
1 Asymptotic Comparisons of Estimators

Consider the following generic version of an estimation problem. One ob-

serves data Xi, i = 1, . . . , n i.i.d. with distribution P ∈ P = {Pθ : θ ∈ Θ}.
Suppose we wish to estimate ψ(θ) using the data and that we have an esti-

mator Tn = Tn(X1, . . . , Xn) such that for each θ ∈ Θ

√
n(Tn − ψ(θ)) d→ Lθ

under θ. What is the “best” possible limit distribution for such an estimator?

It is natural to measure “best” in terms of concentration, and we can

measure concentration with a loss function. A loss function `(x) is simply

any function that takes values in [0,∞). A loss function is said to be “bowl-

shaped” if the sublevel sets {x : `(x) ≤ c} are convex and symmetric about

the origin. A common bowl-shaped loss function on R is mean-squared error

loss, that is, `(x) = x2. For a given loss function `(x), a limit distribution

will be considered “good” if ∫
`(x)dLθ

is small.

If the estimator Tn is asymptotically normal in the sense that

Lθ = N(µ(θ), σ2(θ)) ,

then in order to minimize the mean-squared error loss it is optimal to have

µ(θ) = 0 and σ2(θ) as small as possible. Of course, for estimators that are

not asymptotically normal, this may not be true, and we do not wish to

restrict attention a priori to asymptotically normal estimators.

2 Hodge’s Estimator and Superefficiency

Suppose P = {N(θ, 1) : θ ∈ R} and ψ(θ) = θ. A natural estimator of θ is

the sample mean, that is, Tn = X̄n. As you already know, this estimator
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has many finite-sample optimality properties (it’s minimax for every bowl-

shaped loss function, it’s minimum variance unbiased, etc.), so we might

reasonably expect it to be optimal asymptotically as well.

A second estimator of θ, Sn, can be defined as follows:

Sn =

Tn if |Tn| ≥ n−1/4

0 if |Tn| < n−1/4
.

In words, Sn = Tn when Tn is “far” from zero and Sn = 0 when Tn is “close”

to zero.

It is easy to see that

√
n(Tn − θ) ∼ N(0, 1) .

But how does Sn behave asymptotically? To answer this question, first

consider θ 6= 0. For any such θ,

Pθ{|Tn| ≥ n−1/4} → 1 .

To see this, let Zn =
√
n(Tn − θ) and note that

Prθ{{|Tn| < n−1/4} = Prθ{−n−1/4 < Tn < n−1/4}

= Prθ{
√
n(−n−1/4 − θ) < Zn <

√
n(n−1/4 − θ)} .

For θ > 0, n−1/4 − θ < 0 for n sufficiently large, so the probability tends

to 0. For θ < 0, −n−1/4 − θ > 0 for n sufficiently large, so the probability

tends to 0. The desired result thus follows. From the definition of Sn, we

have that Sn = Tn with probability approaching 1 for θ 6= 0.

Now consider θ = 0. In this case,

Pθ{|Tn| ≥ n−1/4} → 0 .

To see this, note that

Prθ{{|Tn| ≥ n−1/4} = Prθ{Tn ≥ n−1/4 ∪ Tn ≤ −n−1/4}

= Prθ{Zn ≥ n1/4 ∪ Zn ≤ −n1/4}

≤ Prθ{Zn ≥ n1/4}+ Prθ{Zn ≤ −n1/4} .
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Both of the probabilities in the last expression tend to 0, so the result follows.

From the definition of Sn, we have that Sn = 0 with probability appraoching

1 for θ = 0.

Thus, for θ 6= 0
√
n(Sn − θ) d→ N(0, 1)

under θ and for θ = 0

rn(Sn − θ) d→ 0

under θ for any sequence rn, including rn =
√
n. The estimator Sn is said

to be “superefficient” at θ = 0.

Let Lθ denote the limit distribution of Tn and L′
θ denote the limit dis-

tribution of Sn. It follows from the above discussion that for θ 6= 0∫
x2dL′

θ =
∫
x2dLθ

and for θ = 0 ∫
x2L′

θ = 0 < 1 =
∫
x2Lθ .

Thus, Sn appears, at least in terms of its limiting distribution, to be a better

estimator of θ than Tn. But appearances can be deceiving. This reasoning

again reflects the poor use of asymptotics. Our hope is that∫
x2L′

θ

is a reasonable approximation to the finite-sample expected loss

Eθ[(
√
n(Sn − θ))2] .

In finite-samples, for θ “far” from zero, we might expect Sn = Tn, and so

we might expect L′
θ to be a reasonable approximation to the distribution of

√
n(Sn−θ); for θ “close” to zero, on the other hand, Sn will frequently differ

from Tn, so the distribution of
√
n(Sn − θ) may be quite different from L′

θ.

As before, the definition of “close” and ”far” will differ with the sample size

n. We must therefore consider the behavior of Sn under sequences θn → 0.
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To illustrate this point, consider θn = h
n1/4 where 0 < h < 1. (Implic-

itly, we are redefining Tn = X̄n,n, where Xi,n, i = 1, . . . , n are i.i.d with

distribution Pθn = N(θn, 1).) As before,
√
n(Tn − θn) ∼ N(0, 1) ,

but how does Sn behave under θn? To answer this, note that

Prθn{|Tn| < n−1/4} = Prθn{−n−1/4 < Tn < n−1/4}

= Prθn{
√
n(−n−1/4 − θn) < Zn <

√
n(n−1/4 − θn)}

= Prθn{−n1/4(1 + h) < Zn < n1/4(1− h)}

We saw earlier that this probability tended to 0 under θ 6= 0, but under

θn = h
n1/4 , this probability tends to 1. Thus, under θn, we have that Sn = 0

with probability approaching 1. Hence, under θn,
√
n(Sn − θn) = −n1/4h

with probability approaching 1, and −n1/4h → −∞. Denote by L the

limiting distribution of Tn under θn and by L′ the limiting distribution of

Sn under θn (in this case L′ is degenerate at −∞). It follows that∫
x2dL′ = +∞ > 1 =

∫
x2dL .

Thus, Sn “buys” its better asymptotic performance at 0 at the expense of

worse behavior for points “close” to zero. The definition of “close” changes

with n, so this feature is not borne out by a pointwise asymptotic comparison

for every θ ∈ Θ, but we can see it if we consider a sequence θn. We can also

see it graphically by plotting the finite-sample expected losses, Eθ[`(
√
n(Sn−

θ))] versus Eθ[`(
√
n(Tn − θ))] = 1, for different samples sizes n.

This example is quite famous and is due to Hodges. The estimator Sn

is often referred to as Hodges’ estimator.

3 Efficiency of Maximum Likelihood

The above example shows that it is impossible to give a nontrivial definition

of “best” to the limit distributions Lθ. In fact, it is not even enough to
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consider Lθ under every θ ∈ Θ. For some fixed θ′ ∈ Θ, we could always

construct an estimator whose limit distribution was equal to Lθ for θ 6= θ′,

but “better” at θ = θ′ by using the trick due to Hodges.

Under certain conditions, it turns out that the “best” limit distributions

are in fact those the limit distributions of maximum likelihood estimators,

but to make this idea precise is a bit tricky.

One of the conditions we will require in the statement of the result is

that P is a reasonably nice family of distributions. The precise condition

is that P is “differentiable in quadratic mean”. Many commonly encoun-

tered families of distributions are differentiable in quadratic mean, including,

e.g, exponential families (which include the family of normal distributions)

and location models with smooth underlying densities. See Chapter 12 of

Lehmann and Romano (2005) for a precise definition of differentiability in

quadratic mean.

The notation Iθ will be used to denote the Fisher Information matrix.

If pθ is the density of Pθ w.r.t. some measure µ (e.g., Lebesgue measure,

counting measure, etc.) and lθ = log pθ is differentiable, then

Iθ = Eθ[l̇θ l̇′θ] .

The Fisher Information can be defined more generally for families of distri-

butions that are differentiable in quadratic mean, but we won’t go into that

right now.

We can now state the following result:

Theorem 3.1 Suppose that P is differentiable in quadratic mean, that Iθ
is nonsingular for every θ, and that ψ is differentiable at every θ. Let Tn be

any estimator such that for every θ

√
n(Tn − ψ(θ)) d→ Lθ

under θ. Then, there exist distributions Mθ such that for almost every θ

w.r.t. Lebesgue measure

Lθ = N(0, ψ̇θI
−1
θ ψ̇′

θ) ? Mθ .
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The notation ? denotes the “convolution” operation between two distri-

butions and should be interpreted as follows: If X ∼ F and Y ∼ G and

X ⊥ Y , then X + Y ∼ F ? G. Theorem 3.1 is often referred to as the

(almost-everywhere) convolution theorem.

This theorem does not contradict the results of the previous section. In

that case, P = {N(θ, 1) : θ ∈ R}, ψ(θ) = θ, and N(0, ψ̇θI
−1
θ ψ̇′

θ) = N(0, 1).

For every θ 6= 0,
√
n(Sn − θ) d→ N(0, 1) under θ, so the theorem is satisfied

for Mθ the distribution with unit mass at 0.

Note that N(0, ψ̇θI
−1
θ ψ̇′

θ) is the limit distribution of the maximum like-

lihood estimator of ψ(θ). In order to assert that this is in fact the “best”

limit distribution, we need the following lemma:

Lemma 3.1 For any bowl-shaped loss function ` on Rk, every probability

distribution M on Rk, and every covariance matrix Σ,∫
`(x)dN(0,Σ) ≤

∫
`(x)d(N(0,Σ) ? M) .

Thus, if “best” is measured by any bowl-shaped loss function (including

mean-squared error loss), then, under the assumptions of Theorem 3.1, max-

imum likelihood estimators are “best” for almost every θ w.r.t. Lebesgue

measure.

For a proof of these two results, see van der Vaart (1998).
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