
1 Multiple Testing

We have spent a considerable amount of time on testing a single null hy-

pothesis, but we are typically in a setting where there is more than one

hypothesis of interest to us. To this end, consider the following multiple

hypothesis testing framework. We observe data X with distribution P ∈ Ω.

Let Hi : P ∈ ωi ⊆ Ω, i = 1, . . . , s be the family of null hypotheses of in-

terest. We will assume that it is known how to test each null hypothesis

individually in a way that controls the usual probability of a Type 1 error.

Specifically, we will assume that for each null hypothesis there is a p-value

p̂i = p̂i(X). A p-value satisfies

PrP {p̂i ≤ u} ≤ u for all u ∈ (0, 1) and P ∈ ωi . (1)

Note that we do not require that PrP {p̂i ≤ u} = u for all u ∈ (0, 1) and

P ∈ ωi; i.e, p̂i ∼ U(0, 1) for all P ∈ ωi. (This is so we can accommodate both

situations in which the null hypothesis is composite and situations in which

the underlying test statistic is discrete, as is the case with randomization

tests.) A test of Hi at level α (i.e., a test for which the probability of a false

rejection is no more than α) is therefore simply given by the test that rejects

whenever p̂i ≤ α. Of course, if we were to test all of the null hypotheses

in this way, then the probability of a false rejection may be much greater

than α. In order to illustrate this possibility, suppose that all of the null

hypotheses are true and moreover that each p̂i ∼ U(0, 1). Note that

PrP {some false rejection} = PrP {
⋃

1≤i≤s
{p̂i ≤ α}}

≥ PrP {p̂1 ≤ α} = α ,

where the first inequality follows from the Bonferonni inequality. This is a

very crude lower bound on the probability of some false rejection – its not

hard to imagine situations (like the case in which the p̂i are all indepen-

dent) in which the probability of some false rejection will be much greater.

Hence, by testing the hypotheses in this fashion, we may very likely reject

hypotheses that are in fact true.
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Before proceeding, let’s pause and give a few concrete examples of mul-

tiple testing problems that might arise in practice and the implications of

ignoring the multiplicity in such problems (i.e., simply testing each null

hypothesis in the way described above).

Example 1.1 Suppose one observes (Yj , Xj,1, ..., Xj,s), j = 1, . . . , n with

distribution P . Assume

Yj = Xj,1β1 + · · ·+Xj,sβs + εj .

One would like to determine which covariates Xj,i, i = 1, . . . , s help explain

the dependent variable Yj . To this end, one may consider the family of null

hypotheses Hi : βi = 0, i = 1, . . . , s. Ignoring multiplicity in this setting

would lead one to decide that “too many” covariates helped explain the

dependent variable.

Example 1.2 Suppose one observes (R1,j , . . . , Rs,j , Bj), j = 1, . . . , n where

Ri,j is the return from investment strategy i in period j and Bj is the return

from some “benchmark” investment strategy in period j. For example, the

benchmark strategy may be some proxy for the risk free rate of return. One

would like to determine which strategies out perform the benchmark. To this

end, one may consider the family of null hypotheses Hi : θi ≤ 0, i = 1, . . . , s,

where θi = E[Ri,j−Bj ]. Ignoring multiplicity in this setting would lead one

to decide that “too many” strategies outperformed the benchmark.

Example 1.3 One observes (Y1,j , . . . , Ys,j , Dj), j = 1, . . . , n, where Yi,j is

the ith outcome for the jth individual and Dj is an indicator variable for

whether the jth individual was treated. Assume that individuals are as-

signed at random to treatment. One would like to determine which of the s

outcomes are affected by the treatment. To this end, one may consider the

family of null hypotheses Hi : Yi,j ⊥ Dj , i = 1, . . . , s. Ignoring multiplicity

in this setting would lead one to decide that the treatment impacted “too

many” of the outcomes.
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2 Familywise Error Rate

Our goal is therefore to devise a way of testing the family of null hypotheses

of interest without making “too many” false rejections. The classical defini-

tion of “too many” in the multiple testing literature is the familywise error

rate. We may abbreviate the familywise error rate as FWER = FWERP .

(The notation emphasizes the fact that the familywise error rate obviously

depends on the distribution of the observed data P .) We will say that a

procedure controls the familywise error rate at level α if

FWERP = PrP {some false rejection} ≤ α for all P ∈ Ω . (2)

(This is sometimes referred to as strong control of the familywise error rate

to distinguish it from weak control of the familywise error rate, which only

requires FWERP ≤ α for P ∈ ∩1≤i≤sωi, that is, when all null hypotheses

are true. Weak control is not particularly useful, so we won’t make any

more use of it.) We will seek procedures that control the familywise error

rate at level α only under the assumption that the p-values satisfy (1). In

particular, we will not impose any assumptions on the joint distribution of

the p-values. In most situations, it would not be sensible to assume, for

example, that the p-values were independent.

Let I(P ) denote the set of indices corresponding to true null hypotheses;

that is,

I(P ) = {1 ≤ i ≤ s : P ∈ ωi} .

Suppose we were to test all of the null hypotheses by comparing each p-

value with a single, common cutoff c; that is, reject Hi if p̂i ≤ c. Such

a procedure is an example of a single-step multiple testing procedure. For

such a procedure, we can compute

FWERP = PrP {i ∈ I(P ) : p̂i ≤ c} = PrP {
⋃

i∈I(P )

{p̂i ≤ c}}

≤
∑
i∈I(P )

PrP {p̂i ≤ c} ≤
∑
i∈I(P )

c = |I(P )|c ≤ sc .
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The first inequality follows from the so-called Bonferonni inequality, the

second inequality follows from (1), and the final inequality follows from the

fact that |I(P )| ≤ s. Therefore, in order to ensure (2), it suffices to choose

c = α/s. Because of its use of the Bonferonni inequality, the resulting

procedure is referred to as the Bonferonni procedure.

It is worthwhile to point out that if one uses the Bonferonni procedure,

one will not reject a null hypothesis unless its corresponding p-value is ex-

ceedingly small – less than α/s! A natural question is therefore to ask

whether one could improve upon the procedure at all.

We might ask first whether the Bonferonni procedure is even best among

all single step procedures – after all, the Bonferonni inequality has a rep-

utation as being quite crude. In other words, can we decrease the cut-

off c = α/s without violating control of the familywise error rate? To

this end, let’s reexamine the proof of the above bound on the familywise

error rate with c = α/s. The third inequality would be an equality if

I(P ) = s. The second inequality would be an equality if p̂i ∼ U(0, 1). The

first inequality would be an equality if the events {p̂i ≤ α/s}, i = 1, . . . , s

were all disjoint. Is it possible for this to be true while still having each

p̂i ∼ U(0, 1)? The answer is yes. To see how, let divide the unit interval

into s equal pieces – (0, 1/s], (1/s, 2/s], . . . , ((s − 1)/s, 1). For 1 ≤ i ≤ s,

let Ui ∼ U((i − 1)/s, i/s)). Let π be a random permutation of 1, . . . , s.

Define p̂i = Uπ(i). To see that p̂i ∼ U(0, 1), let u ∈ (0, 1). Define j so that

u ∈ ((j − 1)s, j/s]. We have that

Pr{p̂i ≤ u} = Pr{Uπ(i) ≤ u}

=
1
s

∑
1≤i≤s

Pr{Ui ≤ u}

=
1
s

((j − 1) + s(u− j − 1
s

)) = u .

Moreover, by construction the events {p̂i ≤ α/s}, i = 1, . . . , s are disjoint.

Therefore, for such a joint distribution of p-values

FWER = α .
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It follows that if we increased c = α/s at all (say, by replacing α with some

α′ > α), then the FWER > α.

So, in order to improve upon the Bonferonni procedure, we must aban-

don the single-step paradigm. In other words, different p-values must be

compared with different cutoffs – e.g., the smallest p-value might be com-

pared with with a smaller cutoff than, say, the largest p-value. This idea

leads to a class of stepwise procedures which order the p-values from smallest

to largest and compare them with different thresholds to determine which

ones to reject and which ones not to reject. It turns out that by doing so,

one can improve upon the Bonferonni procedure substantially one can con-

struct a procedure that controls the familywise error rate but always rejects

at least as many hypotheses (i.e., is more powerful in the sense that it can

reject more false hypotheses).

One class of stepwise procedures is the class of stepdown procedures.

Stepdown procedures begin with the most significant (smallest) p-values

and then “step down” to the less significant (larger) p-values. In order to

describe a stepdown procedure, let

p̂(1) ≤ · · · ≤ p̂(s)

denote the ordered p-values and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Let c1 ≤ · · · ≤ cs be an increas-

ing sequence of constants. A stepdown procedure determines which null

hypotheses to reject in the following fashion:

Step 1: If p̂(1) > c1, then stop (and reject no null hypotheses). Other-

wise, reject H(1) and go to Step 2.

...

Step j: If p̂(j) > cj , then stop. Otherwise, reject H(j) and go to Step

j+1.
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...

Step s: If p̂(s) > cs, then stop. Otherwise, reject H(s) and stop.

Equivalently, a stepdown procedure may be described as follows: If p̂(1) > c1,

then reject no null hypotheses; otherwise reject H(1), . . . ,H(r) where r is the

largest index such that

p̂(1) ≤ c1, . . . , p̂(r) ≤ cr .

One may consider instead stepup procedures. Stepup procedure begin

with the least significant (largest) p-value and then “step up” to the more

significant (smaller) p-values.

Step 1: If p̂(s) < cs, then reject all null hypotheses and stop. Other-

wise, accept H(s) and go to Step 2.

...

Step j: If p̂(s−j+1) < cs−j+1, then reject all remaining null hypotheses

and stop. Otherwise, accept H(s−j+1) and go to Step j+1.

...

Step s: If p̂(1) < c1, then reject H(1) and stop. Otherwise, reject no

null hypotheses and stop.

Equivalently, a stepup procedure may be described as follows: If p̂(s) < cs,

reject all null hypotheses; otherwise reject H(1), . . . ,H(r), where r is the

largest index such that

p̂(r) < cr .

Stepup procedures are typically harder to analyze than stepdown proce-

dures, so we won’t consider them further here. See Romano and Shaikh

(2006) for some results on such procedures.

Holm (1979) proposed a stepdown procedure with ci defined by the rule

ci =
α

s− i+ 1
.
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We will now show that this procedure controls the familywise error rate.

Assume w.l.o.g. that |I(P )| ≥ 1, for otherwise there is nothing to prove.

Suppose that the procedure makes at least one false rejection. If so, there

must be a first step at which a false rejection occurs. Let j denote this

random step. This means two things: first, p̂(j) ≤ cj ; second, exactly one

false rejection was made in the first j steps. Hence, there are at least j − 1

false null hypotheses, or, put differently, there are at most s−(j−1) = s−j+1

true hypotheses, i.e. |I(P )| ≤ s− j + 1. It follows that

p̂(j) ≤ cj =
α

s− j + 1
≤ α

|I(P )|
.

This in turn implies that

q̂(1) ≤
α

|I(P )|
,

where

q̂(1) ≤ · · · ≤ q̂(|I(P )|)

denote the ordered values of the p-values corresponding to true null hypothe-

ses. Therefore,

FWERP ≤ PrP {q̂(1) ≤
α

|I(P )|
} ,

but, by the proof for the Bonferonni procedure, we know that this probability

is bounded above by α.

Again, a natural question to ask is whether it is possible to improve upon

the Holm procedure. In particular, we might ask whether it is possible to

increase any of the constants ci and preserve control of the familywise error

rate. The answer is in fact ‘no’. To see this, we will exhibit for every i a

joint distribution of p-values such that

FWER = Pr{p̂(1) ≤ c1, . . . , p̂(i) ≤ ci} = α

and the probability is strictly increasing in ci. To this end, let i − 1 of the

p-values correspond to false null hypotheses and s − i + 1 of the p-values

correspond to true null hypotheses. To make our life as easy as possible, we

may as well choose the i− 1 p-values corresponding to false null hypotheses

7



to be identically equal to zero. Therefore, p̂(1) = · · · = p̂(i−1) = 0. It follows

that

FWER = Pr{p̂(1) ≤ c1, . . . , p̂(i) ≤ ci} = Pr{q̂(1) ≤ ci} ,

where q̂(1) ≤ · · · ≤ q̂(s−i+1) denote the ordered values of the p-values corre-

sponding to true null hypotheses. We will specify the joint distribution of

the (q̂1, . . . , q̂s−i+1) as follows. Divide the unit interval into s − i + 1 equal

pieces – (0, 1
s−i+1 ], ( 1

s−i+1 ,
2

s−i+1 ], . . . , ( s−i
s−i+1 , 1]. For 1 ≤ j ≤ s − i + 1, let

Uj ∼ U(0, j
s−i+1). Let π be a random permutation of 1, . . . , s− i+ 1. Define

q̂j = Uπ(j). It follows from our earlier arguments that each q̂j ∼ U(0, 1).

Moreover,

Pr{q̂(1) ≤ ci} = Pr{
⋃

1≤j≤s−i+1

{q̂j ≤ ci}}

=
∑

1≤j≤s−i+1

Pr{q̂j ≤ ci}

= (s− i+ 1)ci = α .

For such a joint distribution of p-values, FWER is strictly increasing in ci,

as desired.

Recall that the “least favorable” distribution of p-values for the Bonfer-

onni procedure involved s p-values that satisfied (1). In contrast, there are

multiple “least favorable” distributions of p-values for the Holm procedure,

and these distributions involve different numbers of p-values that satisfy (1).

It is worth pointing out that the proof that it was not possible to improve

upon the Bonferonni procedure involves a fairly peculiar joint distribution

of p-values. To the extent that the true distribution of the p-values is differ-

ent from this “least favorable” case, it may be possible to improve upon the

Bonferonni procedure. To do this, one must construct a cutoff that incor-

porates in some way the joint distribution of the p-values. In the same way,

it may be possible to improve upon the Holm procedure. We now describe

one such construction.

Instead of considering p-values, now let T1, . . . , Ts be test statistics for

testing H1, . . . Hs such that large values provide evidence against the null
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hypothesis. Of course, a special case is Ti = −p̂i, where p̂i is a p-value as

before. For each K ⊆ {1, . . . , s}, let cK(1−α) be a critical value for testing

HK : P ∈
⋂
i∈K

ωi

at level α using maxi∈K Ti as a test statistic. In other words,

P{max
i∈K

Ti > cK(1− α)}

is (at least approximately) less than or equal to α for any P ∈
⋂
i∈K ωi.

Consider the following algorithm:

Step 1: Set K1 = {1, . . . , s}. If maxi∈K1 Ti ≤ cK1(1−α), then reject no

null hypotheses and stop; otherwise, reject anyHi with Ti > cK1(1−α),

set K2 = {i ∈ K1 : Ti ≤ cK1(1− α)} and go to Step 2.

...

Step j: If maxi∈Kj Ti ≤ cKj (1 − α), then reject no further null hy-

potheses and stop; otherwise, reject any Hi with Ti > cKj (1− α), set

Kj+1 = {i ∈ Kj : Ti ≤ cKj (1− α)} and go to Step j+1.

...

We will assume that the critical values are suitably monotone in the sense

that

cK(1− α) ≥ cI(P )(1− α)

whenever K ⊇ I(P ). Most reasonable constructions will satisfy this prop-

erty. Under this assumption, it is possible to show using an argument similar

to that used to establish the validity of the Holm procedure that

FWERP ≤ P{ max
i∈I(P )

Ti > cI(P )(1− α)} .

Hence, if the critical values are suitable (at least approximately) for testing

HK at level α, then the above algorithm controls the FWER at level α (at

least approximately). See Romano and Wolf (2005) for details. Applications

to partially identified models can be found in Romano and Shaikh (2008).
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3 Generalizations of the Familywise Error Rate

In some instances, one may be willing to relax control of the familywise error

rate so as to gain power – the ability to reject false null hypotheses. After

all, even with the Holm procedure, in order to reject any null hypotheses at

all, the smallest p-value must be less than α/s. For example, one may only

require control of the k-familywise error rate (k − FWER) at level α; that

is,

k − FWERP = PrP {≥ k false rejections} ≤ α for all P ∈ Ω .

For large s, this may be a reasonable measure of error control. How can

one construct multiple testing procedures that control the k − FWER?

Consider first a single-step multiple testing procedure with cutoff c. For

such a procedure, we have that

k − FWERP = PrP {
∑
i∈I(P )

I{p̂i ≤ c} ≥ k} ≤
EP [

∑
i∈I(P ) I{p̂i ≤ c}]

k

=
|I(P )|PrP {p̂i ≤ c}

k
≤ s

k
c ,

where the first inequality follows from Markov’s inequality and the second

inequality follows from (1). It therefore suffices to choose c = kα
s – a k-fold

improvement over the original Bonferonni procedure.

Although this argument may seem quite crude, it is again possible to

show that it is not possible to increase this cutoff at all without violating

control of the k-familywise error rate. This procedure is therefore the best

for control of the k-familywise error rate among all single-step procedures,

but we can improve upon it as before by considering stepwise procedures.

In particular, we may consider the stepdown procedure with ci defined by

the rule

ci =

kα
s if i < k

kα
s−i+k if i ≥ k

.

We now argue that such a procedure controls the k-familywise error rate.

Assume w.l.o.g. that |I(P )| ≥ k, for otherwise there is nothing to prove.

10



Suppose that the procedure makes at least k false rejections. If so, there

must be a first step at which k or more false rejections occur. Let j denote

this random step. This means two things, first p̂(j) ≤ cj ; second, exactly k

false rejections were made in the first j steps. Hence, there are at least j−k
false null hypotheses, or, put differently, there are at most s − (j − k) =

s− j + k true null hypotheses, i.e., |I(P )| ≤ s− j + k. It follows that

p̂(j) ≤ cj =
kα

s− j + k
≤ kα

|I(P )|
.

This in turn implies that

q̂(k) ≤
kα

|I(P )|
,

where

q̂(1) ≤ · · · ≤ q̂(|I(P )|)

denote, as before, the ordered values of the p-values corresponding to true

null hypotheses. Therefore,

k − FWERP ≤ PrP {q̂(k) ≤
kα

|I(P )|
} ,

but, by the proof for the single-step procedure above, we know that this

probability is bounded above by α.

Of course, one can increase ci for i < k to 1 without violating control

of the k-familywise error rate. To see this, simply note that these constants

never entered the argument above. On the other hand, it is not possible to

increase ci for i ≥ k at all without violating control of the k-familywise error

rate.

It is natural to allow the number of false rejections one is willing to tol-

erate to vary with the total number of rejections. If one makes 10 rejections,

then perhaps one would be unwilling to have more than one false rejection,

but if one makes 100 rejections, then perhaps one would be willing to tol-

erate, say, 10 false rejections. This idea leads one to control of the false

discovery proportion (FDP ). The false discovery proportion is defined to
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be

FDP =

F
R if R > 0

0 if R = 0
,

where F is the total number of false rejections and R is the total number of

rejections. Control of the false discovery proportion requires that

PrP {FDP > γ} ≤ α for all P ∈ Ω

for some user-specified value of γ ∈ [0, 1]. Note that if γ = 0, control of the

false discovery proportion reduces to control of the familywise error rate.

A popular measure of error control that is related to control of the false

discovery proportion is control of the false discovery rate (FDR), proposed

by Benjamini and Hochberg (1995). The false discovery rate is defined to

be

FDRP = EP [FDP ]

and control of the false discovery rate requires that

FDRP ≤ α for all P ∈ Ω .

The stepup procedure with constants

ci =
αi

sCs
,

where

Cs =
∑

1≤i≤s

1
i
,

is known to control the FDR at level α.

Finally, it is important to point out that often one may only have p-values

that satisfy an asymptotic version of (1):

lim sup
n→∞

PrP {p̂i ≤ u} ≤ u for all u ∈ (0, 1) and P ∈ ωi .

In this case, the procedures above are still valid in the sense that they ensure

that

lim sup
n→∞

FWERP ≤ α .
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