
1 Asymptotic Comparisons of Tests

Consider the following generic version of a testing problem. One observes

data Xi, i = 1, . . . , n i.i.d. with distribution P ∈ P = {Pθ : θ ∈ Θ} and

wishes to test the null hypothesis H0 : θ ∈ Θ0 versus the alternative H1 :

θ ∈ Θ1. A test is simply a function φn = φn(X1, . . . , Xn) that returns

the probability of rejecting the null hypothesis after observing X1, . . . , Xn.

For example, φn might be the indicator function of a certain test statistic

Tn = Tn(X1, . . . , Xn) being greater than some critical value cn(1− α). The

test is said to be (pointwise) asymptotically of level α if for each θ ∈ Θ0

lim sup
n→∞

Eθ[φn] ≤ α .

In the class so far, one has encountered many such tests: Wald tests, quasi-

likelihood ratio tests, and Lagrange multiplier tests. Suppose one is given

two different tests of the same null hypothesis, φ1,n and φ2,n, and both tests

are (pointwise) asymptotically of level α. How can one choose between these

two competing tests of the same null hypothesis? We will now explore the

answer to this question in the context of a specific example.

2 A Symmetric Location Model

Suppose Pθ is the distribution with density f(x− θ) on the real line (w.r.t.

Lebesgue measure). Suppose further that f is symmetric about 0 and that

it’s median, 0, is unique. Because f is symmetric about 0, f(x − θ) is

symmetric about θ. We also have that Eθ[X] = θ and Medθ[X] = θ. Finally,

suppose that the variance of P0 is finite; that is, σ2
0 =

∫
x2f(x)dx <∞.

Notice that we could take f to be the density of a normal distribution

and satisfy all of our assumptions. But many other choices of f satisfy these

assumptions. For example, we could take f to be the uniform density on

[−1, 1], the logistic density, or the Laplace density.

Suppose Θ0 = {0} and Θ1 = {θ ∈ R : θ > 0}; i.e., we wish to test the

null hypothesis H0 : θ = 0 versus the alternative H1 : θ > 0. How could we

test this null hypothesis?
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One such test is of course based on the familiar t-statistic:
√
nX̄n

σ̂n
.

Under the assumptions above, it is easy to show that
√
nX̄n

σ̂n

d→ N(0, 1)

under P0. Thus, we may take

φ1,n = I{
√
nX̄n

σ̂n
> z1−α}

where z1−α is the 1 − α quantile of the standard normal distribution. Ob-

viously, this test is asymptotically of level α (because z1−α is a continuity

point of the standard normal distribution).

A second test is based off of the following observation. Since f has

median 0 under the null hypothesis, the number of positive and negative

observations should be roughly equal (at least asymptotically). This sug-

gests a test based on the test statistic:

1
n

∑
1≤i≤n

I{Xi > 0} .

How does this statistic behave under the null hypothesis? We can compute

that

E0[I{Xi < 0}] = Pr0{Xi > 0} = 1− F (0) =
1
2
,

and thus

V0[I{Xi < 0}] = F (0)(1− F (0)) =
1
4
.

Thus, by the central limit theorem for i.i.d. observations, we have that

1√
n

∑
1≤i≤n

(I{Xi > 0} − 1
2

) d→ N(0,
1
4

) .

So, we could take

φ2,n = I{ 1√
n

∑
1≤i≤n

(I{Xi > 0} − 1
2

) >
1
2
z1−α} .

This test is known as the sign test. Obviously, this test is also asymptotically

of level α.
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3 A Naive Approach

It is natural to base comparisons of two different tests on their power func-

tions. The power function of a test is the function πn(θ) = Eθ[φn]; i.e., it is

the probability of rejecting the null hypothesis as a function of the unknown

parameter θ. In this problem it will be difficult to compare the finite-sample

power functions of the two tests, but we may try to do so in an asymptotic

sense. To this end, let’s compute the power functions of each of the above

two tests at a fixed θ > 0.

Let’s start with the t-test. The key trick is to realize that

π1,n(θ) = Pθ{
√
nX̄n

σ̂n
> z1−α}

= P0{
√
nȲn +

√
nθ

σ̂n
> z1−α}

= P0{
√
nȲn
σ̂n

> z1−α −
√
nθ

σ̂n
} ,

where Yi = Xi−θ is distributed according to P0. Importantly, we have done

this in the denominator, too, using the fact that

σ̂2
n =

1
n

∑
1≤i≤n

(Xi − X̄n)2 =
1
n

∑
1≤i≤n

(Yi − Ȳn)2 .

Since
√
nȲn

σ̂n
converges in distribution to a standard normal under P0 and

z1−α −
√
nθ
σ̂n

diverges in probability to −∞ under P0, it follows that

π1,n(θ)→ 1

for every θ > 0.

Now let’s consider the sign test. Begin by considering the behavior of
1
n

∑
1≤i≤n

I{Xi > 0}

under Pθ. Using the same trick as above, it is easy to compute that

Eθ[I{Xi > 0}] = Pθ{Xi > 0}

= P0{Yi > −θ}

= 1− F (−θ) ,
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which implies that

Vθ[I{Xi > 0}] = F (−θ)(1− F (−θ)) .

Thus, by the central limit theorem for i.i.d. observations, we have that

Sn(θ) =
1
n

∑
1≤i≤n

(I{Xi > 0} − (1− F (−θ)))

converges in distribution to N(0, F (−θ)(1− F (−θ))). We can now see that

π2,n(θ) = Pθ{
1√
n

∑
1≤i≤n

(I{Xi > 0} − 1
2

) >
1
2
z1−α}

= Pθ{Sn(θ) >
1
2
z1−α −

√
n(

1
2
− F (−θ))} .

Because f is symmetric about 0, F (−θ) < 1
2 . We can now conclude as before

that

π2,n(θ)→ 1

for every θ > 0.

So, we see that a pointwise comparison of power functions of the two tests

is completely uninformative. Both tests have power tending to 1 against

any fixed alternative θ > 0. In general, tests that have power tending to 1

against any fixed θ ∈ Θ1 are said to be consistent. Any reasonable test will

be consistent, so consistency is too weak of a requirement to be of use when

trying to choose among different tests.

4 Local Asymptotic Power

Here, as always, there are an innumerable number of ways of embedding

our situation with a sample of size n in a sequence of hypothetical situa-

tions with sample sizes larger than n. When choosing among these different

asymptotic frameworks, it is important to keep in mind that what we are

really interested in is the finite-sample behavior of the power function; that

is, the behavior of the power function for our sample of size n. In the pre-

ceding section, we have shown that the power tends to 1 at any fixed θ > 0
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as n tends to infinity. Of course, in our sample of size n we know that the

power is not 1 uniformly for θ > 0. It may be very close to 1 for θ “far” from

0, but for θ “close” to 0 we would expect the finite-sample power function

to be < 1. Of course, what we mean by “far” and “close” will change with

our sample size n. Our asymptotic framework should reflect this fact. The

above framework in which the alternative θ > 0 is fixed does not. This sug-

gests that we should consider the behavior of the power function evaluated

at a sequence of alternatives θn, where θn tends to 0 at some rate. One can

think of this as providing a locally asymptotic approximation to the power

function.

It turns out that if θn tends to 0 slowly enough, then the power function

will still tend to 1 as n tends to infinity. This follows from the following

useful fact: If for every ε > 0, En(ε) → 1, then there exists a sequence εn
tending to 0 slowly enough so that En(εn) → 1. I won’t prove this fact,

but it isn’t too hard to do it yourself. You can also find a proof in David

Pollard’s A User’s Guide to Measure-Theoretic Probability.

Likewise, if θn tends to 0 quickly enough, then for asymptotic purposes

it’s as if θn = 0. For any such sequence, the power function tends to α as n

tends to infinity in each of the above two examples.

There is a delicate rate in between the two extremes above such that if

θn tends to 0 at this rate, then the power will tend to a limit in (α, 1). This

rate may be different in different problems, but in problems such as this one

in which the distribution depends on θ in a “smooth” way it must be that

θn = O( 1√
n

). So, we will consider sequences θn = h√
n

, where h ∈ R.

Let’s again consider the t-test first. The calculation will be very similar

to the one in the preceding section for the t-test. An important distinction

is that now we must consider a triangular array of random variables because

the distribution of the data is changing with each n. For each n, let Xi,n, i =

1, . . . , n be an i.i.d. sequence of random variables with distribution Pθn . The

trick, as before, will be to write the power in terms of Yi,n = Xi,n−θn, which
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is distributed according to P0. We can now see that

π1,n(θn) = Pθn{
√
nX̄n,n

σ̂n,n
> z1−α}

= P0{
√
nȲn,n +

√
nθn

σ̂n,n
> z1−α}

= P0{
√
nȲn,n
σ̂n,n

> z1−α −
h

σ̂n,n
} .

Since the distribution of Yi,n is no longer changing with n, our analysis from

before applies and we see that
√
nȲn,n
σ̂n,n

d→ N(0, 1)

under P0. Since σ̂n,n converges in probability under P0 to σ2
0, we have that

π1,n(θn)→ 1− Φ(z1−α −
h

σ0
) .

This limit is called the local asymptotic power function of the t-test. Notice

that it depends on the so-called local paramter h.

A remark on interpretation is warranted here. We are really only inter-

ested in the power of the test at a single θ > 0, not a sequence θn. So, how

should we use the above approximation in practice? Given a sample of size

n and a θ > 0, we can solve for the corresponding value of h by equating θ

and θn. By dong so, we find that h =
√
nθ. Plugging this value of h into

the above expression, we get our approximation to the power of the test at

θ.

Now let’s consider the sign test. Begin as before by considering the

behavior of
1
n

∑
1≤i≤n

I{Xi,n > 0}

under Pθn . Our earlier analysis shows that

Eθn [I{Xi,n > 0}] = 1− F (−θn)

and

Vθn [I{Xi,n > 0}] = F (−θn)(1− F (−θn)) .
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We’d like to assert that

Sn(θn) =
1√
n

∑
1≤i≤n

(I{Xi,n > 0} − (1− F (−θn)))

converges in distribution under Pθn to a normal distribution. To do this, we

will need a central limit theorem for a triangular array. The most general

such theorem is the Lindeberg-Feller central limit theorem. Here’s a special

case of it:

Theorem 4.1 For each n, let Zn,i, i = 1, . . . , n be i.i.d. with distribution

Pn. Suppose En[Zn,i] = 0 and Vn[Zn,i] = σ2
n <∞. If for each ε > 0

lim
n→∞

1
σ2
n

En[Z2
n,iI{|Zn,i| > ε

√
nσn}] = 0 ,

then

Sn =
√
nZ̄n,n/σn

d→ N(0, 1)

under Pn.

For the general version of the Lindeberg-Feller central limit theorem see,

for example, Theorem 11.2.5 of Romano and Lehmann (2005). For a proof

see Theorem 27.2 of Billingsley (1995).

So let’s apply the theorem with

Zn,i = I{Xi,n > 0} − (1− F (−θn))

σ2
n = F (−θn)(1− F (−θn)) .

For any fixed h, σn is also bounded away from 0 because F (0) = 1
2 , F is

continuous by assumption (it’s the integral of f), and θn ≈ 0 for large n. We

also have that σn is bounded from above because F is bounded. Finally, we

have that Zn,i is bounded because I and F are both bounded. Therefore,

the condition required in the theorem holds trivially in this case. Since

σ2
n → F (0)(1− F (0)) = 1

4 , we have that

Sn(θn) d→ N(0,
1
4

)
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under Pθn .

We can now finish our analysis for the sign test. We have that

π2,n(θn) = Pθn{
1√
n

∑
1≤i≤n

(I{Xi > 0} − 1
2

) >
1
2
z1−α}

= Pθn{Sn(θn) >
1
2
z1−α −

√
n(

1
2
− F (−θn))} .

Since F is differentiable by assumption (with derivative equal to f), we see

that

√
n(

1
2
− F (−θn)) =

√
n(F (0)− F (−θn)) ≈

√
nθnf(0) = hf(0) ,

assuming f is continuous at 0. Together with the result about the asymptotic

normality of Sn(θn) above, we find that

π2,n(θn)→ 1− Φ(z1−α − 2hf(0)) .

We are now (finally) in a position to compare these two tests based on

their local asymptotic power functions. It is easy to see that if 2f(0) > 1
σ0

,

then the sign test will be preferred to the t-test in a local asymptotic power

sense; otherwise, the t-test will be preferred to the sign test.

If f is the normal density, then we know that the t-test should be uni-

formly most powerful for testing the null hypothesis. Reassuringly, if we

plug in the standard normal density for f , we find that the above analy-

sis bears this out. Likewise, if f is the density of a logistic or a uniform

distribution, then the t-test is preferred to the sign test.

If, on the other hand, we consider distributions with “fatter” tails, we

find that the situation is reversed. For example, if we take f to be the

density of a Laplace distribution, the above analysis implies that the sign

test is preferred to the t-test in a local asymptotic power sense. In fact, we

can make the ratio of 2f(0) to 1
σ0

arbitrarily large by considering densities f

with more and more mass in the tails. Thus, the moral of this story is that

if the underlying distribution is symmetric, then, the t-test, while preferred

for many distributions, is not as robust as the sign test to “fat” tails (and

can in fact be arbitrarily worse than the sign test!).
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The square of the ratio of 2f(0) to 1
σ0

is sometimes referred to as the

asymptotic relative efficiency of the sign test w.r.t. the t-test. Asymptotic

relative efficiency is defined analogously for other pairs of tests.

9


