1 Pointwise vs. Uniform Consistency in Level

Let X;,7=1,...,n be ii.d. data from some distribution P € P. Suppose
one wishes to test the null hypothesis Hy : P € Py C P. To this end, one
may consider a test function ¢, = ¢,(X1,...,X,) such that controls the
probability of a Type 1 error in some sense. Ideally, we would like the test
to satisfy

Ep[pn] < aforall P € Py, (1)

but many times this is too demanding a requirement. As a result, we may
settle instead for tests such that

limsup Ep[¢,] < a for all P € Py . (2)

n—oo

Tests satisfying (1) are said to be of level o for P € Py, whereas tests
satisfying (2) are said to be pointwise asymptotically of level « for P € Py.
The hope is that if (2) holds, then (1) holds approximately, at least for large
enough n. But this is not true. All that (2) ensures is that for each P € Py
and € > 0 there is an N(P) such that for all n > N(P)

Ep[pp] <a+e.

Importantly, the sample size required for the approximation to work, N(P),
may depend on P. As a result, it could be the case that for every sample

size n (even, e.g., for n = 10'°) there could be P = P, € Pq such that
Ep[qbn] > .

Consider the following concrete example of this phenomenon. Suppose
P={PonR:0<0%P)<oc}and Py ={P € P:puP) =0} Let ¢,
be the t-test; that is, ¢, = I{\/nX, > 6nz1_a}, Where z1_, is the 1 — «

quantile of the standard normal distribution. We know that
Ep[¢n] — a for all P € Py ,

but it turns out that the t-test suffers from the problem described above.

In fact, we can show that for every 0 < ¢ < 1 and every sample size n there



exists a P = P, . such that

Ep[pn] > c.

To see this, let n and ¢ be given. Let P be the distribution that puts mass
1 —pon p and mass p on —(1 — p). We will specify p in a minute, but first
note that for such a distribution P all of the X; are in fact equal to p > 0
with probability (1 — p)™. For such a sequence of observations, ,, = 0 and
VnX, >0, 50 ¢, = 1. The probability of rejection, Ep[¢,], is therefore at
least (1 —p)™. Now all that remains is to choose p so that (1 —p)"™ = ¢; that
is, p=1—cl/™

To rule this very disturbing possibility out, we need to ensure that the

convergence in (2) is uniform for P € Py; that is,

limsup sup Ep[¢n] < a . (3)
n—oo  PePg

Tests satisfying (3) are said to be uniformly asymptotically of level a for
P € Py. This requirement implies that for each € > 0 there is an N (which
does not depend on P) such that for all n > N

EP[¢n] <a-+te.

In the case of the t-test, the above example shows us that this is not true
for P={PonR:0<0%P)<oo}and Py={P € P:pu(P)=0}

It is possible that this shortcoming is due to the t-test — — perhaps
there are other tests of the same null hypothesis that would behave more
reasonably. Unfortunately, we can show that this is not the case, provided
that P is “‘sufficiently rich”. Formally, we have the following result due to
Bahadur and Savage (1956):

Theorem 1.1 Let P be a class of distributions on R such that
(i) For every P € P, u(P) exists and is finite;

(ii) For every m € R, there is P € P such that u(P) = m;



(iii) P is convex in the sense that if Py and P, are in P, then yP+(1—7) P,
is in P for v € [0, 1].

Let X;,i=1,...,n be ii.d. with distribution P € P. Let ¢,, be any test of
the null hypothesis Hy : p1(P) = 0. Then,

(a) Any test of Hy which has size « for P has power < « for any alternative
PcP.

(b) Any test of Hy which has power (3 against some alternative P € P has
size > (.

The proof of this result will follow from the following lemma:

Lemma 1.1 Let X;,2=1,...,n bei.i.d. with distribution P € P, where a
P is the class of distributions on R satisfying (i) - (iii) in Theorem 2.1. Let

¢n be any test function. Define
P, ={PeP:uP)=m}.

Then,

inf Ep[¢,] and Ep|on
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are independent of m.

PROOF: We show first that suppcp Ep[¢y] does not depend on m. Let m

be given and choose m’ # m. We wish to show that

sup Ep[¢,] = sup Ep[¢y,] .
PEPm/ PeP,,

To this end, choose Pj,j > 1 so that

lim Ep,[¢n] = sup Ep[pn] -
J—0o0 PeP,,

Let h; be defined so that

1 1
m/:(l—*)m—i-*h .
j i’



Choose Hj so that u(H;) = hj. Define

1 1
j= (=P + S8,

Thus, G; € P,,,. Note that with probability (1 — %)”, a sample of size n

from G is simply a sample of size n from P;. Therefore,

sup Epldn] > Ea,[én] > (1 — 2" Ep, 6]
PeP,,, J

But (1 — %)” — 1 and Ep,[¢n] — suppep,, Ep[¢n] as j — oo. Therefore,

sup Ep[¢,] > sup Ep[¢n] .
PeP,, PeP,,

Interchanging the roles of m and m/, we can establish the reverse inequality

sup Ep[¢,] < sup Ep[py] .
PEPm/ PeP,,

We could replace ¢, with 1 — ¢,, to establish that infpcp,, Ep[¢y] does not

depend on m. m

PROOF OF THEOREM 2.1: (a) Let ¢, be a test of size a for P. Let P’ be
any alternative. Define m = p(P’). Then,

Ep/[¢pn] < sup Ep[p,] = sup Eplon] =« .
PeP,, PePy

The proof of (b) is similar. m

The class of distributions with finite second moment satisfies the require-
ments of the theorem, as does the class of distributions with infinitely many
moments. Thus, the failure of the ¢-test is not special to the t¢-test; in this
setting, there simply exist no “reasonable” tests. But this does not mean
that all hope is lost. By restricting the class of distributions some, it is pos-
sible to construct reasonable tests about the mean. In fact, the t-test does
satisfy (3) for certain large classes of distributions that are somewhat smaller
than Pg. See Chapter 11 of Lehmann and Romano (2005) for details.



