
1 Confidence Sets

Let Xi, i = 1, . . . , n be an i.i.d. sample of observations with distribution P ∈
P. The family P may be a parametric, nonparametric, or semiparametric

family of distributions. We are interested in making inferences about some

parameter θ(P ) ∈ Θ = {θ(P ) : P ∈ P}. Typical examples of θ(P ) are the

mean of P or median of P , but, more generally, it could be any function of

P . Specifically, we are interested in constructing a confidence set for θ(P );

that is, a random set, Cn = Cn(X1, . . . , Xn) such that

P{θ(P ) ∈ Cn} ≈ 1− α ,

at least for n sufficiently large.

The typical way of constructing such sets is based off of approximating

the distribution of a root, Rn = Rn(X1, . . . , Xn, θ(P )). A root is simply any

real-valued function depending on both the data, Xi, i = 1, . . . , n, and the

parameter of interest, θ(P ). The idea is that if the distribution of the root

were known, then one could straightforwardly construct a confidence set for

θ(P ). To illustrate this idea, let Jn(x, P ) denote the distribution of Rn; that

is

Jn(x, P ) = P{Rn ≤ x} .

The notation is intended to emphasize the fact that the distribution of the

root depends on both the sample size, n, and the distribution of the data,

P . Using Jn(x, P ), we may choose a constant c such that

P{Rn ≤ c} ≈ 1− α .

Given such a c, the set

Cn = {θ ∈ Θ : Rn(X1, . . . , Xn, θ) ≤ c}

is a confidence set in the sense described above. We may also choose c1 and

c2 so that

P{c1 ≤ Rn ≤ c2} ≈ 1− α .
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Given such c1 and c2, the set

Cn = {θ ∈ Θ : c1 ≤ Rn(X1, . . . , Xn, θ) ≤ c2}

is a confidence set in the sense described above.

1.1 Pivots

In some rare instances, Jn(x, P ) does not depend on P . In these instances,

the root is said to be pivotal or a pivot. For example, if θ(P ) is the mean of

P and P = {N(θ, 1) : θ ∈ R}, then the root

Rn =
√
n(X̄n − θ(P ))

is a pivot because Rn ∼ N(0, 1). In this case, we may construct confidence

sets Cn with finite-sample validity; that is,

P{θ(P ) ∈ Cn} = 1− α

for all n and P ∈ P. If it is known that Jn(x, P ) does not depend on P ,

but its exact form is not known or is untractable, then one may resort to

simulation to approximate Jn(x, P ) to any desired degree of accuracy (since

the distribution does not depend on P , just pick any P ∈ P and simulate

Jn(x, P ) using that P ). An example of this is given by the Kolmogorov-

Smirnov statistic: Remarkably, the distribution of

√
n sup
x∈R
|F̂n(x)− F (x)|

does not depend on F as long as F is continuous! We may use this to

construct uniform confidence bands on F provided that we assume that F

is continuous.

1.2 Asymptotic Pivots

Sometimes, the root may not be pivotal in the sense described above, but it

may be asymptotically pivotal or an asymptotic pivot in that Jn(x, P ) con-

verges in distribution to a limit distribution J(x, P ) that does not depend on
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P . For example, if θ(P ) is the mean of P and P is the set of all distributions

on R with a finite, nonzero variance, then

Rn =
√
n(X̄n − θ(P ))

σ̂n

is asymptotically pivotal because it converges in distribution to J(x, P ) =

Φ(x). In this case, we may construct confidence sets that are asymptotically

valid in the sense that

lim
n→∞

P{θ(P ) ∈ Cn} = 1− α

for all P ∈ P.

1.3 Asymptotic Approximations

Typically, the root will be neither a pivot nor an asymptotic pivot. The

distribution of the root, Jn(x, P ), will typically depend on P , and, when it

exists, the limit distribution of the root, J(x, P ), will, too. For example,

if θ(P ) is the mean of P and P is the set of all distributions on R with a

finite, nonzero variance, then

Rn =
√
n(X̄n − θ(P ))

converges in distribution to J(x, P ) = Φ(x/σ(P )). In this case, we can ap-

proximate this limit distribution with Φ(x/σ̂n), which will lead to confidence

sets that are asymptotically valid in the sense described above.

Note that this third approach depends very heavily on the limit distribu-

tion J(x, P ) being both known and tractable. Even if it is known, the limit

distribution may be difficult to work with (e.g., it could be the supremum

of some complicated stochastic process with many nuisance parameters).

Moreover, even if it is known and manageable, the method may be poor in

finite-samples because it essentially relies on a double approximation: first,

Jn(x, P ) is approximated by J(x, P ), then J(x, P ) is approximated in some

way by estimating the unknown parameters of the limit distribution.
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2 The Bootstrap

The bootstrap is a fourth, more general approach to approximating Jn(x, P ).

The idea is very simple: Replace the unknown P with an estimate P̂n. Given

P̂n, it is possible to compute (either analytically or using simulation to any

desired degree of accuracy) Jn(x, P̂n). In the case of i.i.d. data, a typical

choice is the empirical distribution (though if P = P (ψ) for some finite-

dimensional parameter ψ, then one may also use P̂n = P (ψ̂n) for some

estimate ψ̂n of ψ). The hope is that whenever P̂n is “close” to P (which

may be ensured, for example, by the Glivenko-Cantelli Theorem), Jn(x, P̂n)

is “close” to Jn(x, P ). Essentially, this requires that Jn(x, P ), when viewed

as a function of P , is continuous in an appropriate neighborhood of P . Often,

this turns out to be true, but, unfortunately, it is not true in general.

2.1 The Nonparametric Mean

We will now consider the case where P is a distribution on R and θ(P ) is

the mean of P . We will consider first the root Rn =
√
n(X̄n − θ(P )). Let

P̂n denote the empirical distribution of the Xi, i = 1, . . . , n. Under what

conditions is Jn(x, P̂n) “close” to Jn(x, P )?

The sequence of distributions P̂n is a random sequence, so, as before, it

is more convenient to answer the question first for a nonrandom sequence

Pn. The following theorem does exactly that.

Theorem 2.1 Let θ(P ) be the mean of P and let P denote the set of all

distributions on R with a finite, nonzero variance. Consider the root Rn =
√
n(X̄n−θ(P )). Let Pn, n ≥ 1 be a nonrandom sequence of distributions such

that Pn converges in distribution to P , θ(Pn)→ θ(P ) and σ2(Pn)→ σ2(P ).

Then,

(i) Jn(x, Pn) converges in distribution to J(x, P ) = Φ(x/σ(P )).

(ii) J−1
n (1−α, Pn) = inf{x ∈ R : Jn(x, Pn) ≥ 1−α} converges to J−1(1−
α, P ) = z1−ασ(P ).
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Proof: (i) For each n, let Xi,n, i = 1, . . . , n be an i.i.d. sequence of random

variables with distribution Pn. We must show that

√
n(X̄n,n − θ(Pn))

converges in distribution to N(0, σ2(P )). To this end, let

Zn,i =
Xn,i − θ(Pn)

σ(Pn)

and apply Theorem 4.1 from the notes on “Asymptotic Comparisons of

Tests” (i.e., apply the Lindeberg-Feller central limit theorem). We must

show that

lim
n→∞

E[Z2
n,iI{|Zn,i| > ε

√
n}] = 0 .

Let ε > 0 be given. By the assumption that Pn converges in distribution

to P and Slutsky’s Theorem, Zn,i converges in distribution to Z = (X −
θ(P ))/σ(P ). It follows that for any λ > 0 for which the distribution of Z is

continuous at λ, we have that

E[Z2
n,iI{|Zn,i| > λ}]→ E[Z2I{|Z| > λ}] .

To see this, note that

E[Z2
n,iI{|Zn,i| > λ}] = E[Z2

n,i]− E[Z2
n,iI{|Zn,i| ≤ λ}] .

The first term on the right-hand side is always equal to one and the second

term converges to E[Z2I{|Z| ≤ λ} because of the fact that Z2
n,iI{Zn,i ≤ λ}

is a bounded random variable that converges in distribution to Z2I{|Z| ≤
λ}. (In general, convergence in distribution does not imply convergence of

moments! You should try to find an example of this phenomenon to convince

yourself.) As λ → ∞, E[Z2I{|Z| > λ}] → 0. To complete the proof, note

that for any fixed λ > 0

E[Z2
n,iI{|Zn,i| > ε

√
n}] ≤ E[Z2

n,iI{|Zn,i| > λ}]

for n sufficiently large. Thus,

√
nZ̄n,n → N(0, 1)
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under Pn. The desired result now follows from Slutsky’s Theorem and the

fact that σ(Pn)→ σ(P ).

(ii) This follows from part (i) and Lemma ?? below applied to Fn(x) =

Jn(x, P ) and F (x) = J(x, P ).

Lemma 2.1 Let Fn, n ≥ 1 and F be nonrandom of distribution functions

on R such that Fn converges in distribution to F . Suppose F is continuous

and strictly increasing at F−1(1 − α) = inf{x ∈ R : F (x) ≥ 1 − α}. Then,

F−1
n (1− α) = inf{x ∈ R : Fn(x) ≥ 1− α} → F−1(1− α).

Proof: Let q = F−1(1 − α). Fix δ > 0 and choose ε so that 0 < ε < δ

and F is continuous at q − ε and q + ε. This is possible because F is

continuous at q and therefore continuous in a neighborhood of q. Hence,

Fn(q − ε)→ F (q − ε) < 1− α and Fn(q + ε)→ F (q + ε) > 1− α, where the

inequalities follow from the assumption that F is strictly increasing at q. For

n sufficiently large, we thus have that Fn(q−ε) < 1−α and Fn(q+ε) > 1−α.

It follows that q − ε ≤ F−1(1− α) ≤ q + ε for such n.

We are now ready to pass from the nonrandom sequence Pn to the ran-

dom sequence P̂n.

Theorem 2.2 Let θ(P ) be the mean of P and let P denote the set of

all distributions on R with a finite, nonzero variance. Consider the root

Rn =
√
n(X̄n − θ(P )). Then,

(i) Jn(x, P̂n) converges in distribution to J(x, P ) = Φ(x/σ(P )) a.s.

(ii) J−1
n (1− α, P̂n) converges to J−1(1− α, P ) = z1−ασ(P ) a.s.

Proof: By the Glivenko-Cantelli Theorem,

sup
x∈R
|P̂n((−∞, x])− P ((−∞, x])| → 0

a.s. This implies that P̂n converges in distribution to P a.s. Since |x| ≤ 1+x2

and that σ2(P ) < ∞, we have that E[|X|] ≤ 1 + E[X2] < ∞. Thus, we
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may apply the Strong Law of Large Numbers to conclude that θ(P̂n) = X̄n

converges to θ(P ) a.s. and σ(P̂n) converges to σ(P ) a.s. Thus, w.p. 1, P̂n
satisfies the assumptions of Theorem ??. The conclusions of the theorem

now follow.

We will now consider the root Rn =
√
n(X̄n−θ(P ))

σ̂n
. The following theorem,

which parallels Theorem ??, provides conditions under which Jn(x, P̂n) is

“close” to Jn(x, P ). A key step in the proof will be to show that σ̂n converges

in probability to σ(P ) under an appropriate sequence of distributions. For

this reason, we will need the following weak law of large numbers for a

triangular array:

Lemma 2.2 For each n, let Yn,i, i = 1, . . . , n be an i.i.d. sequence of random

variables with distribution Fn on R. Suppose Fn converges in distribution

to F and that E[|Yn,i|]→ E[|Y |] <∞, where Y ∼ F . Then, Ȳn,n converges

in probability to E[Y ] under Fn.

The proof of this is nontrivial, so we postpone it until later.

Theorem 2.3 Let θ(P ) be the mean of P and let P denote the set of all

distributions on R with a finite, nonzero variance. Consider the root Rn =
√
n(X̄n−θ(P ))

σ̂n
. Let Pn, n ≥ 1 be a nonrandom sequence of distributions such

that Pn converges in distribution to P , θ(Pn)→ θ(P ) and σ2(Pn)→ σ2(P ).

Then,

(i) Jn(x, Pn) converges in distribution to J(x, P ) = Φ(x).

(ii) J−1
n (1−α, Pn) = inf{x ∈ R : Jn(x, Pn) ≥ 1−α} converges to J−1(1−
α, P ) = z1−α.

Proof: (i) For each n, let Xn,i, i = 1, . . . , n be an i.i.d. sequence of random

variables with distribution Pn. The proof of Theorem ?? shows that

√
n(X̄n,n − θ(Pn))
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converges in distribution to a N(0, σ2(P )) under Pn. Therefore, by Slutsky’s

Theorem, it suffices to show that

σ̂2
n =

1
n

∑
1≤i≤n

X2
n,i − X̄2

n,n

converges in probability to σ2(P ) under Pn. To do this, we will apply Lemma

?? twice, once with Yn,i = X2
n,i and then with Yn,i = Xn,i.

Let X ∼ P . Recall that by assumption, (i) Xn,i converges in distribution

to X (and thus by the Continuous Mapping Theorem, X2
n,i converges in

distribution to X2), (ii) θ(Pn) = E[Xn,i]→ E[X] = θ(P ), and (iii) σ2(Pn) =

E[X2
n,i] − E[Xn,i]2 → E[X2] − E[X]2 = σ2(P ). It follows that E[X2

n,i] →
E[X2]. This last fact implies (with a tiny bit of work) that E[|Xn,i|] →
E[|X|] (use the inequality |x| ≤ 1+x2 and Lebesgue Dominated Convergence

Theorem). Thus, we may apply Lemma ?? with both Yn,i = X2
n,i and then

with Yn,i = Xn,i to conclude that

1
n

∑
1≤i≤n

X2
n,i

converges in probability to E[X2] under Pn and X̄n,n converges in probability

to E[X] under Pn. The desired result now follows.

(ii) This follows as before from part (i) and Lemma ?? applied to Fn(x) =

Jn(x, P ) and F (x) = J(x, P ).

We can now pass, as before, from the nonrandom sequence Pn to the

random sequence P̂n.

Theorem 2.4 Let θ(P ) be the mean of P and let P denote the set of

all distributions on R with a finite, nonzero variance. Consider the root

Rn =
√
n(X̄n−θ(P ))

σ̂n
. Then,

(i) Jn(x, P̂n) converges in distribution to J(x, P ) = Φ(x) a.s.

(ii) J−1
n (1− α, P̂n) converges to J−1(1− α, P ) = z1−α a.s.

8



Proof: The proof follows as before from the Glivenko-Cantelli Theorem

and the Strong Law of Large Numbers.

It now follows from Slutsky’s Theorem that confidence sets of the form

Cn = {θ ∈ R : Rn(X1, . . . , Xn, θ) ≤ J−1
n (1 − α, P̂n)} or Cn = {θ ∈ R :

J−1
n (α2 , P̂n) ≤ Rn(X1, . . . , Xn, θ) ≤ J−1

n (1 − α
2 , P̂n)}, with Rn =

√
n(X̄n −

θ(P )) or Rn =
√
n (X̄n−θ(P ))

σ̂n
satisfy

P{θ(P ) ∈ Cn} → 1− α (1)

for all P ∈ P.

Of course, even a confidence set Cn based off of the asymptotic nor-

mality of either root would satisfy (??). It can be shown under certain

conditions (that ensure the existence of so-called Edgeworth expansions of

Jn(x, P )) that one-sided confidence sets Cn based off of such an asymptotic

approximation satisfy

P{θ(P ) ∈ Cn} − (1− α) = O(n−1/2) . (2)

One-sided confidence sets based off of the bootstrap and the root Rn =
√
n(X̄n − θ(P )) also satisfy (??), though there is some evidence to suggest

that it does a bit better in the size of O(n−1/2) term. On the other hand,

one-sided confidence sets based off of the bootstrap and the root Rn =
√
n(X̄n−θ(P ))

σ̂n
satisfy

P{θ(P ) ∈ Cn} − (1− α) = O(n−1) . (3)

One-sided confidence sets that satisfy only (??) are said to be first-order

accurate, where as one-sided confidence sets that satisfy (??) are said to be

second-order accurate. See Section 15.5 of Lehmann and Romano (2005) for

further details.

We now return to the proof of Lemma ?? that was used in the proof of

Theorem ??.

Proof of Lemma ??: Note that E[|Yn,i|]→ E|Y |], implies that E[Yn,i]→
E[Y ]. Therefore, it is enough to prove that Ȳn,n − E[Yn,i] converges in

probability to zero under Fn.
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We may assume w.l.o.g. that E[Yn,i] = 0. Arguing as in the proof of

Theorem ??, we have that

lim
λ→∞

lim sup
n→∞

E[|Yn,i|I{|Yn,i| > λ}] = 0 . (4)

Let ε > 0 be given and define Zn,i = Yn,iI{|Yn,i ≤ n}. Note that

P{|Ȳn,n| > ε} ≤ P{|Zn,n| > ε}+ P{Ȳn,n 6= Z̄n,n} .

Note that

P{Ȳn,n 6= Z̄n,n} ≤ P{
⋃

1≤i≤n
P{Yn,i 6= Zn,i}}

= nP{Yn,i 6= Zn,i} = nP{|Yn,i| > n} .

Furthermore, by Chebychev’s Inequality,

P{|Z̄n,n| > ε} ≤
E[Z2

n,i]
nε2

.

Thus,

P{|Ȳn,n| > ε} ≤
E[Z2

n,i]
nε2

+ nP{|Yn,i| > n} .

For t > 0, let

τn(t) = tP{|Yn,i| > t} = t(1− Fn(t) + Fn(−t))

κn(t) =
1
t
E[Z2

n,i] =
1
t
E[|Yn,i|I{|Yn,i| ≤ t}]

=
1
t

∫ t

−t
x2dFn .

Hence,

P{|Ȳn,n| > ε} ≤ κn(n)
ε2

+ τn(n) .

It therefore suffices to show that τn(n)→ 0 and κn(n)→ 0. Since

tP{|Yn,i| > t} ≤ E[|Yn,i|I{|Yn,i| > t}] , (5)

τn(n) = nP{|Yn,i| > n|} → 0. It is possible to show (using integration by

parts and some persistence) that

κn(t) = −τn(t) +
2
t

∫ t

0
τn(x)dx .
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To complete the proof, we thus only need to show that

1
n

∫ n

0
τn(x)dx→ 0 .

To this end, let δ > 0 be given. Note that (??) implies that

1
n

∫ n

0
τn(x)dx ≤ 1

n

∫ n

0
E[|Yn,i|I{|Yn,i| > x}]dx . (6)

Using (??) and (??), choose n0 and λ0 so that for all n > n0,

E[|Yn,i|I{|Yn,i| > λ0}] <
δ

2
.

For all x ≥ λ0 and n > n0, we thus have that

E[|Yn,i|I{|Yn,i| > x}] ≤ E[|Yn,i|I{|Yn,i| > λ0}] <
δ

2
.

For all x ≤ λ0 and n > n0, we have that

E[|Yn,i|I{|Yn,i| > x}] ≤ E[|Yn,i|]

= E[|Yn,i|I{|Yn,i| ≤ λ0}] + E[|Yn,i|I{|Yn,i| > λ0}]

≤ λ0 +
δ

2
.

Finally, using (??) and these last two inequalities, we have for n > n0 and

n > λ0 that

1
n

∫ n

0
τn(x)dx ≤

λ0(λ0 + δ
2)

n
+
δ

2
,

which is less than δ for all n sufficiently large.

3 The Multivariate Nonparametric Mean

The convergence in distribution of random vectors in Rk can be deduced

from convergence in distribution of appropriate random variables on R by

means of the following useful result, known as the Cramer-Wold device:

Theorem 3.1 A sequence of random vectors Xn on Rk satisfies Xn
d→ X

if and only if t′Xn
d→ t′X for all t ∈ Rk.
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Using the Cramer-Wold device it is straightforward to generalize the

arguments of the preceding section to the multivariate case.

Theorem 3.2 Let θ(P ) be the mean of P and let P denote the set of dis-

tributions on Rk whose variance, Σ(P ), exists and has at least one nonzero

component. Consider the root Rn = ||
√
n(X̄n − θ(P ))||, where || · || is

the usual norm on Rk. Let Pn, n ≥ 1 be a nonrandom sequence of distri-

butions such that Pn converges in distribution to P , θ(Pn) → θ(P ), and

Σ(Pn)→ Σ(P ). Then,

(i) Jn(x, Pn) converges in distribution to J(x, P ), the distribution of ||Z||,
where Z ∼ N(0,Σ(P )).

(ii) J−1
n (1− α, Pn) converges to J−1(1− α, P ).

Proof: Let Xi,n, i = 1, . . . , n be an i.i.d. sequence of random variables with

distribution Pn. We first show that

√
n(X̄n,n − θ(Pn)) (7)

converges in distribution under Pn to a N(0,Σ(P )). To this end, we apply

the Cramer-Wold device. Let t ∈ Rk be given. There are two cases to

consider: t′Σ(P )t > 0 and t′Σ(P )t = 0. In the former case, the desired

result follows immediately from part (i) of Theorem ??. In the latter case,

we have by Chebychev’s inequality that (??) converges in distribution to

zero. The conclusion (i) now follows from the continuous mapping theorem;

(ii) follows from Lemma ?? upon realizing that the requirement that Σ(P )

has at least one nonzero component implies that J(x, P ) is continuous and

strictly increasing at its 1− α quantile.

We can now pass, as before, from the nonrandom sequence to the random

sequence P̂n.

Theorem 3.3 Let θ(P ) be the mean of P and let P denote the set of

all distributions on Rk whose variance, Σ(P ), exists and has at least one
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nonzero component. Consider the root Rn = ||
√
n(X̄n− θ(P ))||, where || · ||

is the usual norm on Rk. Then,

(i) Jn(x, P̂n) converges in distribution to J(x, P ), the distribution of ||Z||,
where Z ∼ N(0,Σ(P )), a.s.

(ii) J−1
n (1− α, P̂n) converges to J−1(1− α, P ) a.s.

Proof: The proof follows as before from the Glivenko-Cantelli Theorem

(in this case on Rk over an appropriate class of sets) and the Strong Law of

Large Numbers.

As in the univariate case, it is straightforward to extend the argument

to the root

Rn = ||Σ̂−1/2
n (

√
n(X̄n − θ(P ))|| ,

where Σ̂n = Σ(P̂n). In this case, one must assume further that Σ(P ) is

nonsingular.

Note that the argument above did not depend on || · || in any essential

way; we could just as easily replace it with any other norm on Rk.

4 The Sample Median

Let P be a distribution on R and denote by θ(P ) its median. Let θ̂n = θ(P̂n)

the sample median of the Xi, i = 1, . . . , n and consider the root Rn =
√
n(θ̂n − θ(P )).

It is useful first to consider the limiting behavior of Rn for a fixed dis-

tribution P . This is done in the following theorem (where, for expositional

purposes, we’ve switched from from P to F ):

Theorem 4.1 Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables

with c.d.f. F . Suppose F is differentiable at θ(F ) with derivative f and

f(θ(F )) > 0. Then,

√
n(θ̂n − θ(F )) d→ N(0,

1
4f2(θ(F ))

.
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Proof: Suppose first that n tends to infinity through odd values only; the

proof for even values is similar. For any x ∈ R,

P{
√
n(θ̂n − θ(F )) ≤ x} = P{Sn ≤

n− 1
2
} ,

where Sn ∼ Binomial(n, pn) and

pn = 1− F (θ(F ) +
x√
n

) .

Moreover,

P{Sn ≤
n− 1

2
} = P{ Sn − npn

[npn(1− pn)]1/2
≤
√
n(1

2 − pn)− 1
2
√
n

[pn(1− pn)]1/2
} .

Because pn → 1/2, it follows from the Lindeberg-Feller Central Limit The-

orem that
Sn − npn

[npn(1− pn)]1/2
d→ N(0, 1) .

Furthermore,

√
n(

1
2
− pn) =

√
n(F (θ(F ) +

x√
n

)− 1
2

)→ xf(θ(F )) .

Hence, √
n(1

2 − pn)− 1
2
√
n

[pn(1− pn)]1/2
→ x2f(θ(F )) .

The desired result now follows from Slutsky’s Theorem.

We now need to determine for which sequences Fn,
√
n(θ̂n − θ(Fn))

converges in distribution to the same limiting distribution. By mimicking

the proof of the above result, we see that this will be the case when

√
n(Fn(θ(Fn) +

x√
n

)− 1
2

)→ xf(θ(F )) .

Note that this convergence implies in particular that

Fn(θ(Fn)− x√
n

)→ 1
2
.

The following theorem summarizes this conclusion.
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Theorem 4.2 Suppose F is a distribution satisfying the assumptions of the

preceding theorem and let Fn, n ≥ 1 be a sequence of distributions satisfying

√
n(Fn(θ(Fn) +

x√
n

)− 1
2

)→ xf(θ(F )) .

Let Jn(x, Fn) denote the distribution of Rn =
√
n(θ̂n − θ(F )) under Fn.

Then,

(i) Jn(x, Fn) d→ J(x, F ) = Φ(2f(θ(F ))x);

(ii) J−1
n (1− α, Fn)→ J−1(1− α, F ) = 2f(θ(F ))z1−α.

Proof: Follows essentially from the proof of the preceding theorem and

earlier results.

Using an almost sure representation theorem, it is possible to show that

there exist versions of F̂n (i.e., having the same distributional properties)

that satisfy the requirements on Fn in the preceding theorem almost surely.

This implies that for the actual F̂n, the conclusions of the theorem hold in

probability, which is good enough for our purposes. See Beran (1984) for

details.
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