defender.11 The intuition is that, holding the attack probabilities fixed, making

a new, more destructive weapon available weakly increases the expected disutility inflicted on

every attacker: this follows because, for each signal, the defender’s optimal response either remains

unchanged or switches to the new, more damaging weapon. This reduces everyone’s incentive to

attack, and strategic complementarity then reduces the equilibrium attack probabilities even more.

11It is straightforward to generalize this result to the case where there are many legacy weapons. In this case, the
required condition is that the new weapon is more destructive than any of them.

27



Proposition 5 Assume wn ≥ w`.

Let p (resp. p̃) denote the equilibrium attack probabilities when the new weapon is unavailable

(resp., available). Then p ≥ p̃.

Let u (resp. ũ) denote the defender’s equilibrium payoff when the new weapon is unavailable

(resp., available). Then u ≤ ũ.

5.2 False Flags

The attribution problem creates the possibility for false-flag operations, where one attacker poses

as another to evade responsibility. False-flag operations are common in the cyber context (see

Bartholomew and Guerrero-Saade 2016). For instance, we have already discussed Russia’s attempt

to mask their attack on the Pyeongchang Olympics by routing the attack through North Korean

servers.

A false-flag operation amounts to one attacker attempting to attack in a way that mimics, or

is likely to be attributed to, another attacker. If multiple attackers can mimic each other, there

will naturally be multiple equilibria, where different attackers are mimicked most often, due to a

coordination motive in mimicking. As our main question of interest here is who is mostly likely

to be mimicked, we rule out this effect by assuming that only attacker 1 has the ability to mimic

other attackers.

For simplicity, in this subsection we consider a version of the “independent detection and iden-

tification” model of Section 4.2.4, while allowing the detection probability to vary across attackers.

In particular, we assume the information structure is

π0
i = 1− δi for all i 6= 0

πii = δiρi for all i 6= 0

πji = δi
1− ρi
n− 1

for all i 6= j 6= 0

π0
0 = 1− φ

πs0 =
φ

n
for all s 6= 0.

Thus, attackers differ in how detectable they are (δi) and how identifiable they are (ρi), but the

information structure is otherwise symmetric.

The “mimic” (attacker 1) chooses an attack probability p1 and, conditional on attacking, a
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probability distribution over whom to mimic, α ∈ ∆ (I). Given α, if the mimic attacks, signal

s = 0 realizes with probability 1− δ1 and each signal i 6= 0 realizes with probability

πi1 (α) := δ1

αiχi +
∑
j 6=i

αj
1− χj
n− 1

 ,

where χi ∈ (0, 1) measures 1’s ability to successfully mimic attacker i. For example, an attacker

with a less sophisticated arsenal of cyber weapons may be easier to mimic.

If the mimic chooses strategy α, for i 6= 1, we have

βi1 (α) =
γp1π

i
1 (α)

γ
[
p1πi1 (α) + δipiρi +

∑
j 6=1,i δjpj

1−ρj
n−1

]
+
(

1− γ
n

∑
j pj

)
φ
n

.

Denote the probability with which the mimic faces retaliation at signal s by

rs1 (α) = 1−G1 (1− βs1 (α))

Given the vector of attack probabilities p (including p1), the mimic chooses α to solve

min
α′∈∆(I)

∑
s∈I

πs1
(
α′
)
rs1 (α) .

(Note that α is fixed here by equilibrium expectations.) The derivative with respect to α′i is

δ1

χiri1 (α) +
∑
j 6=i

1− χi
n− 1

rj1 (α)

 .

Thus, at the optimum, this derivative must be equal for all i ∈ suppα, and must be weakly greater

for all i /∈ suppα. In particular, if i, i′ ∈ suppα, we have

χi

 1

n

∑
j∈I

rj1 (α)− ri1 (α)

 = χi′

 1

n

∑
j∈I

rj1 (α)− ri′1 (α)

 ,

where both terms in parentheses are non-negative. Note that ri1 (α) is increasing in βi1 (α), which

in turn is increasing in πi1 (α) and decreasing in δi, pi, and ρi. We obtain the following result:

Proposition 6 Ceteris paribus, an attacker is mimicked more in equilibrium if he is more ag-

gressive, easier to identify, easier to detect, or easier to mimic: for any two attackers i, j 6= 1, if
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pi ≥ pj, ρi ≥ ρj, δi ≥ δj, and χi ≥ χj, then αi ≥ αj.

The intuition for why more aggressive attackers are more like to be the victim of false-flag

operations is that such attackers are more suspect when the signal points to them, which makes

the mimic less suspect. The same intuition also explains the apparently more subtle result that

attackers that are easier to identify or detect are mimicked more: When such an attacker attacks,

the signal is especially likely to point to him, rather than to a different attacker. This makes an

easily identified or detected attacker especially suspect when the signal points to him, which makes

him an attractive target for false-flag operations.

The above analysis coheres with the descriptive literature on false-flag operations. The Russians,

for instance, chose to mimic the North Koreans, who had a pre-existing reputation for aggressiveness

in cyber space and might have been particularly suspect following any attack targeting South Korea.

Similar issues arise with China. In 2009, the Information Warfare Monitor uncovered the

GhostNet plot, an infiltration of government and commercial computer networks the world over,

originating in China. The report indicates that there were “several possibilities for attribution.”

One likely possibility involved the Chinese government and military. But the report also notes that

the evidence was consistent with alternative explanations, including “a random set of infected com-

puters that just happens to include high profile targets of strategic significance to China,” criminal

networks, or patriotic hackers acting independently of the state. Finally, the report acknowledges,

the attack could have been the work of “a state other than China, but operated physically within

China. . . for strategic purposes. . . perhaps in an effort to deliberately mislead observers as to the

true operator(s).” (See Information Warfare Monitor 2009, pp. 48-49.) Similar conclusions were

reached half a decade earlier regarding the difficulty in attributing the Titan Rain attacks on Amer-

ican computer systems, which were again traced to internet addresses in China (Rogin 2010). In

both cases, the United States government appears to have been highly reluctant to retaliate.

Given China’s reputation for aggressiveness in cyberspace, why is the United States so reluctant

to retaliate for cyberattacks attributed to China? It seems a key factor is precisely the attribution

problem and, especially, concerns about false-flags. In plain language, China’s reputation makes it

particularly tempting for other actors to hide behind America’s suspicion of the Chinese. Singer

and Friedman (2014) describe the problem as follows:

It is easy to assume that the [Chinese] government is behind most insidious activities

launched by computers located within China. But, of course, this also means that bad
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actors elsewhere may be incentivized to target Chinese computers for capture and use

in their activities, to misdirect suspicions. This very same logic, though, also enables

Chinese actors to deny responsibility. (p. 74)

In Singer and Friedman’s account, defenders receive signals indicating that China has engaged

in a cyberattack. And China is indeed highly suspect. That said, there is an attribution problem,

because signals that point to Chinese computers may result from attacks by foreign actors that have

hacked their way into China, or from attacks by non-governmental domestic actors. Indeed, such

“third-party” hacking is particularly attractive precisely because China is so suspect and because

signals are particularly likely to point to China (as in Proposition 6). The resulting prevalence

of third-party hacking to some extent lets China deny responsibility. This reduces the willingness

of defenders to retaliate, which in turn makes it more tempting for China (and everyone else) to

attack.

6 Optimal Deterrence with Commitment

Our last set of results concerns the role of commitment on the part of the defender: how does the

defender optimally use her information to deter attacks when she can commit to ex post suboptimal

retaliation after some signals?

This question matters because in reality the defender is likely to have some commitment power.

For example, a branch of the military can announce a “strategic doctrine,” with the understanding

that commanders who violate the doctrine are penalized.12 Indeed, there is serious discussion in the

cyber domain (as there was in the nuclear domain) of pre-delegation, whereby military commanders

are granted authority to engage in various types of defensive or retaliatory actions without seeking

approval from civilian authorities (Feaver and Geers 2017). For instance, recent changes to US

policy delegate many decisions over cyber retaliation to the commander of US Cyber Command,

requiring only minimal consultation with other government agencies (Sanger 2018).

We show that, as one might expect, with commitment the defender retaliates more often after

some signals. Interestingly, this always leads all attackers to attack less often. Thus, generally

speaking, the defender should try to commit herself to retaliate aggressively relative to her ex post

inclination. But there are some subtleties: as we will see, there may also be some signals after

12For this reason, commitment by the defender is frequently studied as an alternative to no-commitment in the
inspection game and related games. The commitment model is sometimes referred to as “inspector leadership”
(Avenhaus, von Stengel and Zamir 2002).
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which the defender retaliates less often with commitment than without. The intuition is that,

since the attackers are less aggressive under commitment, some signals are now more likely to be

false alarms, so retaliating after these signals becomes less efficient. We also characterize which

attackers should be the focus on inreased retaliation under commitment. After establishing each

result, we discuss its implications for contemporary policy debates.

6.1 The Commitment Model

To analyze the commitment model, recall that the attackers’ strategies depend only on the de-

fender’s retaliation probabilities (rsi )i∈I,s∈S . Given a vector of retaliation probabilities, the op-

timal way for the defender to implement this vector is to retaliate against i after s if and only

if y > G−1 (1− rsi ). Hence, a commitment strategy can be summarized by a vector of cutoffs

(ys∗i )i∈I,s∈S such that the defender retaliates against i after signal s if and only if yi > ys∗i .

What is the optimal vector of cutoffs, and how does it differ from the no-commitment equilib-

rium? The defender’s problem is

max
(ysi )i∈I,s∈S

γ

n

∑
i

(
1− Fi

(∑
s

(πsi − πs0) (1−Gi (ysi ))

))


−K

+
∑

s π
s
i

 ∫∞
ysi
ydGi (y)

+
∑

j 6=i
∫∞
ysj

(y − 1) dGj (y)


−
∑

s π
s
0

∑
j

∫∞
ysj

(y − 1) dGj (y)


+
∑
s

πs0
∑
j

∫ ∞
ysj

(y − 1) dGj (y)

This uses the fact that x∗i =
∑

s (πsi − πs0) (1−Gi (ysi )), so attacker i attacks with probability

1 − Fi (
∑

s (πsi − πs0) (1−Gi (ysi ))). In the event attacker i attacks, the defender suffers a loss

consisting of the sum of several terms (the terms in brackets above). First, she suffers a direct loss

of K. In addition, after signal s, she receives yi if she retaliates against attacker i (i.e., if yi > ysi )

and receives yj − 1 if she erroneously retaliates against attacker j (i.e., if yj > ysj ). If instead no

one attacks, then the defender receives yj − 1 if she erroneously retaliates against attacker j.
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The first-order condition with respect to ysi is

fi (x∗i ) (πsi − πs0)


−K

+
∑

s π
s
i

[∫∞
ysi
ydG (y) +

∑
j 6=i
∫∞
ysj

(y − 1) dG (y)
]

−
∑

s π
s
0

∑n
j=1

∫∞
ysj

(y − 1) dG (y)


− (1− Fi (x∗i ))π

s
i y
s
i

+
∑
j 6=i

(
1− Fj

(
x∗j
))
πsj (1− ysi )

+

n
γ
−

n∑
j=1

(
1− Fj

(
x∗j
))πs0 (1− ysi ) = 0.

The first term is the (bad) effect that increasing ysi makes attacker i attack more. The second term

is the (also bad) effect that increasing ysi makes attacks by i more costly, because the defender

successfully retaliates less often. The third term is the (good) effect that increasing ysi makes

attacks by each j 6= i less costly, because the defender erroneously retaliates less often. The fourth

term is the (good) effect that increasing ysi increases the defender’s payoff when no one attacks,

again because the defender erroneously retaliates less often.

Denote the negative of the term in brackets (the cost of an attack by i) by li (y∗). Then we can

rearrange the first-order condition to

ys∗i =
nπs0 + γ

∑
j 6=i

(
1− Fj

(
x∗j

))(
πsj − πs0

)
− γ (1− Fi (x∗i ))π

s
0 − γfi (x∗i ) (πsi − πs0) li (y∗)

nπs0 + γ
∑

j 6=i

(
1− Fj

(
x∗j

))(
πsj − πs0

)
+ γ (1− Fi (x∗i )) (πsi − πs0)

.

In contrast, in the no-commitment model, ys∗i is given by the equation

ys∗i =
nπs0 + γ

∑
j 6=i

(
1− Fj

(
x∗j

))(
πsj − πs0

)
− γ (1− Fi (x∗i ))π

s
0

nπs0 + γ
∑

j 6=i

(
1− Fj

(
x∗j

))(
πsj − πs0

)
+ γ (1− Fi (x∗i )) (πsi − πs0)

.

Thus, the only difference in the equations for y∗ as a function of x∗ is that the commitment case has

the additional term −fi (x∗i ) (πsi − πs0) li (y∗), reflecting the fact that increasing ys∗i has the new cost

of making attacks by i more likely. (In contrast, in the no-commitment case the attack decision has

already been made at the time the defender chooses her retaliation strategy, so the defender trades

off only the other three terms in the commitment first-order condition.) This difference reflects the

additional deterrence benefit of committing to retaliate, and suggests that ys∗i is always lower with
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commitment—that is, that commitment makes the defender more aggressive.

However, this intuition resulting from comparing the first-order conditions under commitment

and no-commitment is incomplete: the x∗’s in the two equations are different, and we will see that

it is possible for ys∗i to be higher with commitment for some signals. Nonetheless, we can show

that with commitment all attackers attack with lower probability and the defender retaliates with

higher probability after at least some signals.

Theorem 4 Let (p, r) be the no-commitment equilibrium and let (p̃, r̃) be the commitment equilib-

rium. Then pi ≥ p̃i for all i ∈ I, and for every i ∈ I there exists s ∈ S such that rsi ≤ r̃si .

The second part of the proposition is immediate from the first: if every attacker is less ag-

gressive under commitment, every attacker must face retaliation with a higher probability after at

least one signal. The first part of the proposition follows from noting that the endogenous best re-

sponse function (cf. Definition 1) is shifted up under commitment, due to the defender’s additional

deterrence benefit from committing to retaliate aggressively.

Theorem 4 shows that the defender benefits from committing to retaliate more aggressively after

some signals. This is distinct from the search for credibility discussed in the nuclear deterrence

literature (Schelling 1960; Snyder 1961; Powell 1990). There, one assumes perfect attribution, and

the key issue is how to make retaliation credible (i.e., make yi positive). Here, we take yi positive

for granted, and show that the defender still has a problem of not being aggressive enough in

equilibrium.

The US Department of Defense 2018 Cyber Strategy (Department of Defense 2018) differs from

the Obama-era approach articulated in the 2015 Cyber Strategy (Department of Defense 2015) by

focussing fairly narrowly on threats from Russia and China, rather than from a broad range of major

and minor powers and even non-state actors (see Kollars and Schenieder 2018, for a comparison).

One interpretation of the new strategy is that it ranks attackers in terms of ex ante aggressiveness

(i.e. the distributions Fi of the benefits of attack) and mainly threatens retaliation against the most

aggressiveness attackers. But this misses the main impact of deterrence in influencing marginal

decisions. The marginal deterrence benefit to the defender from becoming more aggressive against

attacker i after signal s is given by the fi (x∗i ) (πsi − πs0) li (y∗) term in the equation for ys∗i . This

benefit is larger if signal s is more informative that i attacked or if i’s aggressiveness is likely to be

close to the threshold. It has little to do with i’s overall aggressiveness.

Finally, we remark that the strategic complementarity among attackers that drove our results in
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the no-commitment model partially breaks down under commitment. In particular, it is no longer

true that an exogenous increase in attacker i’s aggressiveness always makes all attackers more

aggressive in equilibrium. The reason is that the complementarity effect from the no-commitment

model may be offset by a new effect coming from the deterrence term fi (x∗i ) (πsi − πs0) li (y∗) in

the defender’s FOC. Intuitively, if attacker i starts attacking more often, this typically leads the

defender to start retaliating more against attacker i (y∗i decreases) and less against other defenders

(y∗j increases for j 6= i). This strategic response by the defender has the effect of increasing lj (y∗)

for all j 6= i: since the defender retaliates more against i and less against j, an attack by j becomes

more costly for the defender, as it is more likely to be followed by erroneous retaliation against i

and less likely to be followed by correct retaliation against j. This increase in lj (y∗) then makes

it more valuable for the defender to deter attacks by j (as reflected in the fj

(
x∗j

)(
πsj − πs0

)
lj (y∗)

term), which leads to an offsetting decrease in y∗j .

6.2 Signal Informativeness and Retaliation

Finally, we analyze which signals the defender is likely to respond to more aggressively under

commitment, relative to the no-commitment equilibrium.

We start with an example showing that the optimal commitment strategy does not necessarily

involve retaliating more aggressively after all signals. Suppose there are three signals: the null

signal, an intermediate signal, and a highly informative signal. With commitment, the defender

retaliates with very high probability after the highly informative signal. This deters attacks so

successfully that the intermediate signal becomes very likely to be a false alarm. In contrast,

without commitment, the equilibrium attack probability is higher, and the intermediate signal is

more indicative of an attack. The defender therefore retaliates with higher probability following

the intermediate signal without commitment.

Example 3 There is one attacker and three signals. Let γ = 1
2 . The information structure is

π0
0 = 1

2 π1
0 = 1

3 π2
0 = 1

6

π0
1 = 1

6 π1
1 = 1

3 π2
1 = 1

2

Let x ∈
{
xL = 1

4 , x
H = 1

}
, with Pr

(
x = xH

)
= 1

2 .

Let y ∈
{
yL = 1

5 , y
H = 3

5

}
, with Pr

(
y = yH

)
= 1

2 . Let K = 1.

35



Claim 5 In the unique equilibrium without commitment, p1 = 1, and the equilibrium retaliation

probabilities (rs)s∈S are given by

r0 = 0, r1 =
1

2
, r2 =

1

2
.

Claim 6 In the unique equilibrium with commitment, p1 = 1
4 , and the equilibrium retaliation

probabilities (rs)s∈S are given by

r0 = 0, r1 = 0, r2 =
3

4
.

Under some circumstances, we can say more about how equilibrium retaliation differs with and

without commitment. Say that signals s and s′ are comparable if there exists i∗ ∈ I such that

πsi = πs0 and πs
′
i = πs

′
0 for all i 6= i∗. If s and s′ are comparable, say that s is more informative

than s′ if
πsi∗

πs0
≥ πs

′
i∗

πs
′

0

.

That is, s is more informative than s′ if, compared to s′, s is relatively more likely to result from

an attack by i∗ than from no attack (or from an attack by any i 6= i∗).

The next Proposition shows that, if s is more informative than s′ and the defender is more

aggressive after s′ with commitment than without, then the defender is also more aggressive after

s with commitment than without. (Conversely, if the defender is less aggressive after s with com-

mitment, then the defender is also less aggressive after s′ with commitment.) That is, commitment

favors more aggressive retaliation following more informative signals. The intuition is that the abil-

ity to commit tilts the defender towards relying on the most informative signals to deter attacks,

and any offsetting effects resulting from the increased probability of false alarms are confined to

less informative signals.

Note that the following result concerns the defender’s aggressiveness toward any attacker, not

only the attacker i∗ used to compare s and s′.

Proposition 7 Let (x, y) be the no-commitment equilibrium and let (x̃, ỹ) be the commitment equi-

librium. Fix an attacker i ∈ I and signals s, s′ ∈ S such that s and s′ are comparable, s is more

informative than s′, and min
{
ysi , y

s′
i , ỹ

s
i , ỹ

s′
i

}
> 0. If ỹs

′
i ≤ ys

′
i , then ỹsi ≤ ysi ; and if ỹsi ≥ ysi , then

ỹs
′
i ≥ ys

′
i .

Theorem 4 is in broad agreement with recent arguments calling for more aggressive cyberdeter-

rence (e.g., Hennessy 2017). However, Example 3 shows that improving cyberdeterrence is more

subtle than simply increasing aggressiveness across the board. While the optimal policy has the
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defender retaliating more aggressively some of the time, it does not necessarily involve increased

retaliation after all signal realizations that point to an attack. This is because some signal realiza-

tions may do a relatively poor job of distinguishing among potential attackers. Increased retaliation

following such signal realizations may do little to influence the marginal incentives of attackers while

leading to significant costs of triggering erroneous retaliation. Moreover, as retaliatory aggressive-

ness ramps up and deters ever more attacks, this risk becomes greater, as a larger share of perceived

attacks will turn out to be false alarms.

Our analysis can also be contrasted with the suggestion by Clarke and Knake (2010) that

cybersecurity would be enhanced by a policy that holds governments responsible for any cyberattack

originating from their territory, whether state sanctioned or otherwise. Such a policy is one way of

increasing retaliatory aggressiveness across the board, since it holds governments accountable for

an extremely wide range of attacks. The problem with such a policy, from our perspective, is that

it could lead to increased retaliation following relatively uninformative signals (e.g., the simple fact

that an attack emanates from servers in Abu Dhabi or China). Increased aggressiveness following

such uninformative signals heightens the risk of retaliation against an innocent actor.

7 Conclusion

Motivated by recent developments in cyberwarfare, we develop a model of deterrence with imperfect

attribution. There are several main findings.

First, a form of endogenous strategic complementarity arises among the different potential

attackers. Increased aggressiveness on the part of one attacker makes all other attackers more

aggressive, due to the possibility of “hiding their attacks” behind the first attacker.

Second, improving the defender’s information has subtle—and sometimes counterintuitive—

effects on the efficacy of deterrence. Improving either the defender’s ability to detect attacks or her

ability to identify attackers can make deterrence less effective. However, simultaneously improving

both detection and identification—in that some attacks that previously went undetected are now

both detected and correctly attributed—always improves deterrence. Reducing false alarms also

always reduces attacks, as does replacing misattribution with non-detection.

Third, deterrence is unequivocally enhanced by introducing a more destructive weapon to the

defender’s arsenal, but adding a less destructive weapon can undermine deterrence. Further, attri-

bution problems create incentives for false-flag operations. Consistent with qualitative observations,
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attackers are more likely to be the victim of false-flag operations if they are themselves more ag-

gressive or if their attacks are easier to detect, identify, or mimic.

Fourth, deterrence is always more effective if the defender can commit in advance to a retaliatory

strategy. However, the defender should not necessarily commit to retaliate more after every possible

signal, and should instead base retaliation on only the most informative signals. The defender also

should not commit to retaliate more against the most aggressive attackers, but rather against the

most deterrable attackers.

We have considered a very simple and stylized model in order to clarify some basic strategic

issues that arise under imperfect attribution of attacks. There are many possible extensions and

elaborations. For example, we have studied an asymmetric model where the roles of attacker

and defender are distinct. More realistically, players might both attack others and face attacks

themselves. In such a model, player A may attack player B, but player B might be reluctant to

retaliate, fearing a future counterattack or an escalation into conventional war. Or player A may

be attacked by player B but attribute the attack to player C, and hence retaliate against player C.

But this in turn triggers retaliation by player C, and attacks and retaliation may spread through

the international system. How can peace be maintained in such a dynamic model with risks of

multilateral misattribution and escalation?

A second possible extension would introduce different types of attacks, perhaps along with

uncertainty as to each actor’s capability. In such a model, would deterrence be reserved for the

largest attacks, even at the cost of allowing constant low-level intrusions? Would the ability to

signal cyber-capability lead to coordination on a peaceful equilibrium, or to perverse incentives

leading to conflict? We hope the current paper may inspire further research on these important

and timely questions.
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Appendix: Omitted Proofs

Proof of Lemma 1. When attacker i’s type is xi, his expected payoff when he attacks is xi −∑
s π

s
i r
s
i , and his expected payoff when he has the opportunity to attack but does not attack is

−
∑

s π
s
0r
s
i . Therefore, i attacks when he has the opportunity if xi >

∑
s (πsi − πs0) rsi , and he does

not attack if xi <
∑

s (πsi − πs0) rsi .

Proof of Lemma 2. When the defender’s type is y, her (additional) payoff from retaliating against

attacker i after signal s is yi − 1 + βsi (p). Therefore, she retaliates if yi > 1− βsi (p), and does not

retaliate if yi < 1− βsi (p).

Proof of Lemma 3. Note that

y0∗
i = 1− β0

i (p)

= 1− γpiπ
0
i

nπ0
0 − γ

∑
j pj

(
π0

0 − π0
j

)
≥ 1− γπ0

i

nπ0
0 − γ (n− 1)π0

0 − γ
(
π0

0 − π0
i

) =
n (1− γ)π0

0

n (1− γ)π0
0 + γπ0

i

,

where the inequality follows because π0
0 ≥ π0

j for all j. The lemma now follows by (1).

Proof of Proposition 1. Equation (5) follows from combining (2), (4), x∗i = F−1
i (1− pi), and

ys∗i = G−1
i (1− rsi ), and recalling that r0

i = 0. Equation (6) then follows from (3). The equation

for rsi follows from combining (4) and ys∗i = G−1
i (1− rsi ).

Proof of Proposition 4. Fix a permutation ρ on I mapping i to j and a corresponding permu-

tation ρ′ on S\ {0}. Then

x∗i =
∑
s 6=0

(πsi − πs0) (1−G(1− βsi ))

=
∑
s 6=0

(πsi − πs0)

(
1−G

(
1− γ (1− Fi (x∗i ))π

s
i

nπs0 + γ
∑

k

(
1− Fk

(
x∗k
)) (

πsk − πs0
)))
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and

x∗j =
∑
s 6=0

(
π
ρ′(s)
j − πρ

′(s)
0

)(
1−G(1− βρ

′(s)
j )

)

=
∑
s 6=0

(
π
ρ′(s)
j − πρ

′(s)
0

)1−G

1−
γ
(

1− Fj
(
x∗j

))
π
ρ′(s)
j

nπ
ρ′(s)
0 + γ

∑
k

(
1− Fk

(
x∗k
)) (

π
ρ′(s)
k − πρ

′(s)
0

)


=
∑
s 6=0

(πsi − πs0)

1−G

1−
γ
(

1− Fj
(
x∗j

))
πsi

nπs0 + γ
∑

k

(
1− Fk

(
x∗k
)) (

πsk − πs0
)
 .

Hence,

x∗i > x∗j ⇐⇒ Fi (x∗i ) < Fj
(
x∗j
)
⇐⇒ pi > pj ⇐⇒ βsi > β

ρ′(s)
j for all s ∈ S\ {0} .

Proof of Theorem 2. Suppose towards a contradiction that p̃i > pi for some i. Let i ∈ argmax p̃i
pi

.

Since p̃i > pi, we must have xi (p̃; π̃) < xi (p;π). Combined with the assumption that xi (p; π̃) ≥

xi (p;π), we have xi (p̃; π̃) < xi (p; π̃). But, for every s 6= 0, we have

βsi (p̃; π̃) =
γp̃iπ̃

s
i

nπ̃s0 + γ
∑

j p̃j

(
π̃sj − π̃s0

)
=

pi
p̃i
γp̃iπ̃

s
i

pi
p̃i
nπ̃s0 + pi

p̃i
γ
∑

j p̃j

(
π̃sj − π̃s0

)
≥ γpiπ̃

s
i

nπ̃s0 + γ
∑

j pj

(
π̃sj − π̃s0

) = βsi (p; π̃) ,

where the inequality follows because pi
p̃i
≤ pj

p̃j
for all j ∈ I and pi

p̃i
< 1. This implies rsi (p̃; π̃) ≥

rsi (p; π̃), and hence (since π̃si ≥ π̃s0 for all s 6= 0) xi (p̃; π̃) ≥ xi (p; π̃). Contradiction.

The proof of the strict inequality is almost identical: Now p̃i ≥ pi implies xi (p̃; π̃) ≤ xi (p;π),

which combined with the assumption that xi (p; π̃) > xi (p;π) again implies xi (p̃; π̃) < xi (p; π̃).

The same argument now gives a contradiction.

Proof of Theorem 3. By Theorem 2, it suffices to show that xj (p; π̃) ≥ xj (p;π) for all j. Note
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that, for all j,

xj (p; π̃)− xj (p;π) =
∑
s 6=0

(
π̃sj − π̃s0

)
rsj (p; π̃)−

∑
s 6=0

(
πsj − πs0

)
rsj (p;π)

=
(
π̃sj − π̃s0

)
rsj (p; π̃) +

(
π̃s
′
j − π̃s

′
0

)
rs
′
j (p; π̃)

−
(
πsj − πs0

)
rsj (p;π)−

(
πs
′
j − πs

′
0

)
rs
′
j (p;π) ,

and π̃s0 = πs0 and π̃s
′

0 = πs
′

0 .

For j = i, note that βsi (p; π̃) ≤ βsi (p;π), and hence rsi (p; π̃) ≤ rsi (p;π) = 0, so rsi (p; π̃) = 0.

Conversely, βs
′
i (p; π̃) ≥ βsi (p;π), and hence rs

′
i (p; π̃) ≥ rs′i (p;π). Therefore,

xi (p; π̃)− xi (p;π) =
(
π̃s
′
i − π̃s

′
0

)
rs
′
i (p; π̃)−

(
πs
′
i − πs

′
0

)
rs
′
i (p;π)

≥
(
π̃s
′
i − π̃s

′
0 − πs

′
i + πs

′
0

)
rs
′
i (p;π)

≥ 0,

where the last inequality uses π̃s
′
i > πs

′
i and π̃s

′
0 = πs

′
0 .

For j 6= i, note that βsj (p; π̃) ≥ βsj (p;π), and hence rsj (p; π̃) ≥ rsj (p;π). Conversely, βs
′
j (p; π̃) ≤

βs
′
j (p;π), and hence rs

′
j (p; π̃) ≤ rs′j (p;π) = 0, so rs

′
j (p; π̃) = 0. Therefore,

xj (p; π̃)− xj (p;π) =
(
π̃sj − π̃s0

)
rsj (p; π̃)−

(
πsj − πs0

)
rsj (p;π)

=
(
πsj − πs0

) (
rsj (p; π̃)− rsj (p;π)

)
≥ 0,

where the second equality uses π̃sj = πsj and π̃s0 = πs0.

For the strict inequality, note that rs
′
i > 0 implies pi > 0 because, if attacker i never attacks,

the defender’s payoff from retaliation yi−1 is negative as yi < 1 with probability one. Next, pi > 0

implies βs
′
i (p; π̃) > βsi (p;π) as π̃s

′
i > πs

′
i . Finally, since G has positive density on its support, rs

′
i > 0

and βs
′
i (p; π̃) > βsi (p;π) imply rs

′
i (p; π̃) > rs

′
i (p;π) and hence xi (p; π̃) > xi (p;π). Similarly, rsj > 0

implies pj > 0 and βsj (p; π̃) > βsj (p;π) so rsj (p; π̃) > rsj (p;π) and hence xj (p; π̃) > xj (p;π).

Proof of Claim 1. It suffices to check that these strategies form an equilibrium. Given the

conditional attack probabilities and the information structure, the defender’s posterior beliefs (βsi )
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are given by

β0
0 = 51

64 β0
1 = 8

64 β0
2 = 5

64

β1
0 = 0 β1

1 = 16
21 β1

2 = 5
21

β2
0 = 0 β2

1 = 0 β2
2 = 1

.

Since y = 1
4 , the defender retaliates against attacker i after signal s iff βsi >

3
4 . Thus, the defender

retaliates against attacker 1 iff s = 1, and the defender retaliates against attacker 2 iff s = 2.

Therefore, x∗1 = 2
3 and x∗2 = 1

3 . It follows that attacker 1 attacks iff x1 = xH1 and attacker 2 attacks

iff x2 = xH2 . So this is an equilibrium.

Proof of Claim 2. Again, we check that these strategies form an equilibrium. Combining the

conditional attack probabilities and the information structure, the defender’s posterior beliefs are

given by

β0
0 = 3

4 β0
1 = 0 β0

2 = 1
4

β1
0 = 0 β1

1 = 2
3 β1

2 = 1
3

β2
0 = 0 β2

1 = 1
2 β2

2 = 1
2

.

Note that βsi <
3
4 for all i ∈ {1, 2} and all s. Hence, the defender never retaliates. This implies

that x∗1 = x∗2 = 0, so both attackers always attack.

Proof of Claim 3. It is clear that the equilibrium must be in mixed strategies. Let p be the

probability the attacker attacks. The defender’s posterior belief when s = 1 is β1
1 = 3p

1+2p . For the

defender to be indifferent, this must equal 1
2 . This gives p = 1

4 .

For the attacker to be indifferent, the retaliation probability when s = 1 must solve
(

3
4 −

1
4

)
r1 =

1
3 , or r = 2

3 .

Proof of Claim 4. Clearly, the defender retaliates with probability 1 when s = 2. As x > π̃2
1,

this is not enough to deter an attack, so the defender must also retaliate with positive probability

when s = 1. The defender’s posterior belief when s = 1 is now β̃1
1 = 2p

1+p . For the defender to be

indifferent, this must equal 1
2 . This gives p = 1

3 .

For the attacker to be indifferent, the retaliation probability when s = 1 must solve
(

1
2 −

1
4

)
r1 +(

1
4

)
(1) = 1

3 , or r = 1
3 .

Proof of Proposition 5. Let ri (βsi ) (resp., r̃i (βsi )) denote the expected disutility inflicted on

the attacker from the defender’s ex post optimal retaliation strategy at belief βsi , when the new

weapon is unavailable (resp., available). We claim that ri (βsi ) ≤ r̃i (βsi ) for every βsi . To see this,

let Pr (a|A) denote the probability that the defender retaliates with weapon a given arsenal A, and
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note that

ri (βsi ) = Pr (a = o|A = {0, o})wo = wo − Pr (a = 0|A = {0, o})wo,

while

r̃i (βsi ) = Pr (a = o|A = {0, o, n})wo + Pr (a = n|A = {0, o, n})wn

≥ wo − Pr (a = 0|A = {0, o, n})wo,

and Pr (a = 0|A = {0, o, n}) ≤ Pr (a = 0|A = {0, o}) by revealed preference.

Now, as in the proof of Proposition 1, for every i we have

x∗i =
∑
s 6=0

(
πsi − π0

i

)
ri (βsi ) .

Hence, shifting up ri (·) is analogous to shifting down Gi (·), so by the same argument as in the

proof of Proposition 3, this decreases pi for all i.

It remains to show that u ≤ ũ. This can be seen in two steps. First, holding the attack

probabilities fixed at p̃, the defender is weakly better off when the new weapon is added to her

arsenal (by revealed preference). Next, holding the arsenal fixed, the defender is weakly better off

when she best-responds to attack probabilities p̃ rather than p. This follows because, since K > ya,

for any fixed retaliation strategy the defender receives a higher payoff when facing p̃ rather than p.

Combining these observations, the defender is better off best-responding to p̃ with a larger arsenal

rather than best-responding to p with a smaller arsenal.

Proof of Claim 5. We check that these strategies form an equilibrium. Note that the defender’s

posterior beliefs (βsi ) are given by

β0
0 = 3

4 β0
1 = 1

4

β1
0 = 1

2 β1
1 = 1

2

β2
0 = 1

4 β2
1 = 3

4

Recall that the defender retaliates iff βs1 > 1−y. Hence, when y = yL the defender never retaliates,

and when y = yH the defender retaliates when s ∈ {1, 2}. Therefore,

x∗ =
(
π1

1 − π1
0

)
r1 +

(
π2

1 − π2
0

)
r2 = (0)

1

2
+

(
1

2
− 1

6

)
1

2
=

1

6
.

Hence, the attacker attacks whenever he has an opportunity.
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Proof of Claim 6. First, note that these retaliation probabilities deter attacks when x = xL,

and yield a higher defender payoff than any strategy that does not deter attacks when x = xL. So

the commitment solution will deter attacks when x = xL. Note also that it is impossible to deter

attacks when x = xH . So the commitment solution must have p1 = 1
4 .

When p1 = 1
4 , the defender’s posterior beliefs (βsi ) are given by

β0
0 = 9

10 β0
1 = 1

10

β1
0 = 3

4 β1
1 = 1

4

β2
0 = 1

2 β2
1 = 1

2

With these beliefs, ignoring the effect on deterrence, it is not optimal for the defender to retaliate

when s ∈ {0, 1}. Furthermore, retaliating after s ∈ {0, 1} weakly increases the attacker’s incentive

to attack. So the commitment solution involves retaliation only when s = 2.

Finally, when s = 2, it is profitable for the defender to retaliate when y = yH and unprofitable

to retaliate when y = yL. So the solution involves retaliation with probability 1 when y = yH ,

and retaliation with the smallest probability required to deter attacks by the x = xL type attacker

when y = yL. This solution is given by retaliating with probability 1
2 when y = yL.

Proof of Theorem 4. By the defender’s FOC with commitment, for all i ∈ I,

p̃i = 1− Fi

∑
s 6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i p̃j

(
πsj − πs0

)
− γp̃iπ0

i − l̄i

nπs0 + γ
∑

j 6=i p̃j

(
πsj − πs0

)
+ γp̃i

(
πsi − π0

i

)
 (8)

for some constant l̄i ≥ 0. Fix a vector l̄ =
(
l̄i
)n
i=1
≥ 0, and let p̃

(
l̄
)

=
(
p̃i
(
l̄
))
i∈I denote a solution

to (8). We claim that p̃i
(
l̄
)
≥ pi for all i.

To see this, recall that p is the unique fixed point of the function h : [0, 1]n → [0, 1]n, where

hi (p) is the unique solution p′i to (7). Similarly, p̃i
(
l̄
)

is the unique fixed point of the function

h̃ : [0, 1]n → [0, 1]n, where h̃i (p) is the unique solution p′i to

p′i = 1− Fi

∑
s 6=0

(πsi − πs0)

1−Gi

 nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
− γp′iπ0

i − l̄i

nπs0 + γ
∑

j 6=i pj

(
πsj − πs0

)
+ γp′i

(
πsi − π0

i

)
 .

Note that h̃i (p) is non-decreasing in pj for all j ∈ I. In addition hi (p) ≥ h̃i (p) for all i ∈ I and

p ∈ [0, 1]n. As h and h̃ are monotone and continuous, and p and p̃ are the greatest fixed points of

h and h̃, respectively, p = limm→∞ h
m ((1, . . . , 1)) ≥ limm→∞ h̃

m ((1, . . . , 1)) = p̃.
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Proof of Proposition 7. Under the assumption min
{
ysi , y

s′
i , ỹ

s
i , ỹ

s′
i

}
> 0, the defender’s FOC is

necessary and sufficient for optimality. Under the FOC,

ys
′
i = 1− γpiπ

s′
i

nπs
′

0 + γ
∑

j pj

(
πs
′
j − πs

′
0

) ,
ỹs
′
i = 1−

γp̃iπ
s′
i + γfi (x̃i)

(
πs
′
i − πs

′
0

)
li (ỹ)

nπs
′

0 + γ
∑

j p̃j

(
πs
′
j − πs

′
0

) .

Hence, ỹs
′
i ≤ ys

′
i if and only if

γp̃iπ
s′
i + γfi (x̃i)

(
πs
′
i − πs

′
0

)
li (ỹ)

nπs
′

0 + γ
∑

j p̃j

(
πs
′
j − πs

′
0

) ≥ γpiπ
s′
i

nπs
′

0 + γ
∑

j pj

(
πs
′
j − πs

′
0

)
⇐⇒

1

pi

[
p̃i + fi (x̃i)

(
1− πs

′
0

πs
′
i

)
li (ỹ)

]
≥
nπs

′
0 + γ

∑
j p̃j

(
πs
′
j − πs

′
0

)
nπs

′
0 + γ

∑
j pj

(
πs
′
j − πs

′
0

) . (9)

If s and s′ are comparable and s is more informative than s′, then the left-hand side of (9) is greater

for s than for s′. Hence, it suffices to show that

nπs0 + γ
∑

j p̃j

(
πsj − πs0

)
nπs0 + γ

∑
j pj

(
πsj − πs0

) ≤ nπs
′

0 + γ
∑

j p̃j

(
πs
′
j − πs

′
0

)
nπs

′
0 + γ

∑
j pj

(
πs
′
j − πs

′
0

) .

45



Fixing i∗ such that πsi = πs0 and πs
′
i = πs

′
0 for all i 6= i∗, this is equivalent to

nπs0 + γp̃i∗ (πsi∗ − πs0)

nπs0 + γpi∗ (πsi∗ − πs0)
≤
nπs

′
0 + γp̃i∗

(
πs
′
i∗ − πs

′
0

)
nπs

′
0 + γpi∗

(
πs
′
i∗ − πs

′
0

)
⇐⇒[

n+ γp̃i∗

(
πsi∗

πs0
− 1

)][
n+ γpi∗

(
πs
′
i∗

πs
′

0

− 1

)]
≤

[
n+ γp̃i∗

(
πs
′
i∗

πs
′

0

− 1

)][
n+ γpi∗

(
πsi∗

πs0
− 1

)]
⇐⇒

p̃i∗

(
πsi∗

πs0
− 1

)
+ pi∗

(
πs
′
i∗

πs
′

0

− 1

)
≤ p̃i∗

(
πs
′
i∗

πs
′

0

− 1

)
+ pi∗

(
πsi∗

πs0
− 1

)
⇐⇒

p̃i∗

(
πsi∗

πs0
− πs

′
i∗

πs
′

0

)
≤ pi∗

(
πsi∗

πs0
− πs

′
i∗

πs
′

0

)
.

Since p̃i∗ ≤ pi∗ (by Proposition 4) and
πs
i∗
πs
0
≥ πs′

i∗

πs′
0

(as s is more informative than s′), this inequality

is satisfied.
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Crèmer, Jacques. 1995. “Arm’s Length Relationships.” Quarterly Journal of Economics 110(2):275–
295.

Department of Defense. 2015. “The DoD Cyber Strategy.” Available at: http:

//archive.defense.gov/home/features/2015/0415_cyber-strategy/final_2015_dod_

cyber_strategy_for_web.pdf.

Department of Defense. 2018. “Summary: DoD Cyber Strategy 2018.” Available at:
https://media.defense.gov/2018/Sep/18/2002041658/-1/-1/1/CYBER_STRATEGY_

SUMMARY_FINAL.PDF.

Di Lonardo, Livio and Scott A. Tyson. 2018. “Political Instability and the Failure of Deterrence.”
University of Rochester typescript.

Edwards, Benjamin, Alexander Furnas, Stephanie Forrest and Robert Axelrod. 2017. “Strate-
gic Aspects of Cyberattack, Attribution, and Blame.” Proceedings of the National Academy of
Sciences 114(11):2825–2830.

Fearon, James D. 1997. “Signaling Foreign Policy Interests: Tying Hands versus Sinking Costs.”
Journal of Conflict Resolution 41(1):68–90.

Feaver, Peter and Kenneth Geers. 2017. ‘When the Urgency of Time and Circumstances Clearly
Does Not Permit. . . ’: Pre-Delegation in Nuclear and Cyber Scenarios. In Understanding Cyber
Conflict: 14 Analogies, ed. George Perkovich and Ariel E. Levite. Georgetown University Press.

Ferrer, Rosa. 2010. “Breaking the Law when Others Do: A Model of Law Enforcement with
Neighborhood Externalities.” European Economic Review 54(2):163–180.

Freeman, Scott, Jeffrey Grogger and Jon Sonstelie. 1996. “The Spatial Concentration of Crime.”
Journal of Urban Economics 40(2):216–231.

Glaeser, Edward L., Bruce Sacerdote and Jose A. Scheinkman. 1996. “Crime and Social Interac-
tions.” Quarterly Journal of Economics 111(2):507–548.

Goldsmith, Jack. 2013. “How Cyber Changes the Laws of War.” European Journal of International
Law 24(1):129–138.

Graetz, Michael J., Jennifer F. Reinganum and Louis L. Wilde. 1986. “The Tax Compliance
Game: Toward an Interactive Theory of Law Enforcement.” Journal of Law, Economics and
Organization 2:1–32.

Green, Edward J. and Robert H. Porter. 1984. “Noncooperative Collusion under Imperfect Price
Information.” Econometrica 52(1):87–100.

Hayden, Michael. 2011. “Statement for the Record, House Permanent Select Committee on Intel-
ligence, The Cyber Threat.” Available at https://www.hsdl.org/?view&did=689629.

Hennessy, Susan. 2017. “Deterring Cyberattacks: How to Reduce Vulnerability.” Foreign Affairs
November/December.

Hohzaki, Ryusuke. 2007. “An Inspection Game with Multiple Inspectees.” European Journal of
Operational Research 178(3):894–906.

Information Warfare Monitor. 2009. “Tracking GhostNet: Investing a Cyber Espionage Network.”.

48



Jervis, Robert. 1978. “Cooperation Under the Security Dilemma.” World Politics 30(2):167–214.

Jervis, Robert. 1979. “Deterrence Theory Revisited.” World Politics 31:289–324.

Kaplan, Fred. 2016. Dark Territory: The Secret History of Cyber War. Simon & Schuster.

Kello, Lucas. 2017. The Virtual Weapon. New Haven: Yale University Press.

Khalil, Fahad. 1997. “Auditing without Commitment.” RAND Journal of Economics 28(4):629–
640.

Kollars, Nina and Jacquelyn Schenieder. 2018. “Defending Forward: The 2018 Cyber Strategy is
Here.” War on the Rocks September 20.

Kydd, Andrew. 1997. “Game Theory and the Spiral Model.” World Politics 49(3):371–400.

Lando, Henrik. 2006. “Does Wrongful Conviction Lower Deterrence?” Journal of Legal Studies
35(2):327–337.

Libicki, Martin C., Lillian Ablon and Tim Webb. 2015. The Defender’s Dilemma: Charting a
Course Toward Cybersecurity. Rand Corporation.

Lindsay, Jon R. 2015. “Tipping the Scales: The Attribution Problem and the Feasibility of Deter-
rence Against Cyberattack.” 1(1):53–67.

McDermott, Rose, Anthony C. Lopez and Peter K. Hatemi. 2017. “‘Blunt Not the Heart, Enrage
It’: The Psychology of Revenge and Deterrence.” Texas National Security Review 1(1):69–89.

Milgrom, Paul and John Roberts. 1994. “Comparing Equilibria.” American Economic Review
84(3):441–459.

Mookherjee, Dilip and Ivan Png. 1989. “Optimal Auditing, Insurance, and Redistribution.”
104(2):399–415.

Myerson, Roger B. 2009. “Learning from Schelling’s Strategy of Conflict.” Journal of Economic
Literature 47(4):1109–1125.

Nakashima, Ellen. 2018. “Russian Spies Hacked the Olympics and Tried to Make it Look Like
North Korea Did it, U.S. Officials Say.” Washington Post February 24.

Nye, Jr., Joseph S. 2011. “Nuclear Lessons for Cyber Security?” Strategic Studies Quarterly
5(4):18–38.

Panetta, Leon. 2012. “Remarks by Secretary Panetta on Cybersecurity to the Business Ex-
ecutives for National Security.” Available at: http://archive.defense.gov/transcripts/

transcript.aspx?transcriptid=5136.

Png, Ivan. 1986. “Optimal Subsidies and Damages in the Presence of Judicial Error.” International
Review of Law and Economics 6(1):101–105.

Polinsky, A. Mitchell and Steven Shavell. 2000. “The Economic Theory of Public Enforcement of
Law.” Journal of Economic Literature 38(1):45–76.

Powell, Robert. 1990. Nuclear Deterrence Theory: The Search for Credibility. Cambridge University
Press.

49



Radner, Roy. 1986. “Repeated Principal-Agent Games with Discounting.” Econometrica
53(5):1173–1198.

Rogin, Josh. 2010. “The Top 10 Chinese Cyber Attacks (That We Know Of).” Foreign Policy
January 22.

Rohner, Dominic, Mathias Thoenig and Fabrizio Zilibotti. 2013. “War Signals: A Theory of Trade,
Trust and Conflict.” Review of Economic Studies 80(3):1114–1147.

Sah, Raaj K. 1991. “Social Osmosis and Patterns of Crime.” Journal of Political Economy 99:1272–
1295.

Sanger, David. 2018. “Trump Loosens Secretive Restraints on Ordering Cyberattacks.” New York
Times September 20.

Sanger, David and William Broad. 2018. “Pentagon Suggests Countering Devastating Cyberattacks
With Nuclear Arms.” New York Times January 16.

Schelling, Thomas C. 1960. The Strategy of Conflict. Cambridge: Harvard University Press.

Schrag, Joel and Suzanne Scotchmer. 1997. “The Self-Reinforcing Nature of Crime.” International
Review of Law and Economics 17(3):325–335.

Segerson, Kathleen. 1988. “Uncertainty and Incentives for Nonpoint Pollution Control.” Journal
of Environmental Economics and Management 15(1):87–98.

Shachtman, Noah. 2010. “Insiders Doubt 2008 Pentagon Hack was Foreign Spy Attack.” Wired
August 25.

Shavell, Steven. 1985. “Uncertainty Over Causation and the Determination of Civil Liability.”
Journal of Law and Economics 28(3):587–609.

Shaver, Andrew and Jacob N. Shapiro. Forthcoming. “The Effect of Civilian Casualties on Wartime
Informing: Evidence from the Iraq War.” Journal of Conflict Resolution .

Shevchenko, Vitaly. 2014. “‘Little Green Men’ or ‘Russian Invaders’?” BBC March 11.

Singer, P.W. and Allan Friedman. 2014. Cybersecurity and Cyberwar: What Everyone Needs to
Know. Oxford University Press.

Smith, Alastair. 1998. “International Crises and Domestic Politics.” American Political Science
Review 92(3):623–638.

Snyder, Glenn H. 1961. Deterrence and Defense: Toward a Theory of National Security. Princeton
University Press.

Sullivan, Eileen, Noah Weiland and Kate Conger. 2018. “Attempted Hacking of Voter Database
Was a False Alarm, Democratic Party Says.” New York Times August 23.

ThreatConnect. 2016. “Guccifer 2.0: All Roads Lead to Russia.” Available at https://

threatconnect.com/blog/guccifer-2-all-roads-lead-russia/.

Trager, Robert F. and Dessislava P. Zagorcheva. 2006. “Deterring Terrorism: It Can Be Done.”
International Security 30(3):87–123.

50



Tsebelis, George. 1989. “The Abuse of Probability In Political Analysis: The Robinson Crusoe
Fallacy.” American Political Science Review 83(1):77–91.

United States. 2018. “National Cyber Strategy.” Available at: https://www.whitehouse.gov/

wp-content/uploads/2018/09/National-Cyber-Strategy.pdf.

Weissing, Franz J. and Elinor Ostrom. 1991. Irrigation Institutions and the Games Irrigators
Play: Rule Enforcement without Guards. In Game Equilibrium Models II: Methods, Morals, and
Markets, ed. Reinhard Selten. Springer-Verlag pp. 188–262.

51


