
1 Identification in Econometrics

A minimal requirement on an estimator is consistency, i.e., as the sample

size increases, the estimator converges in a probabilistic sense to the un-

known value of the parameter. We will now study a necessary condition for

the existence of consistent estimators. The analysis of identification asks

the following question: Can one logically deduce the unknown value of the

parameter from the distribution of the observed data? If the answer to this

question is “no” under a certain set of assumptions, then consistent estima-

tors cannot exist under the same set of assumptions. If, on the other hand,

the answer to this question is “yes” under a certain set of assumptions,

then consistent estimators may exist (though further assumptions may be

required to get laws of large numbers, central limit theorems, etc. to work).

2 A General Definition of Identification

Let P denote the true distribution of the observed data X. Denote by

P = {Pθ : θ ∈ Θ} a model for the distribution of the observed data. We

will assume that P ∈ P = {Pθ : θ ∈ Θ}. In other words, we assume that

the model is correctly specified in the sense that there is some θ ∈ Θ such

that Pθ = P . We are interested in θ or perhaps some function f of θ.

Suppose it is known that the distribution of the observed data is P ∈ P.

Since the model is correctly specified by assumption, it is known a priori

that there exists some θ ∈ Θ such that Pθ = P . But we cannot distinguish

any such θ ∈ Θ from any other θ∗ ∈ Θ such that Pθ∗ = P . Thus, from

knowledge of P alone, all we can say is that θ ∈ Θ0(P ), where

Θ0(P ) = {θ ∈ Θ : Pθ = P} .

We will refer to Θ0(P ) as the identified set. We say that θ is identified if

Θ0(P ) is a singleton for all P ∈ P.

As mentioned earlier, often we are not interested in θ itself, but rather

only a function f of θ. For example, if θ ∈ Rk where k ≥ 2, then it might
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be the case that f(θ) = θ1. As before, from knowledge of P alone, all we

can say is that f(θ) lies in

f(Θ0(P )) = {f(θ) : θ ∈ Θ0(P )} .

We say that f(θ) is identified if this set is a singleton for all P ∈ P.

The model P here is intended to be interpreted as a “structural” model

for the distribution of the observed data. Why should we bother with a

structural model? After all, from the distribution of the observed data, P ,

one can compute all sorts of interesting statistics (e.g., best predictors, best

linear predictors, conditional distributions, etc.). The reason is that all of

these statistics only describe the data, but do not help us understand the

mechanism (the, structure, if you will) that helps generate the data. Here,

that structure is embodied by the unknown value of θ ∈ Θ in our model for

the data P. The question we seek to answer here is under what conditions

is it possible to learn about θ (or some feature of θ) from the distribution

of the observed data P .

3 Example 1: Linear Regression

Consider the following linear regression model:

Y = X ′β + ε . (1)

In this case, θ = (PX , β, Pε|X) and Θ is the set of all possible values for θ.

Notice that θ together with the structure of the model determines a unique

distribution of the observed data. The following theorem shows that under

certain restrictions on Θ, θ is in fact identified.

Theorem 3.1 Suppose for all θ ∈ Θ

A1. EPθ [ε|X] = 0;

A2. There exists no A ⊆ Rk such that A has probability 1 under PX and

A is a proper linear subspace of Rk.

2



Then, θ is identified.

Proof: We need to show that Θ0(P ) is always a singleton. Let P be given

and suppose by way of contradiction that there exists θ = (PX , β, Pε|X) and

θ∗ = (P ∗X , β
∗, P ∗ε|X) such that θ 6= θ∗ and Pθ = Pθ∗ = P .

First note that since we may recover the marginal distribution of X from

the joint distribution of (Y,X), it must be the case that PX = P ∗X .

Second, note that A1 implies that

EPθ [ε|X] = EPθ∗ [ε|X] = 0 .

Hence, EPθ [Y |X] = X ′β and EPθ∗ [Y |X] = X ′β∗. Since by assumption

Pθ = Pθ∗ , it must be the case that PX{X ′β = X ′β∗} = 1. Assumption A2

implies that this is only possible if β = β∗. To see this, recall the fact that

the set A = {x ∈ Rk : x′(β − β∗) = 0} is a proper linear subspace of Rk if

β 6= β∗.

Finally, it now follows from (1) that Pε|X = P ∗ε|X . Thus, θ = θ∗.

We can establish this same conclusion under a slightly different (and

more conventional) set of assumptions:

A1′. EPθ [εX] = 0;

A2′. EPθ [XX
′] is nonsingular.

4 Example 2: Binary Response Model

The following “threshold-crossing” model of binary response has been ap-

plied extensively in economics, medicine and other fields:

Y = 1{X ′β − ε ≥ 0} .

In economics, Y usually indicates a utility-maximizing decision maker’s ob-

servable choice between two alternatives. Then, the latent index X ′β − ε
can be interpreted as the difference in the utility between these two choices.
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In medicine, Y is typically an observable binary indicator of health status

(e.g., whether or not you are alive). Here, the latent index X ′β − ε is a

measure of health status.

In this case, as before, θ = (PX , β, Pε|X) and Θ is the set of all possible

values for θ. To try to make our lives as easy as possible, let’s go ahead and

make the following restrictions on Θ:

B1. Pε|X = N(0, σ2).

B2. There exists no A ⊆ Rk such that A has probability 1 under PX and

A is a proper linear subspace of Rk.

Given assumption B1, we may simply write σ in place of Pε|X . Let’s now see

what happens when we try to carry out the same argument used to prove

Theorem 3.1. Let P be given and suppose that there exists θ = (PX , β, σ)

and θ∗ = (P ∗X , β
∗, σ∗) such that θ 6= θ∗ and Pθ = Pθ∗ = P .

As before, we have immediately that PX = P ∗X .

From B1, we have that Pθ{Y = 1|X} = Φ(X ′β/σ) and Pθ∗{Y = 1|X} =

Φ(X ′β∗/σ∗). Since Pθ = Pθ∗ by assumption, it follows from B2 that

β/σ = β∗/σ∗ . (2)

We cannot conclude, however, that β = β∗ and σ = σ∗. Indeed, our analysis

shows that any θ and θ∗ for which (2) holds and PX = P ∗X satisfies Pθ = Pθ∗ .

Put differently, even though we cannot identify θ, we can identify f(θ) =

(PX , β/σ).

We can summarize the above discussion with the following result:

Theorem 4.1 Suppose all θ ∈ Θ satisfy B1 and B2. Then, f(θ) = (PX , β/σ)

is identified.

In practice, people typically assume further that ||β|| = 1, β1 = 1 or

σ = 1. Such an assumption, together with assumptions B1 and B2, are

enough to identify θ.
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4.1 Mean Independence

The above analysis required the rather restrictive parametric assumption

B1. In the case of the linear model, it suffices to only assume A1, which is

implied by B1, so it is natural to ask whether we can relax B1 in a similar

fashion in the binary response model. Concretely, we will replace B1 with

the following assumption:

B1′. EPθ [ε|X] = 0 and Pε|X has support equal to R with probability 1

under PX .

Notice that B1 implies B1′.

Unfortunately, the answer to this question is “no”, even if we only re-

quire the more modest goal of identifying f(θ) = β. To see this, consider

θ = (PX , β, Pε|X) and any β∗ 6= β. We will construct θ∗ = (P ∗X , β
∗, P ∗ε|X)

satisfying the restrictions on our model and such that Pθ∗ = Pθ.

First of all, for Pθ∗ = Pθ to hold, it must be the case that PX = P ∗X , so

we are only free to choose P ∗ε|X . But keep in mind that we must choose it

in a way so that B1′ is satisfied. Note that Pθ{Y = 1|X} = Pε|X{X ′β ≥ ε}.
Assumption B1′ implies that this probability lies strictly between (0,1) with

probability 1 under PX . In order to satisfy Pθ∗ = Pθ, we must choose P ∗ε|X
so that it puts mass Pθ{Y = 1|X} less than X ′β. In order to satisfy B1′, we

must place the rest of the mass sufficiently high so that it has mean zero.

We can do this independently for each value of X. With a bit more thought,

you should be able to convince yourself that you can do this in a way that

support is equal to R for each value of X.

4.2 Median Independence

So, it turns out that mean independence is not enough to identify β (even

just up to scale) in the binary response model. But mean independence is

only one measure of central tendency of a random variable. If we measure

central tendency by the median instead of the mean, then it turns out that

we can find reasonable conditions under which it is possible to identify β.

Specifically, we can get away with the following assumptions on Θ:
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C1. ||β|| = 1.

C2. Med(ε|X) = 0 with probability 1 under PX .

C3. There exists no A ⊆ Rk such that A has probability 1 under PX and

A is a proper linear subspace of Rk.

C4. PX is such that at least one component of X has support equal to

R conditional on the other components with probability 1 under PX .

Moreover, the corresponding component of β is nonzero.

Let’s compare these assumptions with those used to establish Theorem 4.1.

Assumption C1 is needed for exactly the same reason that only β/σ was

identified earlier. Assumption C2 is strictly weaker than B1. Assumption

C3 is identical to B2. Assumption C4 strengthens the assumption on PX

and also places a mild restriction on β.

The following lemma will help us prove the above result:

Lemma 4.1 Let θ = (PX , β, Pε|X) satisfying C2 be given. Consider any

β∗. If Pθ{X ′β∗ < 0 ≤ X ′β ∪ X ′β < 0 ≤ X ′β∗} > 0, then there exists no

θ∗ = (P ∗X , β
∗, P ∗ε|X) satisfying C2 and also having Pθ = Pθ∗ .

Proof: Suppose by way of contradiction that Pθ{X ′β∗ < 0 ≤ X ′β ∪X ′β <
0 ≤ X ′β∗} > 0 yet there exists such a θ∗. As usual, because Pθ = Pθ∗ , we

have immediately that PX = P ∗X .

Note that Pθ{Y = 1|X} ≥ .5 if and only if Pθ{X ′β ≥ ε|X} ≥ .5. By C2,

this latter statement is true if and only if X ′β ≥ 0. Thus, Pθ{Y = 1|X} ≥ .5
if and only if X ′β ≥ 0.

Likewise, if θ∗ satisfies C2, it must be the case that Pθ∗{Y = 1|X} ≥ .5
if and only if X ′β∗ ≥ 0.

Yet, with positive probability, we have that either X ′β∗ < 0 ≤ X ′β or

X ′β < 0 ≤ X ′β∗, which implies that either Pθ{X ′β ≥ ε|X} < .5 ≤ Pθ∗{Y =

1|X} ≥ .5 or Pθ∗{Y = 1|X} < .5 ≤ Pθ{Y = 1|X}. This contradicts the fact

that Pθ = Pθ∗ .

With this lemma, we now can prove the following result:
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Theorem 4.2 Suppose all θ ∈ Θ satisfy C1, C2, C3 and C4. Then, f(θ) =

β is identified.

Proof: Let θ = (PX , β, Pε|X) satisfying C1, C2, C3 and C4 be given. As-

sume w.l.o.g. that the component of X specified in C4 is the kth component.

Suppose further that βk > 0. The same argument mutatis mutandis will es-

tablish the result for βk < 0.

Consider any β∗ 6= β. We wish to show that there is no θ∗ = (P ∗X , β
∗, P ∗ε|X)

satisfying C1, C2, C3 and C4 and also having Pθ = Pθ∗ . From Lemma 4.1,

it suffices to show that Pθ{X ′β∗ < 0 ≤ X ′β ∪ X ′β < 0 ≤ X ′β∗} > 0. We

must consider three cases separately:

(i) Suppose β∗k < 0. Then,

Pθ{X ′β∗ < 0 ≤ X ′β} = Pθ{−
X′−kβ

∗
−k

β∗k
< Xk,−

X′−kβ−k
βk

≤ Xk}.

This probability is positive by C4.

(ii) Suppose β∗k = 0. Then,

Pθ{X ′β∗ < 0 ≤ X ′β} = Pθ{X ′−kβ∗−k < 0,−X′−kβ−k
βk

≤ Xk},

Pθ{X ′β < 0 ≤ X ′β∗} = Pθ{0 ≤ X ′−kβ∗−k, Xk < −
X′−kβ−k

βk
}.

Either Pθ{X ′−kβ∗−k < 0} > 0 or Pθ{0 ≤ X ′−kβ
∗
−k} > 0. If it is the

former, then C4 shows that the first of the two above probabilities is

positive; if it is the latter, then C4 shows that the second of the two

above probabilities is positive.

(iii) Suppose β∗k > 0. Then,

Pθ{X ′β∗ < 0 ≤ X ′β} = Pθ{−
X′−kβ−k

βk
≤ Xk < −

X′−kβ
∗
−k

β∗k
},

Pθ{X ′β < 0 ≤ X ′β∗} = Pθ{−
X′−kβ

∗
−k

β∗k
< Xk ≤ −

X′−kβ−k
βk

}.

Assumption C1 implies that β∗ is not a scalar multiple of β. There-

fore, β∗−k/β
∗
k 6= β−k/βk. It follows from C3 that Pθ{X ′−kβ∗−k/β∗k 6=

X ′−kβ−k/βk} > 0. Thus, at least one of the two intervals in the proba-

bilities above must have positive length with positive probability. As-
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sumption C4 thus implies that at least one of these two probabilities

must be positive.

This concludes the proof.
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