
1 Pointwise vs. Uniform Consistency in Level

Let Xi, i = 1, . . . , n be i.i.d. data from some distribution P ∈ P. Suppose

one wishes to test the null hypothesis H0 : P ∈ P0 ( P. To this end, one

may consider a test function φn = φn(X1, . . . , Xn) such that controls the

probability of a Type 1 error in some sense. Ideally, we would like the test

to satisfy

EP [φn] ≤ α for all P ∈ P0 , (1)

but many times this is too demanding a requirement. As a result, we may

settle instead for tests such that

lim sup
n→∞

EP [φn] ≤ α for all P ∈ P0 . (2)

Tests satisfying (1) are said to be of level α for P ∈ P0, whereas tests

satisfying (2) are said to be pointwise asymptotically of level α for P ∈ P0.

The hope is that if (2) holds, then (1) holds approximately, at least for large

enough n. But this is not true. All that (2) ensures is that for each P ∈ P0

and ε > 0 there is an N(P ) such that for all n > N(P )

EP [φn] ≤ α+ ε .

Importantly, the sample size required for the approximation to work, N(P ),

may depend on P . As a result, it could be the case that for every sample

size n (even, e.g., for n = 1010) there could be P = Pn ∈ P0 such that

EP [φn]� α .

Consider the following concrete example of this phenomenon. Suppose

P = {P on R : 0 < σ2(P ) < ∞} and P0 = {P ∈ P : µ(P ) = 0}. Let φn
be the t-test; that is, φn = I{

√
nX̄n > σ̂nz1−α}, where z1−α is the 1 − α

quantile of the standard normal distribution. We know that

EP [φn]→ α for all P ∈ P0 ,

but it turns out that the t-test suffers from the problem described above.

In fact, we can show that for every 0 < c < 1 and every sample size n there
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exists a P = Pn,c such that

EP [φn] ≥ c .

To see this, let n and c be given. Let P be the distribution that puts mass

1− p on p and mass p on −(1− p). We will specify p in a minute, but first

note that for such a distribution P all of the Xi are in fact equal to p > 0

with probability (1− p)n. For such a sequence of observations, σ̂n = 0 and
√
nX̄n > 0, so φn = 1. The probability of rejection, EP [φn], is therefore at

least (1− p)n. Now all that remains is to choose p so that (1− p)n = c; that

is, p = 1− c1/n.

To rule this very disturbing possibility out, we need to ensure that the

convergence in (2) is uniform for P ∈ P0; that is,

lim sup
n→∞

sup
P∈P0

EP [φn] ≤ α . (3)

Tests satisfying (3) are said to be uniformly asymptotically of level α for

P ∈ P0. This requirement implies that for each ε > 0 there is an N (which

does not depend on P ) such that for all n > N

EP [φn] ≤ α+ ε .

In the case of the t-test, the above example shows us that this is not true

for P = {P on R : 0 < σ2(P ) <∞} and P0 = {P ∈ P : µ(P ) = 0}.
It is possible that this shortcoming is due to the t-test – – perhaps

there are other tests of the same null hypothesis that would behave more

reasonably. Unfortunately, we can show that this is not the case, provided

that P is “‘sufficiently rich”. Formally, we have the following result due to

Bahadur and Savage (1956):

Theorem 1.1 Let P be a class of distributions on R such that

(i) For every P ∈ P, µ(P ) exists and is finite;

(ii) For every m ∈ R, there is P ∈ P such that µ(P ) = m;
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(iii) P is convex in the sense that if P1 and P2 are in P, then γP1+(1−γ)P2

is in P for γ ∈ [0, 1].

Let Xi, i = 1, . . . , n be i.i.d. with distribution P ∈ P. Let φn be any test of

the null hypothesis H0 : µ(P ) = 0. Then,

(a) Any test of H0 which has size α for P has power ≤ α for any alternative

P ∈ P.

(b) Any test of H0 which has power β against some alternative P ∈ P has

size ≥ β.

The proof of this result will follow from the following lemma:

Lemma 1.1 Let Xi, i = 1, . . . , n be i.i.d. with distribution P ∈ P, where a

P is the class of distributions on R satisfying (i) - (iii) in Theorem 2.1. Let

φn be any test function. Define

Pm = {P ∈ P : µ(P ) = m} .

Then,

inf
P∈Pm

EP [φn] and sup
P∈Pm

EP [φn]

are independent of m.

Proof: We show first that supP∈Pm
EP [φn] does not depend on m. Let m

be given and choose m′ 6= m. We wish to show that

sup
P∈Pm′

EP [φn] = sup
P∈Pm

EP [φn] .

To this end, choose Pj , j ≥ 1 so that

lim
j→∞

EPj [φn] = sup
P∈Pm

EP [φn] .

Let hj be defined so that

m′ = (1− 1
j

)m+
1
j
hj .

3



Choose Hj so that µ(Hj) = hj . Define

Gj = (1− 1
j

)Pj +
1
j
Hj .

Thus, Gj ∈ Pm′ . Note that with probability (1 − 1
j )n, a sample of size n

from Gj is simply a sample of size n from Pj . Therefore,

sup
P∈Pm′

EP [φn] ≥ EGj [φn] ≥ (1− 1
j

)nEPj [φn] .

But (1− 1
j )n → 1 and EPj [φn]→ supP∈Pm

EP [φn] as j →∞. Therefore,

sup
P∈Pm′

EP [φn] ≥ sup
P∈Pm

EP [φn] .

Interchanging the roles of m and m′, we can establish the reverse inequality

sup
P∈Pm′

EP [φn] ≤ sup
P∈Pm

EP [φn] .

We could replace φn with 1− φn to establish that infP∈Pm EP [φn] does not

depend on m.

Proof of Theorem 2.1: (a) Let φn be a test of size α for P. Let P ′ be

any alternative. Define m = µ(P ′). Then,

EP ′ [φn] ≤ sup
P∈Pm

EP [φn] = sup
P∈P0

EP [φn] = α .

The proof of (b) is similar.

The class of distributions with finite second moment satisfies the require-

ments of the theorem, as does the class of distributions with infinitely many

moments. Thus, the failure of the t-test is not special to the t-test; in this

setting, there simply exist no “reasonable” tests. But this does not mean

that all hope is lost. By restricting the class of distributions some, it is pos-

sible to construct reasonable tests about the mean. In fact, the t-test does

satisfy (3) for certain large classes of distributions that are somewhat smaller

than P0. See Chapter 11 of Lehmann and Romano (2005) for details.
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