
1 More on Local Asymptotic Power

Earlier we introduced the idea of local asymptotic power, i.e., the power of a

test under a sequence of distributions in the alternative hypothesis, as a way

of approximating the finite-sample power function of a test. In the examples

we considered, namely, the t-test and the sign test in a symmetric location

model, we were able to compute the local asymptotic power using direct

arguments. Unfortunately, it is easy to write down even simple situations

in which direct arguments are too cumbersome to be fruitful. We now

consider one such example and provide an alternative way of carrying out

the required computation. This alternative way is based on the theory of

contiguous probability measures developed by Lucien Le Cam.

2 Wilcoxon Signed Rank Statistic

Consider again the symmetric location model from earlier, i.e., one observes

data Xi, i = 1, . . . , n i.i.d. with distribution P ∈ P = {Pθ : θ ∈ Θ}, where Pθ
is the distribution with density f(x− θ) on the real line and f is symmetric

about zero. One wishes to test the null hypothesis H0 : θ = 0 versus the

alternative H1 : θ > 0. We considered two tests of this null hypothesis,

namely the t-test and sign test. We now consider a third test based on the

following statistic:

Wn =
1√
n

∑
1≤i≤n

R+
i,n

n
sign(Xi) ,

where

sign(Xi) =

1 if Xi ≥ 0

0 otherwise

and R+
i,n is the rank of |Xi| among |X1|, . . . , |Xn|.

In order to determine the appropriate critical value with which to com-

pare this statistic, we must analyze its behavior under the null hypothesis,
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i.e., when θ = 0. To this end, note that

R+
i,n

n
=

1
n

∑
1≤j≤n

I{|Xj | ≤ |Xi|} .

Hence, it is reasonable to suspect that

Wn −
1√
n

∑
1≤i≤n

Uisign(Xi) = oP (1) ,

where Ui = G(|Xi|) and G is the c.d.f. of |Xi|. Therefore, the limit distri-

bution of Wn is the same as the limit distribution of

1√
n

∑
1≤i≤n

Uisign(Xi) ,

which is relatively easy to determine. Observe that under the null hypothesis

Ui and sign(Xi) are independent and E0[sign(Xi)] = 0, which implies that

E0[Uisign(Xi)] = 0 .

Moreover,

V0[Uisign(Xi)] = E0[U2
i ] = E0[G(|Xi|)2] .

It is possible to show that E0[G(|Xi|)2] = 1
3 . Therefore,

Wn
d→ N(0,

1
3

)

under P0. Hence, the test

φ3,n = I{Wn >
z1−α√

3
}

is asymptotically of level α, i.e.

E0[φ3,n]→ α .

In order to compute the local asymptotic power of this test, we must

analyze its behavior under a sequence θn tending to zero at an appropriate

rate. Unfortunately, the above argument, which relies heavily on the sym-

metry about zero implied by θ = 0, does not generalize to such sequences.

Luckily, the theory of contiguity, which we will now discuss, will provide a

rather elegant means of tackling this problem.
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3 Contiguity

Let’s first consider a non-asymptotic version of the problem at hand. Let P

and Q be two probability distributions on some measurable space. Suppose

Q is absolutely continuous w.r.t. P , i.e., P{E} = 0 implies that Q{E} = 0

for all measurable sets E. If we denote by p and q densities of P and Q

w.r.t. some common dominating measure µ (e.g., we could take µ = P +Q),

then it is easy to see that Q is absolutely continuous w.r.t. P if and only if

Q{p = 0} = 0.

Let T = T (X) be some function of X of interest. Our goal is to com-

pute, say, EQ[f(T (X))] for some function f , but we only have the ability to

compute expectations under P . Note that

EQ[f(T (X))] =
∫
f(T (x))q(x)dµ(x)

=
∫
p(x)>0

f(T (x))q(x)dµ(x)

=
∫
p(x)>0

f(T (x))
q(x)
p(x)

p(x)dµ(x)

= EP [f(T (X))L(X)] ,

where

L(x) =


q(x)
p(x) if p(x) > 0

∞ if p(x) = 0 < q(x)

1 if p(x) = q(x) = 0 .

The quantity L(x) is actually independent of the choice of dominating mea-

sure and typically denoted by dQ
dP (x). In mathematics, it is more commonly

known as the Radon-Nikodym derivative; in statistics, people refer to it as

likelihood ratio. Note that in particular we could choose f to be the indica-

tor of some measurable set. Hence, provided that Q is absolutely continuous

w.r.t. P , we can deduce the distribution of T (X) under Q from knowledge

of the joint distribution of T (X) and L(X) under P .

More generally, if we denote by F the joint distribution of T and L under
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P , the above analysis implies that

EQ[f(T, L)] = EP [f(T, L)L] =
∫
f(t, r)rdF (t, r) (1)

for any measurable function f .

We are interested in an asymptotic version of the above problem. For

each n ≥ 1, let Pn and Qn be probability distributions on some measurable

space. Our goal is to be able to deduce the limiting distribution of Tn un-

der Qn from the joint limiting distribution of Tn and the likelihood ratio,

Ln = dQn

dPn
, under Pn. In light of the preceding discussion, it is perhaps

not surprising that the correct requirement on the sequences of probability

distributions is an asymptotic version of absolute continuity known as con-

tiguity. We say that Qn is contiguous w.r.t. Pn if Pn{En} → 0 implies that

Qn{En} → 0. If Qn is contiguous w.r.t. Pn and Pn is contiguous w.r.t. Qn,

then we say that Qn and Pn are mutually contiguous.

Before proceeding with the main result, it is useful to state some alterna-

tive characterizations of contiguity. These are useful in particular for check-

ing whether Qn is contiguous w.r.t. Pn. Recall that a sequence of random

variables Tn with distribution Pn is tight if limB→∞ infn Pn{|Tn| ≤ B} = 1.

Theorem 3.1 The following statements are equivalent:

(i) Qn is contiguous w.r.t. Pn;

(ii) Tn
Pn→ 0 implies that Tn

Qn→ 0;

(iii) if Tn is tight under Pn, then it is also tight under Qn;

(iv) if Ln converges in distribution to G under Pn along a subsequence,

then G has mean 1.

For a proof of this theorem, see Theorem 12.3.2 of Lehmann and Romano

(2005). Similar results are also provided in Chapter 6 of van der Vaart

(1998). To shed some light on part (iv) of the result, note that

EPn [Ln] =
∫
pn>0

Lnpndµn =
∫
pn>0

qndµn = 1−Qn{pn = 0} ≤ 1 ,
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with equality if and only if Qn is absolutely continuous w.r.t. Pn. The

equivalence between (i) and (iv) of the theorem is essentially an asymptotic

version of this statement.

An important implication of this theorem is the following corollary:

Corollary 3.1 Consider sequences of probability distributions Pn and Qn

with likelihood ratio Ln = dQn

dPn
. Suppose logLn

d→ N(µ, σ2) under Pn. Then,

Qn and Pn are mutually contiguous if and only if µ = −1
2σ

2.

Proof: With Theorem 3.1 in hand, the only hard part of the proof is show-

ing that µ = −1
2σ

2 implies that Pn is contiguous w.r.t. Qn. We will prove the

following more general assertion: If Ln
d→W under Pn and Pr{W = 0} = 0,

then Pn is continguous w.r.t. Qn.

To this end, suppose Qn{En} → 0. Note that

Pn{En} =
∫
En∩qn>0

dPn +
∫
En∩qn=0

dPn .

Note further that∫
En∩qn=0

dPn ≤ Pn{Ln = 0} → Pr{W = 0} = 0

since the distribution of W is continuous at zero and Ln
d→ W under Pn.

Now consider
∫
En∩qn>0 dPn. For any ε > 0,∫

En∩qn>0
dPn =

∫
En∩qn>0∩pn/qn<ε

dPn +
∫
En∩qn>0∩pn/qn≥ε

dPn .

Note that∫
En∩qn>0∩pn/qn<ε

dPn =
∫
En∩qn>0∩pn/qn<ε

pn
qn
dQn ≤ εQn{En} → 0 .

On the other hand,∫
En∩qn>0∩pn/qn≥εn

dPn ≤ Pn{Ln ≤ 1/ε} .
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To complete the argument, replace ε with a sequence εn tending to infinity

sufficiently slowly so that εnQn{En} → 0. For such a sequence εn, Pn{Ln ≤
1/εn} → Pr{W = 0} = 0. Thus, Pn{En} → 0.

We now return to the issue at hand, i.e., computing the limiting dis-

tribution of Tn under Qn from the joint limiting distribution of Tn and Ln

under Pn. The following theorem provides us with the desired answer.

Theorem 3.2 Suppose Qn is contiguous w.r.t. Pn. Suppose (Tn, Ln) con-

verges in distribution under Pn to a distribution F . Then, the limiting distri-

bution of (Tn, Ln) under Qn has density rdF (t, r), i.e., for any continuous,

bounded, real-valued f ,

EQn [f(Tn, Ln)]→
∫
f(t, r)rdF (t, r) .

Note that the conclusion of the theorem is essentially an asymptotic

version of (1). The following useful characterization of convergence in dis-

tribution known as the Portmanteau Theorem will be useful in the proof of

the preceding theorem.

Theorem 3.3 Suppose Xn and X are random vectors. The following state-

ments are equivalent:

(i) Xn
d→ X;

(ii) E[f(Xn)]→ E[f(X)] for all continuous, bounded, real-valued f .

(iii) for any open set O, lim infn→∞ P{Xn ∈ O} ≥ P{X ∈ O};

(iv) for any closed set C, lim supn→∞ P{Xn ∈ C} ≤ P{X ∈ C};

(v) for any set E satisfying P{X ∈ ∂E} = 0, P{Xn ∈ E} → P{X ∈ E};

(vi) lim infn→∞E[f(Xn)] ≥ E[f(X)] for any nonnegative, continuous f .
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Proof of Theorem 3.2: We must first establish that the distribution

with density rdF (t, r) is a proper probability distribution on R×R+. First

note that rdF (t, r) is nonnegative on R × R+. Moreover, it follows from

Theorem 3.1 (iv) that ∫
R×R+

rdF (t, r) = 1 .

Hence, it is a proper probability distribution on R×R+.

Let Gn and Fn be the distributions of (Tn, Ln) under Qn and Pn, respec-

tively. By the Portmanteau Theorem, it suffices to show that

lim inf
n→∞

∫
f(t, r)dGn(t, r) ≥

∫
f(t, r)rdF (t, r)

for all nonnegative, continuous f on R×R+.

Let pn and qn be densities of Qn and Pn w.r.t. some measure µ. We

have that ∫
f(t, r)dGn(t, r) =

∫
f(Tn, Ln)dQn

≥
∫
{pn>0}

f(Tn, Ln)qndµ

=
∫
f(Tn, Ln)Lnpndµ

=
∫
f(Tn, Ln)LndPn

=
∫
f(t, r)rdFn(t, r) ,

so it suffices to show that

lim inf
n→∞

∫
f(t, r)rdFn(t, r) ≥

∫
f(t, r)rdF (t, r) .

But rf(t, r) is also a nonnegative, continuous function on R ×R+, so the

desired result follows again from the Portmanteau Theorem.

While the preceding theorem gives us the answer to our question, we will

apply it most often in the special case when (Tn, logLn) tends in distribution

to a normal distribution under Pn. The following corollary specializes to this

case:

7



Corollary 3.2 Suppose (Tn, logLn) tends in distribution to (T,Z) under

Pn where (T,Z) is bivariate normal with mean (µ1, µ2)′ and variance(
σ2

1 σ1,2

σ1,2 σ2
2

)
.

Suppose further that µ2 = −σ2
2
2 , so Qn is contiguous w.r.t. Pn. Then,

Tn
d→ N(µ1 + σ1,2, σ

2
1)

under Qn.

Proof: Let F̄ be the limiting distribution of (T,Z). By Theorem 3.2, the

limiting distribution of Tn under Qn has density
∫
R+

exp(r)dF̄ (t, r). Let T̃

be a random variable with this distribution.

Recall that the distribution of a random variable is uniquely determined

by its characteristic function. We can therefore deduce that T̃ has the de-

sired distribution by showing that its characteristic function agrees with the

characteristic function of the desired distribution. For an arbitrary random

variable V , its characteristic function is given by E[exp(it′V )]. A useful fact

is that the characteristic function of a multivariate normal random variable

is given by

exp(iµ′t− 1
2
t′Σt)] . (2)

Note that the characteristic function of

E[exp(iλT̃ )] =
∫
R×R+

exp(iλx) exp(r)dF̄ (t, r) = E[exp(iλT + Z)] ,

which is simply the characteristic function of (T,Z) evaluated at t = (λ,−i).
Plugging this into (2) and using the fact that µ2 = −σ2

2
2 , we find that

E[exp(iλT̃ )] = exp(i(µ1 + σ1,2)− 1
2
λ2σ2

1) ,

which is simply the characteristic function of a N(µ1 + σ1,2, σ
2
1) random

variable, as desired.
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4 The Wilcoxon Signed Rank Statistic Revisited

Recall the setup of the symmetric location model. Earlier we argued that

under the null hypothesis that θ = 0,

Wn =
1√
n

∑
1≤i≤n

Uisign(Xi) + oP0(1) ,

where Ui = G(|Xi|) and G is the c.d.f. of |Xi|, and used this to deduce its

asymptotic normality under the null hypothesis. We now wish to analyze

the behavior of Wn under a sequence of alternatives of the form Ph/
√
n. For

simplicity, suppose further that Pθ is the N(θ, 1) distribution.

In order to apply the above results, we must first derive the limiting

disdribution of (Wn, logLn) under P0. To this end, let `n(θ) denote the

likelihood of X1, . . . , Xn under θ. It is easy to see that

`n(θ) =
∏

1≤i≤n

1√
2π

exp(−1
2

(Xi − θ)2) .

Hence,

logLn = log(
`n(h/

√
n)

`n(0)
) =

h√
n

∑
1≤i≤n

Xi −
h2

2
.

Under P0, this tends in distribution to a N(−h2/2, h2), so P0 and Ph/√n are

mutually contiguous. From our earlier calculations, we have that

(Wn, logLn) = (
1√
n

∑
1≤i≤n

Uisign(Xi),
h√
n

∑
1≤i≤n

Xi −
h2

2
) + oP0(1) .

By the usual central limit theorem, the righthand side of the last expression

tends in distribution to a bivariate normal distribution with covariance

σ1,2 = hE0[G(|Xi|)|Xi|] .

It is possible to show that σ1,2 = h/
√
π. From Corollary 3.2, we therefore

have that

Wn
d→ N(

h√
π
,
1
3

)

under h/
√
n.
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More generally, suppose f is differentiable a.e. w.r.t. Lebesgue measure

and that

0 < I0 =
∫
f ′(x)2

f(x)
dx <∞ .

Then, it is possible to show that

logLn =
1√
n

∑
1≤i≤n

−hf
′(Xi)

f(Xi)
− h2

2
I0 + oP0(1) .

Under P0, this tends in distribution to a N(−h2

2 I0, h
2I0), so, as before, P0

and Ph/
√
n are mutually contiguous. In this case, (Wn, logLn) tends in

distribution to a bivariate normal distribution with covariance

σ1,2 = E0[−hG(|Xi|)sign(Xi)f ′(Xi)/f(Xi)] .

Using integration by parts and the identify G(x) = 2F (x) − 1, one can

deduce that

σ1,2 = 2h
∫
f2(x)dx .

Thus, by Corollary 3.2,

Wn
d→ N(2h

∫
f2(x)dx,

1
3

)

under h/
√
n. It follows that the local asymptotic power function of Wn is

given by

1− Φ(z1−α − 2
√

3h
∫
f2(x)dx) .
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