
1 Randomization Tests

Our earlier discussion highlights the importance of requiring tests that be-

have well not just for each fixed P in some large class of distributions, but

rather uniformly well over a large class of distributions. Of course, it goes

without saying that whenever possible, we should seek tests that are of level

α for a large class of distributions. Typically, this is not possible, but for

certain hypotheses it is. We will now discuss a general construction of such

tests.

To this end, let X be distributed according to P ∈ P on a sample space

X . Suppose one wishes to test the null hypothesis H0 : P ∈ P0 ( P. Let

G be a finite group of transformations of X onto itself X . The following

assumption, which we will refer to as the randomization hypothesis, allows

for the construction of tests with the desired properties:

Assumption 1.1 (Randomization Hypothesis) For all g ∈ G, X and gX

have the same distribution whenever X has distribution P ∈ P0.

To help fix ideas, here are a few concrete examples of hypotheses that

fit into this framework:

Example 1.1 SupposeXi, i = 1, . . . , n be i.i.d real-valued random variables

with distribution F , where F may be arbitrary. Here, X = (X1, . . . , Xn).

Suppose that under the null hypothesis F is symmetric about zero. For

i = 1, . . . , n, let εi take on either 1 or -1. Define a transformation g of Rn

that by the rule that x = (x1, . . . , xn) is mapped to (ε1x1, . . . , εnxn) under

g. Let G be the collection of the M = 2n such transformations. If Xi

is distributed symmetrically about zero, then εiXi and Xi have the same

distribution. Since the Xi are independent, it follows that under the null

hypothesis, gX and X have the same distribution.

Example 1.2 Suppose Yi, i = 1, . . . ,m are i.i.d observations with distri-

bution PY and, independently, Zi, i = 1, . . . , n are i.i.d. observations with

distribution PZ , where the distributions of PY and PZ may be arbitrary.
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Here, X = (Y1, . . . , Ym, Z1, . . . , Zn). Suppose that under the null hypoth-

esis, PY = PZ . Let π be a permutation of 1, . . . ,m + n. Define a trans-

formation g of Rm+n by the rule that x = (x1, . . . , xm+n) is mapped to

(xπ(1), . . . , xπ(m+n)) under g. Let G be the collection of the M = (m + n)!

such transformations. Under the null hypothesis, it is easy to see that gX

and X have the same distribution.

Example 1.3 Suppose (Yi, Zi), i = 1, . . . , n are i.i.d. observations with dis-

tribution PY,Z , where PY,Z is arbitrary. Let PY and PZ denote the marginal

distributions of PY,Z . Here, X = ((Y1, Z1), . . . , (Yn, Zn)). Suppose that un-

der the null hypothesis Xi and Yi are independent. Define a transformation

g of the sample space by the rule that x = ((y1, z1), . . . , (yn, zn)) is mapped

to ((y1, zπ(1)), . . . , (yn, zπ(n))) under g. Under the null hypothesis, it is easy

to see that gX and X have the same distribution.

This last example is of particular interest because of the following special

case. Suppose it is desired to test whether some treatment has an impact

on some outcome. Units are assigned at random to a treatment or a control

group. Let Di be an indicator variable for whether the ith unit was treated.

Let Wi be the observed outcome for the ith unit. For example, Di might

be some medical treatment and Wi an indicator variable for mortality, or

Di might be a job training program and Wi an indicator variable for em-

ployment. We observe an i.i.d. sample of (Wi, Di), i = 1, . . . , n and the null

hypothesis specifies that Wi is independent of Di. We may interpret this null

hypothesis as one of no causal effect of Di on Wi because the assignment to

treatment is at random. It is important to understand why this rests upon

the assumption that assignment to treatment is at random.

Remarkably, for each of these examples (and, more generally, for any

testing problem in which the randomization hypothesis holds), we will be

able to construct a test φ = φ(X) of the null hypothesis such that

EP [φ] = α for all P ∈ P0 .

In order to describe the construction, let T (X) be any real-valued test statis-
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tic for testing the null hypothesis. In Example 2.1, we may use T (X) = |X̄n|,
whereas, in Example 2.2, we may use T (X) = |Ȳm−Z̄n|. Suppose we observe

that X = x. Let M = |G| and denote by

T(1)(x) ≤ · · · ≤ T(M)(x)

the ordered values of T (gx) as g varies over G. Let

k = dM(1− α)e = M − bMαc

M0(x) = |{1 ≤ j ≤M : T(j)(x) = T(k)(x)}|

M+(x) = |{1 ≤ j ≤M : T(j)(x) > T(k)(x)}| .

Let

a(x) =
Mx−M+(x)

M0(x)
.

Define

φ(x) =


1 if T (x) > T(k)(x)

a(x) if T (x) = T(k)(x)

0 if T (x) < T(k)(x)

.

Theorem 1.1 Suppose X has distribution P ∈ P on X and the problem is

to test H0 : P ∈ P0. Let G be a finite set of transformations of X onto X .

Suppose the Randomization Hypothesis holds. Given a test statistic T (X),

let φ be the test described above. Then,

EP [φ] = α for all P ∈ P0 .

Proof: By construction for every x,∑
g∈G

φ(gx) = M+(x) + a(x)M0(x) = Mα .

Therefore,

Mα = EP [
∑
g∈G

φ(gX)] =
∑
g∈G

EP [φ(gX)] .
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But, by the randomization hypothesis, EP [φ(gX)] = EP [φ(x)]. Hence,

Mα =
∑
g∈G

EP [φ(X)] = MEP [φ(X)] ,

from which the desired conclusion follows.

To gain further insight into why this works, let Gx = {gx : g ∈ G}.
Because of the group structure of G, these sets form a partition of the sample

space X . In other words, Gx ∩ Gx′ = ∅ for any x 6= x′ and
⋃
x∈X Gx =

X . The Randomization Hypothesis says that under the null hypothesis the

distribution of X conditional on X ∈ Gx is uniform on the set Gx. Since this

distribution does not depend on P , we can construct a test that is of level α

conditional on X ∈ Gx. The test therefore has the right size unconditionally

as well.

One can also construct p-values for randomization tests as follows:

p̂ =
1
M

∑
g∈G

I{T (gX) ≥ T (X)} .

It can be shown that under the null hypothesis

P{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 .

Because G may be large, one may need to resort to a stochastic ap-

proximation to the randomization test described above. For example, let

gi, i = 1, . . . , B− 1 be i.i.d. with the uniform distribution over G and let gB
be equal to the identity transformation. It can be shown that

p̃ =
1
B

∑
1≤i≤B

I{T (giX) ≥ T (X)}

also satisfies

P{p̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1 .
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2 Asymptotic Behavior of Randomization Tests

Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables with dis-

tribution P ∈ P, where P is the set of all distributions on R with fi-

nite, nonzero variance. Suppose we are interested in testing whether the

P ∈ P0 = {P ∈ P : µ(P ) = 0} versus P ∈ P1 = {P ∈ P : µ(P ) > 0}. If

we had assumed that the underlying distribution were symmetric, we could

consider using a randomization test, as described above. Remarkably, even

if the underlying distribution is not symmetric, the randomization test still

results in a test that is pointwise asymptotically of level α for P ∈ P0. The

advantage of such a test is obvious: it will be of level α for those P ∈ P0 that

are symmetric. On the other hand, such an advantage may come at a cost

in terms of power. For example, if P were normally distributed, then one

may want to consider using the optimal t-test. Remarkably, it is possible

to show that in a certain sense the loss of power of the randomization test

relative to the t-test is small, at least for large sample sizes and a suitable

choice of test statistic.

In order to answer the question described above, we must first develop

some tools to analyze the large-sample behavior of randomization tests. It

is useful now to index our earlier notation by the sample size n. To that

end, let Xn be distributed according to Pn on a sample space Xn. Typically,

Xn = (X1, . . . , Xn). If the data consists of n i.i.d. observations, then

Pn = Pn, the n-fold product of the distribution of a single observation.

Let Gn be a finite group of transformations from Xn onto itself and denote

by Tn(Xn) the test statistic of interest. Let R̂n(t) be the randomization

distribution of Tn defined by

R̂n(t) =
1
Mn

∑
g∈Gn

I{Tn(gXn) ≤ t} ,

where Mn = |Gn|. Let r̂n(1− α) be the 1− α quantile of R̂n(t), i.e.,

r̂n(1− α) = inf{t ∈ R : R̂n(t) ≥ 1− α} .

(Note that in the notation of the previous section, r̂n(1 − α) is simply
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T(k)(X).) In this notation, the randomization test of the previous section

can be described as the test that rejects when

Tn(Xn) > r̂n(1− α) ,

rejects with some probability when Tn(Xn) = r̂n(1− α), and doesn’t reject

otherwise. For simplicity, assume that the test doesn’t reject in the event

that Tn(Xn) = r̂n(1− α).

The key to analyzing the asymptotic behavior of the randomization test

therefore lies in the asymptotic behavior of r̂n(1 − α), which is in turn

determined by the asymptotic behavior of R̂n(t). The following theorem,

due to Hoeffding (1952), is useful for this purpose. Note that the result does

not assume that the Randomization Hypothesis holds.

Theorem 2.1 Suppose Xn has distribution Pn on Xn. Let Gn be a finite

group of transformations from Xn onto itself. Let Gn and G′n be uniformly

distributed over Gn. Suppose Gn, G′n and Xn are mutually independent. If

(Tn(GnXn), Tn(G′nX
n)) d→ (T, T ′)

under Pn, where T and T ′ are independent with common c.d.f. R(t), then

R̂n(t) P→ R(t) ,

under Pn for every continuity point t of R. If R is continuous and strictly

increasing at r(1− α) = inf{t ∈ R : R̂(t) ≥ 1− α}, then

r̂n(1− α) P→ r(1− α) .

Proof: Let t be a continuity point of R. Then, by the assumed convergence

in distribution,

EPn [R̂n(t)] = Pn{Tn(GnXn) ≤ t} → R(t) .

It therefore suffices to show that

EPn [R̂2
n(t)]→ R2(t) ,
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which implies that VarPn [R̂n(t)]→ 0. Note that

EPn [R̂2
n(t)] =

∑
M2

n

∑
g∈Gn

∑
g′∈Gn

Pn{Tn(gXn) ≤ t, Tn(g′Xn) ≤ t}

= Pn{Tn(GnXn) ≤ t, Tn(G′nX
n) ≤ t}

→ R2(t) ,

by the assumed convergence in distribution. Hence, R̂n(t) P→ R(t) under

Pn. The convergence of r̂n(1− α) now follows from earlier arguments.

We now apply this result to the situation described at the beginning of

the section. Consider using the randomization test based on symmetry of

the underlying distribution (which we are not assuming):

φ1,n = I{Tn > r̂n(1− α)} ,

where

Tn =
√
nX̄n .

We first establish that φ1,n is pointwise asymptotically of level α for P ∈
P0. To this end, consider any P ∈ P0 and ε1, . . . , εn, ε

′
1, . . . , ε

′
n be an i.i.d.

sequence of random variables that put equal weight on 1 and −1. We verify

the conditions of the preceding theorem with R(t) = Φ(t/σ(P )). We must

determine the limiting distribution of

1√
n

∑
1≤i≤n

(εiXi, ε
′
iXi) .

Note that

EP [εiXi] = EP [ε′iXi] = 0

and

EP [(εiXi)2] = EP [(ε′iXi)2] = σ2(P ) .

Moreover,

CovP [εiXi, ε
′
iXi] = 0 .
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Hence, by the usual central limit theorem,

1√
n

∑
1≤i≤n

(εiXi, ε
′
iXi)

d→ (T, T ′) ,

where T and T ′ are independent and each distributed asN(0, σ2(P )). Hence,

by Theorem 4.1, R̂n(t) P→ R(t) for each t ∈ R and r̂n(1 − α) P→ σ(P )z1−α.

Therefore,

EP [φ1,n]→ α

for any such P .

We now examine the power of φ1,n against a sequence of alternatives of

the form Pn = N(h/
√
n, σ2). By the above, under P0 = N(0, σ2), r̂n(1 −

α) P→ σ(P )z1−α. By contiguity, we have immediately that under Pn r̂n(1−
α) P→ σ(P )z1−α as well. Since Tn ∼ N(h, σ2) under Pn, we have that

EPn [φ1,n]→ 1− Φ(z1−α −
h

σ
) .

Remarkably, this is also the limiting power against such alternatives for the

t-test as well. In this sense, the loss of power of the randomization test

relative to the t-test is small, at least for large sample sizes.
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