

PROBABILITY MODELS FOR ECONOMIC DECISIONS

Chapter 2: Discrete Random Variables

In this chapter, we focus on one simple example, but in the context of this example we develop most of the technical concepts of probability theory, statistical inference, and decision analysis that be used throughout the rest of the book. This example is very simple in that it involves only one unknown quantity, which has only finitely many possible values. That is, in technical terms, this example involves just one discrete random variable.

With just one discrete random variable, we can make a table or chart that completely describes its probability distribution. Among the various ways of picturing a probability distribution, the most useful in this book will be the inverse cumulative distribution chart. After introducing such charts and explaining how to read them, we show how this inverse cumulative distribution can be used to make a simulation model of any random variable.

Next in this chapter we introduce the two most important summary measures of a random variable's probability distribution: its expected value and standard deviation. These two summary measures can be easily computed for a discrete random variable, but we also show how to estimate these summary measures from simulation data. The expected value of a decision-maker's payoff will have particular importance throughout this book as a criterion for identifying optimal decisions under uncertainty.

Later in the book we will consider more complex models with many random variables, some of which may have infinitely many possible values. For such complex models, we may not know how to compute expected values and standard deviations directly, but we will still be able

to estimate these quantities from simulation data by the methods that are introduced in this chapter. We introduce these methods here with a simple one-variable model because, when you first learn to compute statistical estimates from simulation data, it is instructive to begin with a case where you can compare these estimates to the actual quantities being estimated.

Case:

SUPERIOR SEMICONDUCTOR (Part A)

Peter Suttcliff, an executive vice-president at Superior Semiconductor, suspected that the time might be right for his firm to introduce the first integrated T-regulator device using new solid-state technology. This new product seemed the most promising of the several ideas that had been suggested by the head of Superior's Industrial Products division. So Suttcliff asked his staff assistant Julia Eastmann to work with Superior's business marketing director and the chief production engineer to develop an evaluation of the profit potential from this new product.

According to Eastmann's report, the chief engineer anticipated substantial fixed costs for engineering and equipment just to set up a production line for the new product. Once the production line was set up, however, a low variable cost per unit of output could be anticipated, regardless of whether the volume of output was low or high. Taking account of alternative technologies available to the potential customers, the marketing director expressed a clear sense of the likely selling price of the new product and the potential overall size of the market. But Superior had to anticipate that some of its competitors might respond in this area by launching similar products. To be specific in her report, Eastmann assumed that 3 other competitive firms would launch similar products, in which case Superior should expect 1/4 of the overall market.

Writing in the margins of Eastmann's report, Suttcliff summarized her analysis as

follows:

- Superior's fixed set-up cost to enter the market: \$26 million
- Net present value of revenue minus variable costs in the whole market: \$100 million
- Superior's predicted market share, assuming 3 other firms enter: 1/4
- Result: predicted net loss for Superior: (\$1 million)

"Your estimates of costs and total market revenues look reasonably accurate," Suttcliff told Eastmann. "But your assumption about the number of other firms entering to share this market with us is just a guess. I can count 5 other semiconductor firms that might seriously consider competing with us in this market. In the worst possible scenario, all 5 of these firms could enter the market, although that is rather unlikely. There is no way that we could keep this market to ourselves for any length of time, and so the best possible scenario is that only 1 other firm would enter the market, although that is also rather unlikely. I would agree with you that the most likely single event is that 3 other firms would enter to share the market with us, but that event is only a bit more likely than the possibilities of having 2 other firms enter, or having 4 other firms enter. If there were only 2 other entrants, it could change a net loss to a net profit. So there is really a lot of uncertainty about this situation, and your analysis might be more convincing if you did not ignore it."

"We can redo the analysis in a way that takes account of the uncertainty by using a probabilistic model," Eastmann replied. "The critical step is to assess a probability distribution for the unknown number of competitors who would enter this market with us. So I should try to come up with a probability distribution that summarizes the beliefs that you expressed." Then after some thought, she wrote the following table and showed it to Suttcliff:

<u>K</u>	<u>Probability that K other competitors enter</u>
1	0.10
2	0.25
3	0.30
4	0.25
5	0.10

Suttcliff studied the table. "I guess that looks like what I was trying to say. I can see that your probabilities sum to 1, and you have assigned higher probabilities to the events that I said were more likely. But without any statistical data, is there any way to test whether these are really the right probability numbers to use?"

"In a situation like this, without data, we have to use subjective probabilities," Eastmann explained. "That means that we can only go to our best expert and ask him whether he believes each possible event to be as likely as our probabilities say. In this case, if we take you as best expert about the number of competitive entrants, then I could test this probability distribution by asking you questions about your preferences among some simple bets. For example, I could ask you which you would prefer among two hypothetical lotteries, where the first lottery would pay you a \$10,000 prize if exactly one other firm entered this market, while the second lottery would pay the same \$10,000 prize but with an objective 10% probability. Assuming that you had no further involvement with this project, you should be indifferent among these two hypothetical lotteries if your subjective probability of one other firm entering is 0.10, as my table says. If you said that you were not indifferent, then we would try increasing or decreasing the first probability in the table, depending on whether you said that the first or second lottery was preferable. Then

we could test the other probabilities in the table by similar questions. But if we change any one probability in my table then at least one other probability must be changed, because the probabilities of all the possible values of the unknown quantity must add up to 1."

Suttcliff looked again at the table of probabilities for another minute or two, and then he indicated that it seemed to be a reasonable summary of his beliefs.

2.1 Unknown quantities in decisions under uncertainty

Uncertainty about numbers is pervasive in all management decisions. How many units of a proposed new product will we sell in the year when it is introduced? How many yen will a dollar buy in currency markets a month from today? What will be the closing Dow Jones Industrial Average on the last trading day of this calendar year? Each of these number is an unknown quantity. If our profit or payoff from a proposed strategy depends on such unknown quantities, then we cannot compute this payoff without making some prediction of these unknown quantities.

A common approach to such problems is to assess your best estimate for each of these unknown quantities, and use these estimates to compute the bottom-line payoff for each proposed strategy. Under this method of point-estimates, the optimal strategy is considered to be the one that gives you the highest payoff when all unknown quantities are equal to your best estimates.

But there is a serious problem with this method of point-estimates: It completely ignores your uncertainty. In this book, we study ways to incorporate uncertainty into the analysis of decisions. Our basic method will be to assess probability distributions for unknown quantities,

and then to create random variables that simulate these unknown quantities in spreadsheet simulation models.

In the general terminology of decision analysis, the term "random variable" is often taken by definition to mean the same thing as the phrase "unknown quantity." But as a matter of style here, we will generally reserve the term unknown quantity for unknowns in the real world, and random variable will be generally used for values in spreadsheets that are unknown because they depend on unknown RAND values.

To illustrate these ideas, we consider the Superior Semiconductor case (Part A). In this case, we have a decision about whether our company should introduce a proposed new product. It is estimated that the fixed cost of introducing this new product will be \$26 million. The total value of the market (price minus variable unit costs, multiplied by total demand) is estimated to be \$100 million. It is also estimated that 3 other firms will enter this market and share it equally with us. Thus, by the method of point-estimates, we get a net profit (in \$millions) of $100/(3 + 1) - 26 = -1$, which suggests that this product should not be introduced. But all the quantities in this calculation (fixed cost, value of the market, number of competitive entrants) are really subject to some uncertainty. We will see, however, that when uncertainty is properly taken into account, the new product may be recognized as worth introducing.

The analysis in Part A of this case focuses on just one of these unknowns: the number of entrants. Uncertainty about other quantities (fixed cost, value of the market) is ignored until the end of this chapter, but it will be considered in more detail in Chapter 4. By focusing on just this one unknown quantity for now, we can simplify the analysis as we introduce some of the most important fundamental ideas of probability theory.

2.2 Charting a probability distribution

We use probability distributions to describe people's beliefs about unknown quantities.

When an unknown quantity has only finitely many possible values, we can describe it using a discrete probability distribution. (Continuous probability distributions, for unknown quantities with infinitely many possible values, will be discussed in Chapter 4.) A discrete probability distribution can be presented in a table that lists the possible values of the unknown quantity and the probability of each possible value.

In the Superior Semiconductor case, the number of competitors who will enter the market is a quantity that is unknown to the company's decision-makers, and they believe that this unknown quantity could be any number from 1 to 5. In our mathematical notation, let **K** denote this unknown number of competitors who will enter this market. (We follow a mathematical tradition of representing unknown quantities by boldface letters.) Then the decision-maker's beliefs about this unknown quantity **K** are described in the case by a discrete probability distribution such that

$$P(K=1) = 0.10, \quad P(K=2) = 0.25, \quad P(K=3) = 0.30, \quad P(K=4) = 0.25, \quad P(K=5) = 0.10.$$

Here for any number k , the mathematical expression $P(K=k)$ denotes the probability that the unknown quantity **K** is equal to the value k . This probability distribution summarized by a chart in Figure 2.1.

[Insert Figure 2.1 about here]

Figure 2.1 actually displays this probability distribution in two different ways. The five solid bars in Figure 2.1 show the probabilities of the five points on the horizontal axis that

represent possible values of the unknown quantity \mathbf{K} . Such point-probability bars are the most common way of exhibiting a discrete probability distribution. But Figure 2.1 also contains a dashed line that shows cumulative probability values, which we must now explain.

A cumulative probability of the unknown quantity \mathbf{K} at a number k is the probability of \mathbf{K} being below the value k . It is a question of mathematical convention as to whether "cumulative probability of \mathbf{K} at 2" should be precisely defined as $P(\mathbf{K} < 2)$ or $P(\mathbf{K} \leq 2)$, that is, 0.10 or $0.10 + 0.25 = 0.35$ in this case. In most books the latter definition is used. But in this book, let us eclectically embrace both definitions and everything in between, and define a cumulative probabilities of \mathbf{K} at k to include $P(\mathbf{K} < k)$ and $P(\mathbf{K} \leq k)$ and every number in between. So in this terminology, any number between 0.10 and 0.35 can be called a cumulative probability of \mathbf{K} at 2 in this example. But notice that such ambiguity only occurs at numbers that have positive probability for the random variable. For example, the cumulative probability of \mathbf{K} at 2.5 is 0.35, because $P(\mathbf{K} < 2.5) = P(\mathbf{K} \leq 2.5) = 0.10 + 0.25 = 0.35$.

The dashed curve in Figure 2.1 as representing shows the cumulative probabilities for each number k on the horizontal axis. For any number k between 1 and 2, the height of the dashed cumulative-probability curve in Figure 2.1 is 0.10, because $P(\mathbf{K} < k) = P(\mathbf{K} \leq k) = P(\mathbf{K} = 1) = 0.10$ when $1 < k < 2$. For any number k between 2 and 3, the height of the dashed cumulative-probability curve in Figure 2.1 is 0.35, because

$$P(\mathbf{K} < k) = P(\mathbf{K} \leq k) = P(\mathbf{K} = 1) + P(\mathbf{K} = 2) = 0.10 + 0.25 = 0.35 \text{ when } 2 < k < 3.$$

The unknown quantity \mathbf{K} is sure to be less than 6, and so the height of the cumulative probability-curve at 6 is $1 = P(\mathbf{K} < 6)$. The unknown quantity \mathbf{K} is sure to not be less than 0, and

so the height of the cumulative-probability curve at 0 is $0 = P(K < 0)$.

In Figure 2.1, the dashed cumulative-probability curve has vertical jumps (representing multiple cumulative probabilities from $P(K < k)$ to $P(K \leq k)$) exactly where the point-probability bars occur, and the height of each vertical jump is the same as the height of the corresponding point-probability bar. For example, the dashed cumulative-probability curve jumps from 0.10 to 0.35 above the value 2 on the horizontal axis of Figure 2.1, which corresponds to the fact that $P(K=2) = 0.25 = 0.35 - 0.10$. So the cumulative-probability curve tells us everything about the probability distribution that we could learn from the point probability bars. This observation is important, because we will find that cumulative probability curves are generally more useful for describing probability distributions than point-probability bars (which cannot be applied to continuous probability distributions where there are infinitely many possible values).

Actually, we will find it most useful to invert the cumulative probability distribution, turning the dashed line from Figure 2.1 on its side, with cumulative probabilities on the horizontal axis and possible values of K on the vertical axis. Such an inverse cumulative-probability curve is shown in Figure 2.2. Once you learn how to read it, you can find the discrete probabilities of all possible values of K from this inverse cumulative-probability curve. For example, the inverse cumulative-probability curve has height 2 over the interval of probabilities from 0.10 to 0.35, which tells us that the point-probability of the value 2 is $P(K=2) = 0.35 - 0.10 = 0.25$. The height of the inverse cumulative-probability curve goes from 1 to 5 because these are the lowest and highest possible values of the unknown K . (Because we will generally draw our cumulative charts in this inverse orientation, it should also be acceptable here to drop the word "inverse" and simply refer to a chart like Figure 2.2 as a

"cumulative probability" chart.)

[Insert Figure 2.2 about here]

For any numbers q and k , if q is a cumulative probability of an unknown quantity K at the k , then we may also say that k is a q percentile value of K . So in this example, the 0.2-percentile value of K is 2, but any number from 2 to 3 could be called a 0.35-percentile value of K .

2.3 Simulating discrete random variables

When we say that a random variable in a spreadsheet simulates (or represents) some unknown quantity in real life, we mean that any event for this simulated random variable is, from the perspective of our current information and beliefs, just as likely as the same event for the real unknown quantity. If the unknown number of competitive entrants has a probability 0.10 of equaling 1, for example, then the random variable in the spreadsheet should also have probability 0.10 of equaling 1 after the next recalculation of the spreadsheet. For any number k , the probability that the random variable will be less than k after the next recalculation should be the same as the probability that the real unknown quantity is less than k .

In our spreadsheets, all our random variables are constructed as functions of $\text{RAND}()$ values. So recall how the RAND function operates: Given any two numbers x and y such that $0 \leq x \leq y \leq 1$, the event that some particular $\text{RAND}()$ in a spreadsheet formula will take a value between x and y after the next recalculation is equal to the difference $y - x$, that is,

$$P(x \leq \text{RAND}() \leq y) = y - x .$$

For example, the probability that a RAND() will be between 0 and 0.10 is 0.10, and the

probability that the RAND() will be between 0.10 and 0.35 is

$$0.35 - 0.10 = 0.25.$$

Let us now try to make a spreadsheet formula that depends on one RAND() such that the value of our formula will simulates the unknown quantity **K** from the "Superior Semiconductors" case. To be specific let us enter =RAND () into cell A13, as shown in Figure 2.3. Into another cell, we want to enter a formula that depends on the RAND() in cell A13 in such a way that its value is 1 with probability 0.10, 2 with probability 0.25, 3 with probability 0.30, 4 with probability 0.25, and 5 with probability 0.10, just like the unknown quantity **K**. One way to get these probabilities is to use some formula that returns a value that depends on the RAND() in cell A13 as follows:

- the value is 1 when A13 is less than 0.10 (an event having probability 0.10),
- the value is 2 when A13 is between 0.10 and $0.10 + 0.25 = 0.35$ (having probability 0.25),
- the value is 3 when A13 is between $0.35 + 0.30 = 0.65$ and $0.65 + 0.25 = 0.90$ (having probability 0.30),
- the value is 4 when A13 is between $0.65 + 0.25 = 0.90$ and $0.90 + 0.10 = 1.00$ (having probability 0.25),
- the value is 5 when A13 is greater than 0.90 (having probability $1 - 0.90 = 0.10$).

Notice that we have gotten all the probabilities that we want with a collection of disjoint intervals that exhaust all the possible RAND() values because the probabilities of all possible values of **K** sum to 1. This is why all the possible values in any discrete probability distribution must have probabilities that sum to exactly 1.

[Insert Figure 2.3 about here]

Figure 2.3 shows several different ways to create an Excel formula that has these

properties. The possible values and corresponding probabilities for **K** are listed in the ranges B5:B9 and C5:C9 of Figure 2.3. The (low) cumulative probabilities of the various possible values are computed from this probability distribution in cells A5:A9 of Figure 2.3. Cell G5 contains the formula

$=IF (\$A\$13 < A6, B5, 0)$

So cell G5 equals 1 (B5) if the RAND in A13 satisfies the inequality $A13 < A6 = 0.10$, and G5 equals 0 otherwise. Cell G6 contains the formula

$=IF (AND (A6 <= \$A\$13, \$A\$13 < A7), B6, 0)$

Excel's AND function returns the logical value TRUE if all of its parameters are TRUE, and otherwise AND returns the logical value FALSE. So by the IF function in this formula, cell G6 equals 2 (B6) when the RAND in A13 is satisfies the inequalities

0.10 = A6 ≤ A13 < A7 = 0.35 , and G6 equals 0 otherwise. (Excel uses \leq to denote less than or equal to, and uses \geq to denote greater than or equal to.) The other formulas in cells G5:G9 are constructed similarly so that one of these cells will equal the possible value of **K** that would be designated by the RAND() in cell A13 under the above rule, while all the other cells in G5:G9 will equal 0. Thus, the formula $=SUM (G5 : G9)$ in cell B13 returns the random variable that we wanted.

Simtools provides a function called DISCRINV to accomplish this same calculation more easily. As you can verify by consulting the Insert-Function dialogue box, the DISCRINV function takes three parameters. The first parameter (which is called "randprob" in the Insert-Function dialogue box) should simply be a RAND(). The second parameter (called "values") should be a range that lists the possible values of our discrete random variable. The third

parameter (called "probabilities"), should be another range which has the same size as the values range and which lists the corresponding probabilities of these values. Then the formula

DISCRINV(RAND(), values, probabilities)

returns a random variable that has values and discrete probabilities as listed in these ranges. In this spreadsheet, the formula =DISCRINV(A13, B5:B9, C5:C9) in cell B14 returns a random variable that depends on the RAND in A13 according to the rule that we described above, and so the value of cell B14 is always the same as cell B13 for any value of the RAND in cell A13.

The cell B15 contains a rather ugly formula that does the job in one line

$=IF(A13 < A6, B5, IF(A13 < A7, B6, IF(A13 < A8, B7, IF(A13 < A9, B8, B9))))$

We do not recommend using this formula. First, when a formula is so complicated, your chances of typing it incorrectly are very high. Second, this method cannot be applied to larger problems, because Excel may refuse to consider formulas where functions that are nested more than 8 parentheses deep. Cell B16 illustrates another more elegant way to compute the same random variable using the Excel function VLOOKUP.

At this point you may wonder why the Simtools function for simulating a discrete random variable should be called DISCRINV. The letters "DISCR" obviously come from the word "discrete," but what does the "INV" signify? To see the answer, notice that this function has been designed to return the value 1, 2, 3, 4, or 5, depending on the value of the RAND() that is its first parameter, and the points where the function's value changes are $0.10, 0.10+0.25 = 0.35, 0.35+0.30 = 0.65$, and $0.65+0.25 = 0.90$. You have seen a function like this before: It is the inverse cumulative function shown in Figure 2.2. Indeed, the "INV" in our function's name is

short for "inverse cumulative."

In general, any random variable can be simulated by processing a RAND() through the inverse cumulative-probability function. If a function $G(\cdot)$ is the inverse cumulative-probability function of an unknown quantity X then, for any numbers k and q , we get $G(q) < k$ when $q < P(X < k)$. So for any number k , the random variable $G(\text{RAND}())$ will be less than k when the RAND() is in the interval from 0 to $P(X < k)$, which occurs with probability $P(X < k)$. So $G(\text{RAND}())$ has the same probability distribution as X .

The bottom-line quantity of interest in the Superior Semiconductor case is profit. If we assume that the \$100 million total value of the market will be shared equally by Superior Semiconductor and its K competitors then, after deducting \$26 million of fixed costs, then Superior Semiconductor's profit (in \$millions) should depend on the number of competitors K by the formula

$$\text{Profit} = \frac{100}{(1 + K)} - 26$$

So if K equals 1 then profit is $\frac{100}{(1 + 1)} - 26 = 24$ (\$million), but if K equals 5 then profit is $\frac{100}{(1 + 5)} - 26 = -9.33$. So profit is also an unknown quantity, with a discrete probability distribution as shown in the following table:

Competitors	Profit	Probability
1	24	0.10
2	7.33	0.25
3	-1	0.30
4	-6	0.25
5	-9.33	0.10

Figure 2.4 shows two attempts to make a model in which the number of competitors and the resulting profit for Superior Semiconductors are both simulated.

[Insert Figure 2.4 about here]

The range B16:E18 in Figure 2.4 contains an attempt, called "Model 2," which illustrates one of the most common errors that students make in simulation modeling. In Model 2, the number of competitors and the profit are simulated in cells B18 and E18 respectively, with two DISCRINV formulas that depend on separate RANDs. The result is that profit is independent of the number of competitors in Model 2, which is wrong. For example, Figure 2.4 shows a realization of these random variables such that the simulated number of competitors in B18 is 4 while the simulated profit in E18 is 24 (\$million); but if there were really 4 competitive entrants then Superior Semiconductor's profit would be $100/(1 + 4) - 26 = -6$.

The range B12:E14 in Figure 2.4 contains "Model 1," which is done correctly. In this model, the number of competitors is simulated by a DISCRINV formula in cell B14, while the profit is simulated in cell E14 as a function of the simulated number of competitors by the formula $=$E\$2 / (1+B14) - $E\$1$ (where E2 contains the market value 100 and E1 contains the fixed cost 26). Thus Model 1 always displays the correct relationship between the number of competitors and the profit.

In general, a simulation model is a good representation of a real situation if our uncertainty about the next recalculated values of the random variables in the model (that is, what they will be after we next press [Recalc]) is the same as our uncertainty about the corresponding unknown quantities in the real situation. Fancy formulas in a spreadsheet obviously cannot be asked to magically return the actual values of real-world quantities that we are unable to observe

or measure by other means. Instead, what we must ask of our simulation models is that their formulas should express our beliefs about the real unknown quantities, in the sense that our beliefs about the next recalculated values of these formulas are the same as our beliefs about the real unknown quantities.

2.4 Expected value and standard deviation

We have seen how a probability distribution can be used to describe our beliefs about an unknown quantity that has finitely many possible values, and how to represent such a probability distribution by a chart or simulation model. But when there are many possible values, the probability distribution may be quite complicated. In such cases, we may want to describe the overall pattern of a probability distribution by a few summary numbers which people could interpret more easily than some complicated a chart or some simulated random variable that jumps around whenever [Recalc] is pressed.

There are many formulas that people have used to generate summary measures of probability distributions (expected value, median, mode, standard deviation, mean absolute error, etc.). Each of these formulas has some drawbacks and limitations, because it is impossible to perfectly summarize everything we want to know about every probability distribution by just a couple of simple numbers. But two summary measures have been found particularly useful and will be emphasized throughout this book: the expected value and the standard deviation.

The expected value or mean of an unknown quantity \mathbf{X} may be denoted by $E(\mathbf{X})$ or $\mu_{\mathbf{X}}$, and it is defined by the formula

$$E(\mathbf{X}) = \mu_{\mathbf{X}} = \sum_x P(\mathbf{X} = x) * x$$

where the summed terms include $P(X=x)*x$ for all numbers x that are possible values of the unknown quantity X . For example, in the Superior Semiconductor case, the expected value of the unknown number of competitors K is

$$E(K) = 0.10*1 + 0.25*2 + 0.30*3 + 0.25*4 + 0.10*5 = 3.$$

Similarly, if we let $Y = 100/(1 + K) - 26$ denote the profit in this case, then the expected value of profit is

$$E(Y) = 0.10*24 + 0.25*7.33 + 0.30*(-1) + 0.25*(-6) + 0.10*(-9.33) = 1.5.$$

These calculations are illustrated in cells B13 and F13 of Figure 2.5, where the Excel function SUMPRODUCT is used. When "range1" and "range2" denote two ranges that have the same numbers of rows and columns in a spreadsheet, the Excel formula $\text{SUMPRODUCT}(\text{range1}, \text{range2})$ multiplies the values of each pair of corresponding cells in these ranges (starting with the top-left cell of range1 multiplied by the top-left cell in range 2) and then adds up all of these multiplicative products. Thus, when the possible values of K are listed in the range B5:B9 and the corresponding probabilities are listed in C5:C9, the expected number of competitors $E(K)$ can be returned by the formula

$$=\text{SUMPRODUCT}(B5:B9, \$C\$5:\$C\$9)$$

in cell B13. Similarly, when the corresponding profit levels in are computed in the range F5:F9, the expected profit $E(Y)$ can be returned by the formula

$$=\text{SUMPRODUCT}(F5:F9, \$C\$5:\$C\$9)$$

in cell F13 of Figure 2.5.

[Insert Figure 2.5 about here]

The expected value is interpreted as a measure of the center of a probability distribution.

There will generally be some possible values that are higher than the expected value and other possible values that are lower. Notice, however, that the expected value of an unknown quantity is not necessarily itself a possible value of the unknown quantity. In this example, the expected value of \mathbf{K} ($E(\mathbf{K})=3$) happens to be a possible value of \mathbf{K} . But the expected value of \mathbf{Y} ($E(\mathbf{Y})=1.5$) is not among the possible values of the unknown profit \mathbf{Y} . So the term "expected" is being used here in a technical sense that may be different from common English usage of the word. In each case, however, the expected value could be reasonably described (in some intuitive sense) as "near the center" of the possible values of the unknown quantity.

Notice also that the expected profit in this example is different from the profit that occurs at the expected number of competitors, even though profit here is a function that depends on the number of competitors. When the number of competitors \mathbf{K} is 3, which is $E(\mathbf{K})$, the corresponding profit is $\mathbf{Y} = 100/(1 + 3) - 26 = -1$, but $E(\mathbf{Y}) = 1.5$. More generally, if \mathbf{X} is an unknown quantity and $f(\cdot)$ is any function, the function evaluated f at $E(\mathbf{X})$ may be different from the expected value of the unknown quantity $f(\mathbf{X})$, that is:

$$f(E(\mathbf{X})) \text{ may be different from } E(f(\mathbf{X})).$$

The only case where $f(E(\mathbf{X}))$ is guaranteed to equal $E(f(\mathbf{X}))$ is when f is a linear function.

The erroneous assumption that $f(E(\mathbf{X}))$ ought to be the same as $E(f(\mathbf{X}))$ has been called the fallacy of averages. This error seems to arise in people's minds because, after computing the expected value of an unknown quantity, there is a temptation to simplify the world by assuming that the unknown quantity will be equal to its expected value. For example, in the Superior Semiconductor case, we might be tempted to assume that the number of competitors will be 3 for sure, in which case the profit would be $100/(1 + 3) - 26 = -1$ (a loss of \$1 million).

But when the uncertainty is not assumed away we actually get a positive expected profit of 1.5 \$million. This positive expected value of profits should seem intuitively reasonable when you notice that the positive profits (24 and 7.33) that could be generated by a number of competitors less than 3 are significantly larger in absolute value than the equally-likely negative profits (-9.33 or -6) that could be generated by a number of competitors greater than 3. This result is in turn caused by a kind of nonlinearity in our profit function (where a decrease of K below 3 would increase profit by more than the a similar increase of K above 3 would decrease profit).

Now that we have the expected value as a summary measure of the center of a probability distribution, we should also want some summary measure of the spread of a probability distribution, to say something about what kinds of deviations from this expected value are likely to occur. The most useful summary measure of spread is the standard deviation.

The standard deviation of a random variable X may be denoted by $\text{Stdev}(X)$ or σ_X , and it is defined by the formula

$$\text{Stdev}(X) = \sigma_X = (E((X - \mu_X)^2))^{0.5} = [\sum_x P(X = x) * (x - \mu_X)^2]^{0.5}$$

(Here $\mu_X = E(X)$, and the summation \sum_x includes all numbers x that are possible values of the unknown quantity X . The symbol " \wedge " is used in here and in Excel to indicate exponentiation, so $3^2 = 9$ for example.) In words, the standard deviation of X may be defined as the square root of the expected squared deviation of X from its mean. If we dropped the square root ($^{0.5}$) from this definition, then we get the definition of the variance of X , which is the expected value of the squared deviation of X from its mean

$$\text{Var}(X) = E((X - \mu_X)^2) = \sum_x P(X = x) * (x - \mu_X)^2 = (\text{Stdev}(X))^2$$

In the Superior Semiconductor example, the unknown number of competitors **K** has standard deviation

$$(0.10*(1-3)^2 + 0.25*(2-3)^2 + 0.30*(3-3)^2 + 0.25*(4-3)^2 + 0.10*(5-3)^2)^{0.5} = 1.14$$

To see how these calculations may be done in a spreadsheet, look at cells D5:D9 and D13 in Figure 2.5. Recall that the possible values of **K** are listed in cells B5:B9, the corresponding probabilities are listed in C5:C9, and the expected value or mean of **K** is listed in cell B13 of Figure 2.5. So entering the formula

$$= (B5 - \$B\$13)^2$$

into cell D5, and copying D5 to D5:D9, we get the possible squared deviations of **K** from its mean listed in cells D5:D9. Then the formula `SUMPRODUCT(D5:D9,C5:C9)` returns the expected squared deviation of **K** from its mean. This expected squared deviation of a random variable from its mean is called the variance of the random variable. The standard deviation is the square root of the variance, and it is returned in cell D13 by the formula

$$=\text{SUMPRODUCT}(D5:D9, C5:C9)^{0.5}$$

To simplify these calculations, we may also use the Simtools function `STDEVPR`. This function is designed to compute standard deviations from discrete probability distributions. (Be careful not to be confuse Simtools's `STDEVPR` function with Excel's functions `STDEV.S` and `STDEV.P`, which are used to compute sample standard deviations from sample data. The "PR" in `STDEVPR` is short for "PRobability distribution.") `STDEVPR` takes two parameters, which should be ranges that have the same size (the same number of rows and the same number of columns). The first parameter, called "values" in the Insert-Function dialogue box, should be a range that lists the possible values of some discrete random variable. The second parameter,

called "probabilities" in the Insert-Function dialogue box, should be a range which lists the corresponding probabilities of these values. Then the formula $\text{STDEVPR}(\text{values, probabilities})$ returns the standard deviation of the discrete random variable. For example the formula

=STDEVPR (B5:B9, \$C\$5:\$C\$9)

in cell C13 of Figure 2.5 returns the same standard deviation (1.14) that we computed in cell D13.

If you have never seen a standard deviation before, then we should tell you that learning to interpret standard deviations takes time. There is no simple rule about how to interpret them. The most that we can say now is that the unknown quantity generally has some substantial probability of being more than one standard deviation above or below its expected value, but it is generally very unlikely to be more than three standard deviations above or below its expected value. Thus, for example, if we were told only that $E(\mathbf{K}) = 3.0$ and $\text{Stdev}(\mathbf{K}) = 1.14$ for some unknown quantity \mathbf{K} , then we could infer that the probability of \mathbf{K} being above $3.0 + 1.14 = 4.14$ or below $3.0 - 1.14 = 1.86$ was substantial (this probability is actually 0.20 in our example), but the probability of \mathbf{K} being above $3.0 + 3 * 1.14 = 6.42$ or below $3.0 - 3 * 1.14 = -0.42$ was very small (this probability is actually 0 in our example). If these vague inferences were not enough for us, then we might ask to be shown the (inverse) cumulative chart for this unknown quantity.

There are two formulas that you should know about how multiplication by a nonrandom constant c and addition of a nonrandom constant d would affect expected values and standard deviations. If \mathbf{X} is a random variable but c and d are numbers which are not random, then

$$E(c * \mathbf{X} + d) = c * E(\mathbf{X}) + d,$$

$$\text{Stdev}(c*\mathbf{X} + d) = |c| * \text{Stdev}(\mathbf{X}).$$

(In the second formula, $|c|$ denotes the absolute value of c , that is, $|c| = c$ if $c \geq 0$, while $|c| = -c$ if $c < 0$.) For example, let the random variable \mathbf{R} denote the Superior Semiconductor's total revenue in dollars (not \$millions) from the new product, ignoring the fixed costs. This revenue number \mathbf{R} in dollars and the profit \mathbf{Y} in millions of dollars are obviously related by the formula $\mathbf{R} = 1,000,000*\mathbf{Y} + 26,000,000$. So knowing that $E(\mathbf{Y}) = 1.5$ and $\text{Stdev}(\mathbf{Y}) = 9.317$, we can compute

$$E(\mathbf{R}) = 1,000,000 * E(\mathbf{Y}) + 26,000,000 = 27,500,000$$

$$\text{Stdev}(\mathbf{R}) = 1,000,000 * \text{Stdev}(\mathbf{Y}) = 9,317,000.$$

2.5 Estimates from sample data

In complex decision problems, we will want to estimate the expected values, standard deviations, and cumulative distributions of unknown quantities that we can study only by simulation. In this section we show how such estimates can be generated. It will be helpful to begin studying these techniques in the context of the simple Superior Semiconductor example, where we know how to explicitly compute the numbers that we are trying to estimate from simulation, because this simplicity will enable you to get a hands-on feel for the accuracy of these simulation methods.

Figure 2.6 shows a table of simulations of the unknown number of competitors \mathbf{K} from the Superior Semiconductor case. The possible values of \mathbf{K} are listed in cells A3:A7, and their corresponding probabilities are listed in cells B3:B7. So of course we can compute the expected value and standard deviation of \mathbf{K} directly from this probability distribution, as shown in cells

D7 and E7. But let us pretend that we did not know how to do these computations and instead try to work with simulation data.

[Insert Figure 2.6 about here]

A random variable that simulates the unknown quantity K has been created in cell B14 of Figure 2.6 by the formula

`=DISCRINV(RAND(), A3:A7, B3:B7)`

Then data from 401 independent simulations of this random variable has been entered below into cells B15:B415 of this spreadsheet, by selecting the range A14:B415 and using the command sequence SimTools > SimulationTable. (Simtools's SimulationTable command also entered the label "SimTable" into cell A14, and filled the range A15:A415 with a percentile index consisting of 401 equally-spaced numbers from 0 to 1.)

To remind us how many data points we have in our simulation data (401), the formula `=COUNT(B15:B415)` has been entered into cell B11. Notice that the data range, as defined here, does not include the original random variable in cell B14. If we had included it, the statistics that we compute would change slightly every time the spreadsheet was recalculated. In our mathematical formulas, the number of independent data points that we are using to compute our statistics will be commonly denoted by the letter "n".

The best estimate of $E(K)$ that can be computed from a sample of independent simulated values of K is the average or sample mean of this simulation data. So to estimate $E(K)$ in Figure 2.6, the formula

`=AVERAGE(B15:B415)`

has been entered into cell B9. Excel's AVERAGE function, of course, just sums the n numerical

values in our data range and divides this sum by n . You can see that the value returned in this case (2.975) is reasonably close to the actual expected value (3).

The law of large numbers is a mathematical theorem which asserts that, when we have a very large number of values drawn independently from a fixed probability distribution, the average of these values is very likely to be very close to the expected value of the probability distribution. (We are giving you just an informal description of this theorem here. Its formal mathematical statement gives precise meanings to my phrases "very large", "very likely", and "very close".) To see why this law is true, consider any discrete probability distribution like the one for \mathbf{K} here. If we let m_k denote the number of times that the value k occurs in our data range and let n denote the size of the whole data range, then the average of the data range is

$$(\sum_k k * m_k) / n = \sum_k k * (m_k / n)$$

where the summation (\sum_k) includes all numbers k that are possible values of the random variable. But when we generate hundreds of independent samples from the probability distribution of \mathbf{K} , we should anticipate that the relative frequency m_k/n of each possible value k should be close to its probability. That is, m_k/n should be quite close to $P(\mathbf{K}=k)$. Thus, the average of the data range should be close to the expected value

$$E(\mathbf{K}) = \sum_k k * P(\mathbf{K}=k).$$

For example, in the spreadsheet shown in Figure 2.6, the value 1 actually occurs 41 times among the 401 data values in the range B15:B415 (most of which are not shown in the figure). So $m_1/n = 41/401 = 0.102$, which is not far from $0.10 = P(\mathbf{K}=1)$. The other frequencies in this data set happen to be such that

$$(\sum_k k * m_k) / n = (1*41 + 2*92 + 3*134 + 4*104 + 5*30) / 401$$

$$\begin{aligned}
&= \sum_k k * m_k / n = 1 * 41 / 401 + 2 * 92 / 401 + 3 * 134 / 401 + 4 * 104 / 401 + 5 * 30 / 401 \\
&= 1 * 0.102 + 2 * 0.229 + 3 * 0.334 + 4 * 0.259 + 5 * 0.075 = 2.975
\end{aligned}$$

which is the value shown in cell B9 of Figure 2.6. Matching the actual relative frequencies with the theoretical probabilities, you can see why this average is close to the true expected value

$$E(K) = \sum_k k * P(K=k) = 1 * 0.10 + 2 * 0.25 + 3 * 0.30 + 4 * 0.25 + 5 * 0.10 = 3.$$

To estimate the standard deviation from sample data, we use the Excel function STDEV.S. For example, cell B10 of Figure 2.6 contains the formula

$$=STDEV.S(B15:B415)$$

which returns the value 1.095. You can see that this estimate is not far from the true standard deviation shown in cell E7 (1.140).

Cells D13:D415 in Figure 2.6 have been set up to show you how Excel's STDEV.S function really works. Recall that the standard deviation of a random variable is the square root of its variance, and its variance is the expected squared deviation of this random variable from its expected value. So to estimate the standard deviation a random variable from sample data, Excel's STDEV.S function must begin by estimating the expected value, which it does by computing the sample average, just as we have done in cell B9. Next, the STDEV.S function computes the squared deviation of each value in the data range from this sample average. These squared deviations have been computed in Figure 2.6 by entering the formula

$$= (B15 - \$B\$9)^2$$

into cell D15, and then copying D15 to cells D15:D415. Next, you might think that we should estimate the variance (which is the expected squared deviation) by computing the average of these squared deviations. But statisticians have recommended instead that at this step we should

instead compute a modified average in which the sum of the squared deviations is divided by $n-1$ instead of n . (Computing deviations from the sample average instead of the true expected value tends to slightly reduce the average of these squared deviations, which could cause a downward bias in our estimates of the variance. To correct for this downward bias, statisticians have recommended dividing by $n-1$ in the variance estimator.) In Figure 2.6, this modified average of the squared deviations would be returned by the formula

$$\text{SUM}(D15:D415)/(B11-1)$$

(Recall that the sample size n is in cell B11.) Finally, to reverse the squaring of the deviations, STDEV.S takes the square root of this sample variance estimate. Taking the square root is the same as raising to the 0.5 power, so the formula

$$= (\text{SUM}(D15:D415) / (B11-1))^{0.5}$$

has been entered into cell D13 in Figure 2.6. You can verify that the result of this formula is exactly the value returned by the STDEV.S function (1.095). This estimated standard deviation computed by STDEV.S from sample data is called the sample standard deviation.

The law of large numbers can be extended to these estimated sample standard deviations. That is, when we have a very large number of values drawn independently from a fixed probability distribution, the sample standard deviations of these values is very likely to be very close to actual standard deviation of the probability distribution.

Notice that Microsoft has provided STDEV.S as a built-in Excel function, because practical statistical work often requires that standard deviations be estimated from data. But the STDEVPR function is provided only by the Simtools.xla add-in because, in practice, standard deviations are only rarely computed from the probability distributions that define them.

To estimate the inverse cumulative distribution of a random variable from data in a simulation table, we only need to sort the simulation data and plot the sorted values on the vertical (Y) axis of in an XY-scatter chart, with the corresponding percentile-index values from the left column of the simulation table plotted on the horizontal (X) axis of the chart. Figure 2.7 shows such a chart, made from the simulation table in Figure 2.6. To make Figure 2.7, we first selected the simulated data range B15:B415, and then we entered the command sequence Data > Sort. When Excel's "sort warning" dialogue box interrupted the task, we chose the "continue" option, and then we chose to sort the values smallest to largest. Next, we selected the range A15:B415, which includes the percentile index numbers that go from 0 to 1 as well as the now-sorted data range, and then we entered the command sequence Insert > Chart > Scatter (selecting the option to show lines and point markers), to create the chart as shown in Figure 2.7. Notice that Figure 2.7 is indeed a good approximation to the actual inverse cumulative-probability chart shown previously as Figure 2.2.

[Insert Figure 2.7 about here]

2.6 Accuracy of sample estimates

When we estimate an expected value by computing the average of sample data, we need to know something about how accurate this estimate is likely to be. Of course the average of several random variables is itself a random variable that has its own probability distribution. Figure 2.8 shows a spreadsheet designed to help you learn about how sample averages behave as random variables. Like other figures in this chapter, Figure 2.8 begins with the probability distribution for the unknown quantity **K** from the Superior Semiconductors case, with the

possible values listed in cells A3:A7 and their corresponding probabilities listed in cells B3:B7.

Then to create 30 independent random variables with this probability distribution, the formula

```
=DISCRINV(RAND(), $A$3:$A$7, $B$3,$B$7)
```

has been entered into every cell in the range A15:C24. The average or sample mean of these 30 random variables is entered into cell E15 by the formula

```
=AVERAGE(A15:C24)
```

[Insert Figure 2.8 about here]

You should make a spreadsheet like Figure 2.8 and recalculate it many times, watching the sample mean in cell E15. If you watch any individual cell in the sample range A15:C24, you will see it jump around to all the integer values from 1 to 5. But when you watch cell E15, the average of all 30 cells in this sample, you will see it vary much less widely around 3, almost never going below 2.2 or above 3.8. A remarkable mathematical fact called the Central Limit Theorem tells us much more about the way this average varies.

Before stating the Central Limit Theorem, we must introduce the idea of a Normal probability distribution. In probability theory, the phrase "Normal probability distribution" is used in a technical sense, which we will emphasize by capitalizing it, referring to a particular collection of mathematical probability distributions that have some important properties. For any two numbers μ and σ such that $\sigma>0$, there is precisely-defined Normal probability distribution that has mean (or expected value) μ and standard deviation σ . We will discuss such Normal distributions at length in Chapter 4, but for now it is enough to introduce them by citing a few basic facts about them.

In an Excel spreadsheet, you can make a random variable that has a Normal probability

distribution with mean μ and standard deviation σ by the formula

`NORM.INV(RAND(), μ , σ)`

We have tried to suggest here that, once you know how to make a spreadsheet cell that simulates a given probability distribution, you can learn anything that anybody might want to know about this distribution by simulating it many times in a spreadsheet. So if you want to know what a "Normal distribution with mean 100 and standard deviation 20" is like, you should simply copy the formula

`=NORM.INV(RAND(),100,20)`

into a large range of cells and watch how the values of these cells jump around whenever you press the [Recalc] key.

Let us give you now a few other useful formulas about Normal distributions. If a random variable X has a Normal probability distribution with mean μ and standard deviation σ (where μ and σ are given numbers such that $\sigma > 0$), then

$$P(X < \mu) = 0.5 = P(X > \mu),$$

$$P(\mu - \sigma < X < \mu + \sigma) = 0.683$$

$$P(\mu - 1.96 * \sigma < X < \mu + 1.96 * \sigma) = 0.95$$

$$P(\mu - 3 * \sigma < X < \mu + 3 * \sigma) = 0.997$$

That is, a Normal random variable is equally likely to be above or below its mean, it has probability 0.683 of being less than one standard deviation away from its mean, it has probability 0.997 (almost sure) of being less than 3 standard deviations of its mean. For constructing 95% confidence intervals, we will use the fact that a Normal random variable has probability 0.95 of being within 1.96 standard deviations from its mean.

Now we are ready for the remarkable Central Limit Theorem, which tells us Normal distributions can be used to predict the behavior of sample averages:

Consider the average of n random variables that are drawn independently from a probability distribution with expected value μ and standard deviation σ . This average, as a random variable, has expected value μ , has standard deviation $\sigma/(n^{0.5})$, and has a probability distribution that is approximately Normal.

For example, cell E15 of Figure 2.8 contains the average of $n=30$ independent random variables that are drawn from a probability distribution which has expected value $\mu=3$ and standard deviation $\sigma = 1.14$. So the Central Limit Theorem tells us that this sample mean should behave like a random variable that has a Normal distribution where $\mu=3$ is the mean and $\sigma/(n^{0.5}) = 1.14/(30^{0.5}) = 0.208$ is the standard deviation. Such a Normal random variable is entered into cell H12 of Figure 2.8. If you watch cell H12 and cell E15 through many recalculations, the only difference in their pattern of behavior that you should observe is that the average in cell E15 is always a multiple of $1/30$. To show more precisely that the sample average in cell E15 has a probability distribution very close to that of the Normal random variable in cell H12, you could make a simulation table containing several hundred independently recalculated values of each of these random variables. Then by separately sorting each column in this simulation table, you could make a chart that estimates the inverse cumulative distribution of each random variable. These two curves should be very close.

This Central Limit Theorem is the reason why, of all the formulas that people could devise for measuring the center and the spread of probability distributions, the expected value and the standard deviation have been the most useful for statistics. Other probability

distributions that have the same expected value 3 and standard deviation 1.14 could be quite different in other respects, but the Central Limit Theorem tells us that an average of 30 independent samples from any such distribution would behave almost the same. (For example, try the probability distribution in which the possible values are 2, 3, and 7, with respective probabilities $P(2)=0.260$, $P(3)=0.675$, and $P(7)=0.065$.)

Now suppose that we did not know the expected value of \mathbf{K} , but we did know that its standard deviation was $\sigma=1.14$, and we knew how to simulate \mathbf{K} . Then we could look at any average of n independently simulated values and we could assign 95% probability to the event that our sample average does not differ from the true expected value in absolute terms by more than $1.96\sigma/\sqrt{n}$. That is, if we let \mathbf{Y}_n denote the average of our n simulated values, then the interval from $\mathbf{Y}_n - 1.96\sigma/\sqrt{n}$ to $\mathbf{Y}_n + 1.96\sigma/\sqrt{n}$ would include the true $E(\mathbf{K})$ with probability 0.95. This interval is called a 95% confidence interval. With $n=30$ and $\sigma=1.14$, the radius r (that is, the distance from the center to either end) of this 95% confidence interval would be

$$r = 1.96\sigma/\sqrt{n} = 1.96 \cdot 1.14/(30^{0.5}) = 0.408.$$

If we wanted the radius of our 95% confidence interval around the sample mean to be less than some number r , then we would need to increase the size of our sample so that

$$1.96\sigma/\sqrt{n} < r, \text{ and so } n > (1.96\sigma/r)^2$$

For example, to make the radius of our 95% confidence interval smaller than 0.05, the sample size n must be

$$n > (1.96\sigma/r)^2 = (1.96 \cdot 1.14/0.05)^2 = 1997.$$

Now consider the case where we know how to simulate an unknown quantity but we do

not know how to calculate its expected value or its standard deviation. In this case, where our confidence-interval formula calls for the unknown probabilistic standard deviation σ , we must replace it by the sample standard deviation that we compute from our simulation data. If the average of n independent simulations is X and the sample standard deviation is S , then our estimated 95% confidence interval for the true expected value is from $X - 1.96 * S / (n^{0.5})$ to $X + 1.96 * S / (n^{0.5})$, where the quantity $S / (n^{0.5})$ is our estimated standard deviation of the sample average. In Figure 2.8, for example, the sample standard deviation S is computed in cell E16 by the formula $=STDEV.S(A15:C24)$, the sample size n is computed in cell B10 by the formula $=COUNT(A15:C24)$, the quantity $S / (n^{0.5})$ is computed in cell E17 by the formula

$$=E16 / (B10^{0.5})$$

and then a 95% confidence interval for $E(K)$ is calculated in cells E20 and F20 by the formulas

$$=E15 - 1.96 * E17 \text{ and } =E15 + 1.96 * E17$$

(Recall that E15 is the sample average.)

To say that the interval from E20 to F20 is a 95% confidence interval for the true expected value is to say that the true expected value of 3 (in cell E8) should be between these two numbers 95% of the time when the spreadsheet in Figure 2.8 is recalculated many times independently. You can verify this by watching cell E22 while recalculating. Cell E22 contains the formula

$$=AND(E20 < E8, E8 < F20)$$

and so it should read TRUE about 95% of the time (about 19 times out of 20). (Recall that the Excel function $AND(statement1,statement2)$ returns the value TRUE if $statement1$ and $statement2$ are both TRUE, and returns FALSE otherwise.)

So based only on the 30 independent simulations shown in Figure 2.8, the formulas in cells E20 and F20 give us a 95% confidence interval from 2.608 to 3.458, that is 3.033 ± 0.425 , for $E(K)$. If the radius 0.425 seems too large, then we could get a narrower 95% confidence interval by using a larger sample. If we only knew this estimated sample standard deviation of 1.188, we could estimate that the radius of our 95% confidence interval could be reduced below 0.05 if the sample size n were increased so that $1.96 * 1.188 / (n^{0.5})$ were less than 0.05, which happens when n is greater than $(1.96 * 1.188 / 0.05)^2 = 2170$.

It is important to understand the difference between cells E16 and E17 in Figure 2.8. The value of cell E16 is the sample standard deviation $STDEV.S(A15:C24)$. So E16 is our statistical estimate of the standard deviation of any one random cell in the range A15:C24. The value of cell E17 is the sample standard deviation in E16 divided by the square root of the sample size. So E17 is our estimate of the standard deviation of the random cell E15, which is average of all the random cells in the range A15:C24. When we recalculate the 30 simulated values in cells A15:C24, the sample average tends to vary less than any one cell in the sample range, because when one cell is relatively high there is usually some other relatively low cell to cancel it out. That is why the standard deviation of the sample average is smaller than the standard deviation of any one cell in the sample, by a factor of $1/n^{0.5}$.

NOTE (You might wonder whether we should broaden our 95% confidence intervals when we use an estimated sample standard deviation instead of the true standard deviation. The answer is that we should, but the adjustments are relatively minor unless the sample size is small. The corrected formula is based on something that statisticians call a T-distribution. When the sample size n is small, we should replace the constant 1.96 in our 95% confidence formulas by

the value of the Excel formula $T.INV(0.05,n-1)$. When n is 30, this value is 2.045. As the sample size n increases, the value of $T.INV(0.05,n-1)$ rapidly approaches 1.96, and so we will not worry about this T-adjustment in this book.)

Another application of the Central Limit Theorem can also be used to tell us something about the accuracy of our statistical estimates of points on the inverse cumulative probability curve. Suppose that \mathbf{X} is a random variable with a probability distribution that we know how to simulate, but we do not know how to directly compute its cumulative probability curve. For any number y , let $\mathbf{Q}_n(y)$ denote the percentage of our sample that is less than y , when we get a sample of n independent values drawn from the probability distribution of \mathbf{X} . Then we should use $\mathbf{Q}_n(y)$ as our estimate of $P(\mathbf{X} < y)$. But how good is this estimate? When n is large, $\mathbf{Q}_n(y)$ is a random variable with an approximately Normal distribution, its expected value is $P(\mathbf{X} < y)$, and its standard deviation is $(P(\mathbf{X} < y)*(1-P(\mathbf{X} < y))/n)^{0.5}$. But $(p*(1-p))^{0.5} \leq 0.5$ for any probability p , and so the standard deviation of $\mathbf{Q}_n(y)$ is always less than $0.5/(n^{0.5})$, and multiplying this standard deviation by 1.96 yields a number slightly less than $1/n^{0.5}$. Thus, around any point $(\mathbf{Q}_n(y), y)$ in an estimated inverse cumulative probability curve like Figure 2.7, we could put a horizontal confidence interval over the cumulative probabilities from $\mathbf{Q}_n(y)-1/n^{0.5}$ to $\mathbf{Q}_n(y)+1/n^{0.5}$, and this interval would have a probability greater than 95% of including the true cumulative probability at y . When n is 400, for example, the radius of this cumulative-probability interval around $\mathbf{Q}_n(y)$ is $1/n^{0.5} = 1/20 = 0.05$. If we wanted to reduce the radius of this 95%-confidence interval below 0.02, then we would increase the sample size to $1/0.02^2 = 2500$.

2.7 Decision criteria

We have used the Superior Semiconductor case as an example to introduce basic ideas of probability and statistics. But after all these ideas have been introduced, we are still left with a decision problem. On the basis of our analysis of the uncertainty in this situation, should we recommend that Superior Semiconductors introduce the new T-regulator product or not? To answer this question, we need some fundamental assumption about what determines an optimal decision under uncertainty. The assumption that we will usually apply in this course is the criterion of expected value maximization (or the expected value criterion).

Any quantitative decision analysis must involve some numerical measure of payoff, such that increasing the decision-maker's payoff is considered an improvement. For most economic decision problems, net monetary returns or profit (or the present-discounted value of future profit) may be identified as the payoff that the decision-maker wants to increase whenever possible. But in situations with uncertainty, we may not know whether a particular decision (like that of introducing the new T-regulator product) would increase or decrease the decision-maker's payoff. The criterion of expected value maximization asserts that, among the various alternatives that are available to a decision-maker, the optimal decision is the one that yields the highest expected value of the decision-maker's payoff.

So if we take Superior Semiconductor's profit to be the measure of "payoff" in this decision problem, then the optimal decision can be identified simply by computing the expected value of Superior Semiconductor's profit from the proposed new product. As we have seen, this expected value is

$$E(\text{Profit}) = 0.10*24 + 0.25*7.33 + 0.30*(-1) + 0.25*(-6) + 0.10*(-9.33) = 1.5$$

The alternative of not introducing the new product generates an expected profit of 0, of course.

So by the criterion of expected value maximization, Superior Semiconductor should introduce the new product, because $1.5 > 0$.

The expected value formula has many good properties to recommend it as a criterion for decision-making under uncertainty. It takes account of all possible outcomes in a sensible way, and it is more sensitive to outcomes that are more likely. The argument for expected value maximization is particularly compelling in games that can be repeated. If we know that we will repeat a given type of decision problem many times, with new payoffs from each repetition being added to the payoffs from previous rounds, but with the new outcome being determined independently each time, then a strategy of choosing the alternative that yields the highest expected value will almost surely maximize our long-term total payoff, by the law of large numbers.

This expected-value criterion may be interpreted to mean that all we should care about is the expected value of some appropriately measured payoff. But this interpretation can lead to trouble if the words "of ... payoff" are forgotten. If you thought that our expected-value criterion meant that we should only care about the expected number of competitors, then you would act as though the number of competitors would be 3, in which case profit would be -1 , and your recommendation would be to not introduce the new product. The error here is to compute the expected value of the wrong random variable (not payoff), and then to try to compute an expected payoff from it according to the fallacy of averages (as discussed in Section 2.4).

Figure 2.9 shows a decision analysis of the Superior Semiconductor case. In cell E14, the expected value is profit is calculated directly from the probability distribution. Under the

expected value criterion, this positive expected value in E14 tells us that we should recommend the new product. But to illustrate what we would do if we could not compute expected profit directly from the probability distribution, the spreadsheet also contains a table of 401 independent simulations of the unknown profit, and the average of these profits is exhibited in cell B21 as an estimator of the expected profit. Even if we could not see the true expected value in cell E14, our simulation data is strong enough to support reasonable confidence that the expected value is greater than 0, because we find a positive lower bound (0.8937) in the 95% confidence interval for expected profit that is computed in cells E26 and F26.

[Insert Figure 2.9 about here]

But now, having advocated the expected value criterion, we must now admit that it is often not fully satisfactory as a basis for decision-making. In practice, people often prefer decision alternatives that yield lower expected profits, when the alternatives that yield higher expected profits are also more risky. People who feel this way are risk averse. Because most people express attitudes of risk aversion at least some of the time, a serious decision analysis should go beyond simply reporting expected payoff values, and should also report some measures of the risks associated with the alternatives that are being considering.

As we have seen, the standard deviation is often used as a measure of the spread of likely outcomes of an unknown quantity, and so the standard deviation of profit may be used as a measure of risk. Thus, cell B22 in Figure 2.9 estimates the standard deviation of profit from the proposed new product in this case. The large size of this sample standard deviation (9.61 \$million, much larger than the expected value) is a strong indication that this new product should be seen as a very risky.

Another measure of risk that has gained popularity in recent years is called value at risk.

The value at risk is defined to be the level of net profit that has some small pre-specified cumulative probability, often taken to be 0.05, so that the probability of profit being below this level is not more than 1/20. So cell B23 in Figure 2.9 estimates the profit level that has 5% cumulative probability from our simulation data in B28:B428, using the formula

=PERCENTILE.INC(B28:B428, 0.05).

The cumulative risk profile for a decision may be defined as the inverse cumulative probability distribution of the payoff that would result from this decision. Figure 2.10 shows the cumulative risk profile for the decision to introduce the new product in this case. This cumulative risk profile was made from the simulation table in Figure 2.9. (First the simulated profit data in cells B28:B428 were sorted by Excel's Data > Sort command, and then these sorted profit values were plotted on the vertical axis of an XY-chart, with the percentile index in cells A28:A428 plotted on the horizontal axis.) Notice that this cumulative risk profile contains all the information about the value at risk, for any probability level. By definition, the value at risk for the cumulative-probability level 0.05 is just the height of the cumulative risk profile above 0.05 on the horizontal cumulative-probability axis. So the cumulative risk profile may give the most complete overall picture of the risks associated with a decision.

[Insert Figure 2.10 about here]

More generally, the limitations of the expected value maximization as a criterion for decision-making have been addressed by two important theories of economic decision-making: utility theory and arbitrage-pricing theory. Utility theory is about decision-making by risk-averse individuals. Arbitrage-pricing theory is about decision-making for publicly held

corporations, which may be owned by people who have different attitudes towards risks and different beliefs about the probabilities of various events. Utility theory will be discussed in Chapter 3 of this book, and arbitrage-pricing theory will be discussed in Sections 8.6 of Chapter 8. But each of these theories turns out to be mathematically equivalent to a simple extension of the expected value criterion. In utility theory, the expected value criterion is extended by introducing a new way of measuring payoffs, called a utility function, that takes account of the decision-maker's personal willingness to take risks. In arbitrage pricing theory, the expected value criterion is extended by introducing a new way of measuring probabilities, called market-adjusted probabilities, that takes account of asset-pricing in financial markets. Thus, the techniques that we have developed in this chapter for estimating expected values will also be applicable to more sophisticated theories of individual and corporate decision-making.

NOTE (For a preview of the results of utility theory, you can look in column H of Figure 2.9 above. In Part B of the Superior Semiconductor case, the decision-maker will remark that a simple gamble that could generate either a profit of \$20 million or a loss of \$10 million for Superior Semiconductor, each with probability 1/2, may be just as good for the company as \$2 million for sure. Based on this assessment, cell H11 in Figure 2.9 applies a Simtools function called RISKTOL to compute a measure of the company's "risk tolerance." Then with this measure of the company's "risk tolerance," cell H14 applies a Simtools function called CEPR to compute a risk-adjusted "certainty equivalent" value of the T-regulator project, using the probability distribution of its profits. Cell H24 applies another Simtools function called CE to estimate this same "certainty equivalent" value using simulation data. The meanings of these mysterious functions and quantities will be discussed at length in Chapter 3.)

2.8 Multiple random variables

We have been considering a simple example with just one random variable, because this simplicity allowed us to compare our first estimates from simulation data to the actual quantities being estimated. But now that we understand how simulation works, we can begin applying it to more interesting problems that have many random variables, where probabilities, expected values, and standard deviations may be very difficult to calculate from probability distributions, so that simulation analysis becomes our best technique.

For example, Figure 2.11 shows an analysis of a more complicated version of the Superior Semiconductor case where the development cost and total market value are also unknown quantities. Instead of assuming that development cost **D** is \$26 million for sure, it is assumed now that the development cost could be \$20, 26, 30, or \$34 million with probabilities 0.2, 0.5, 0.2, and 0.1 respectively. Instead of assuming that the total market value **M** is \$100 million for sure, it is assumed now that the development cost could be \$70, 100, 120, or 150 \$million with probabilities 0.3, 0.4, 0.2, and 0.1 respectively. The number of competitors **K** as before could be 1, 2, 3, 4, or 5, with probabilities 0.1, 0.25, 0.3, 0.25, and 0.1 respectively. The profit depends on these quantities by the formula $Y = M/(1+K) - D$ because we assume that the total market value will be divided equally among Superior Semiconductors and its **K** competitors.

[Insert Figure 2.11 about here]

Cells A11, D11, and G11 in Figure 2.11 contain random variables (made with DISCRINV) that simulate the number of competitors, the development cost, and the total market

value for Superior Semiconductor's new T-regulator device. The spreadsheet uses an assumption that these unknown quantities are independent (that is, learning about any one of them would not influence our beliefs about the others), because the three random variables in cells A11, D11 and G11 are independently driven by their own separate RANDs. Then profit is calculated in cell B13 by the formula $=G11 / (1+A11) -D11$.

Profit data from 501 simulations of this model are stored in B14:B514. The sample average is calculated in D14, and a 95% confidence interval for the true expected profit is calculated around this sample average in cells G14 and H14. Based on this analysis, it appears that the strategy of introducing the new T-regulator product can be recommended under the expected value criterion, but a larger simulation table may be needed to be more confident about the positivity of expected profit. The risks appear even greater in this model, as evidenced by a higher standard deviation (in cell D15) and a lower 0.05 cumulative-probability profit level (in cell D16), compared to the analogous statistics in Figure 2.9.

A fuller picture of the probability distribution of profit in this example is offered by the cumulative risk profile, which plots the sorted simulation data in B14:B514 on the vertical axis against the simulation table's percentile index (in A14:A514) on the horizontal axis. The Excel functions PERCENTILE.INC and PERCENTRANK.INC are also used in Figure 2.11 to extract numerical information about this distribution. To estimate the cumulative probability of profit at \$0, the fraction of the simulated profits in B14:B514 that are less than \$0 is computed in cell D17 by the formula

$$=\text{PERCENTRANK. INC}(B14:B514, 0).$$

To estimate the profit value that has cumulative probability 0.05, or value at risk, cell D16 finds

the value that is greater than 5% of the simulated profits, using the formula

=PERCENTILE.INC(B14:B514, 0.05).

In Figure 2.11 this value is -\$14.333 million. This means that there is a 0.05 probability that losses will be \$14.333 million, or worse.

Sometimes we may also be interested in knowing what would be the average loss, given that this 0.05 threshold is crossed. This is another popular measure of risk known as the *conditional tail expectation*, (also known as the *conditional value at risk*, and the *expected shortfall*). We can calculate the conditional tail expectation at the 0.05 level for the model of Superior Semiconductor's profits in Figure 2.11 in cell J17 using the formula

=AVERAGEIF(B14:B514, "<=" & D16)

This formula uses the Excel function AVERAGEIF, which only averages the numbers in an array that meet a particular condition. In this case, the condition is for profits to be no greater than the profit value that has cumulative probability 0.05. In providing an estimate of what is at risk, the conditional tail expectation takes into account all the losses that are greater than the value at risk, together with their probabilities, and in that sense the conditional tail risk summarizes the possible losses better than value at risk alone.

2.9 Summary

In this chapter, we focused on a simple decision problem involving an unknown quantity that has only finitely many possible values. In this context, we introduced some basic concepts for describing discrete probability distributions: the expected value or mean of the distribution, the standard deviation and the variance, and cumulative probability charts. We saw how to make

a random variable with any given probability distribution by using the inverse cumulative-probability function with a RAND() as input. The Simtools function DISCRINV was introduced to facilitate such simulations.

We then introduced techniques for estimating expected values, standard deviations, and cumulative probabilities from simulation data, using the law of large numbers for assurance that these estimates are very likely to be quite accurate if the sample size is very large. For a more precise assessment of the accuracy of the sample average as an estimate for an unknown expected value, we introduced Normal distributions and the Central Limit Theorem. We learned that a sample average, as a random variable, has a standard deviation that is inversely proportional to the square root of the sample size. We then saw how to compute a 95% confidence interval for the expected value of a random variable, using simulation data.

Finally, criteria for optimal decision-making were discussed, beginning with the basic concept of expected value maximization. The expected value of monetary income or some other suitably-measured payoff quantity was recommended as the best single number to guide decision-making under uncertainty. The standard deviation of payoff, the value at risk (for some pre-specified cumulative-probability level), and the entire cumulative risk profile were recommended as also worth reporting in a decision analysis, to better describe the levels of risk entailed by different decision alternatives.

Excel functions used in this chapter include AND, NORM.INV, STDEV.S, AVERAGEIF and SUMPRODUCT. Simtools functions introduced in this chapter include DISCRINV and STDEVPR. We also used the Data > Sort and Insert > Chart > Scatter commands to make inverse cumulative charts from simulation data.

EXERCISES

1. Let \mathbf{X} denote an unknown quantity that has three possible values: 2, 3, and 7, and suppose that their probabilities are $P(\mathbf{X}=2) = 0.260$, $P(\mathbf{X}=3) = 0.675$, $P(\mathbf{X}=7) = 0.065$.

Let \mathbf{Y} denote another unknown quantity that has three possible values: -1, 3, and 4, and suppose that their probabilities are $P(\mathbf{Y}=-1) = 0.065$, $P(\mathbf{Y}=3) = 0.675$, $P(\mathbf{Y}=4) = 0.260$.

- (a) Compute $E(\mathbf{X})$, $Stdev(\mathbf{X})$, $E(\mathbf{Y})$ and $Stdev(\mathbf{Y})$.
- (b) According to the central limit theorem, an average of 36 random variables drawn from the probability distribution of \mathbf{X} should have approximately what probability distribution? (Be sure to specify the mean and standard deviation.)
- (c) In a spreadsheet, make a simulation table that tabulates values of five random variables as follows:

the first is a single cell that simulates \mathbf{X} ,

the second is a single cell that simulates \mathbf{Y} ,

the third is an average of 36 cells independently drawn from the probability distribution of \mathbf{X} ,

the fourth is an average of 36 cells independently drawn from the probability distribution of \mathbf{Y} ,

the fifth is a single random cell drawn from the probability distribution that you predicted in (b).

Include at least 400 data rows in your simulation table. (This calculation may take a few minutes on older computers.)

- (d) Using your simulation table in (c), compute the sample mean and standard deviation for each of the five random variables, and make an XY-chart that estimates the (inverse) cumulative

distribution for these five random variables. (*Hint on charting keystrokes: You can separately sort each of your five columns of simulation data, then select the percentile index and five sorted data columns in the simulation table, and insert an XY-chart.*)

2. In a simulation table with data from 400 independent simulations of a random variable \mathbf{W} , the sample mean is 220.12, and the sample standard deviation is 191.63.

- (a) Estimate the standard deviation of the sample mean when the sample size is 400.
- (b) Based on this data, compute a 95% confidence interval for the true expected value of this random variable $E(\mathbf{W})$.
- (c) Suppose that we want to make a new table of simulation data which will generate a 95% confidence interval for $E(\mathbf{W})$ that has a radius of about 5. How large should this new simulation table be? (That is, how many independent simulations should it include?)

3. What is the discrete probability distribution of the random variable that would be generated by each of the following Excel formulas? Check your answer by a large simulation.

- (a) $=IF(RAND()>0.3,2,0)+IF(RAND()>0.6,3,0)$
- (b) $=IF(AND(0.3<RAND(),RAND()<0.4),1,0)$
- (c) $=IF(RAND()<0.6,IF(RAND()<0.5,1,2),3)$
- (d) How would your answers change if we entered $=RAND()$ into cell A1 and we replaced every $RAND()$ in the above formulas by a reference to cell A1?

4. Acme Widget Company has substantial uncertainty about many factors that will affect its

profit from selling widgets next year. Acme's director of marketing estimates that the total demand for widgets (sold by all firms in the market) may be 60,000 or 70,000 or 80,000 widgets next year, and the probabilities of these three possibilities are 0.2, 0.6, and 0.2 respectively. Acme's share of this total market for widgets next year may be 0.15 or 0.20 or 0.25 or 0.30, with probabilities 0.2, 0.3, 0.3, and 0.2 respectively. The price of widgets next year may be \$90 or \$100 or \$110 per widget, with probabilities 0.2, 0.7, and 0.1 respectively.

Suppose that, after the assembly line is set up, Acme can produce its widgets as customers order them, and so Acme's production quantity will equal its demand. Acme's costs can be separated into two parts: a fixed cost of setting up the assembly line, and a variable cost per widget produced. Acme's production manager estimates that the fixed cost may be \$450,000 or \$500,000 or \$550,000 or \$600,000, each with probability 0.25. The variable cost per widget may be either \$50 per widget, with probability 0.6, or \$60 per widget, with probability 0.4.

- (a) Make a spreadsheet simulation model to represent this situation, assuming that these unknown quantities are independent.
- (b) Generate a large table of simulated profits and compute a 95% confidence interval for Acme's expected profit from widget production next year. Make sure that the simulation table is large enough that the radius of your 95% confidence interval for Acme's expected profit is less than \$10,000. (That is, get a 95% confidence interval of the form $m \pm r$ where $r < 10,000$.)
- (c) Using the simulation data from part (b) also estimate:
 - (i) the standard deviation of Acme's profit next year,
 - (ii) the probability of Acme's profit next year being negative,
 - (iii) the median level of Acme's profit next year,

(iv) the level of Acme's profit next year that has cumulative probability 0.75.

(d) Based on the simulation data from part (b), make a chart showing the cumulative risk profile for Acme's profit next year.

5. The Grade Point Average, X , of a student in a prestigious school is a random variable that is normally distributed with mean $E(X)$ and standard deviation 2.15. The school would like to only award degrees to students with $E(X)$ greater than or equal to some number T but it could be that, by the luck of the draw, a student's X is below T even though $E(X)$ is at T or above. The school holds as (null) hypothesis that $E(X)$ is greater than or equal to T and rejects the null hypothesis only if X is sufficiently below T , that is, if X is below some value S smaller than T . When this is the case, the student does not get to graduate.

A “Type I error” occurs when the null hypothesis is rejected even though it is true, that is, when X ends up being below S even though $E(X)$ is at T or above. This particular school selected a value of S equal to 75.

(a) Type I errors are very painful for the students. If the school selected $S=75$ to keep the probability of a Type I error at 1%, what is the value of T implied by that choice?

(b) The school administrators, seeing the answer to part (a) above, realize that they meant for T to actually be equal to 75. Find the corresponding value of S , as defined above, that would keep the probability of a Type I error at 1%.

6. Katherine's wealth is tied to the outcome of a uniformly distributed random variable in the $[0,1]$ interval. In particular, her wealth equals \$1,000,000 times the outcome of the random

variable. She is contemplating buying a small vacation cottage in a remote area near Echo Lake for \$200,000.

a. What is the probability that Katherine will not be able to afford the vacation cottage?

Half of Arkady's wealth is tied to the outcome of a uniformly distributed random variable in the $[0,1]$ interval. The other half is tied to the outcome of another independent and identically distributed random variable. His final wealth is equal to \$500,000 times the outcome of the first random variable plus \$500,000 times the outcome of the second random variable. He is contemplating buying a small vacation cottage in a remote area near Frazier Park for \$200,000.

b. What is the probability that Arkady will not be able to afford the vacation cottage?

c. Let L_e be the risk of ruin for Arkady estimated in part b above. The precision of your estimate of this risk of ruin increases as the number of trials in your Monte Carlo simulation grows. What number of trials guarantees that, with a confidence of at least 95%, the interval $L_e \pm 1\%$ contains the 'true' risk of ruin? (Hint: See Section 2.6).

7. Whitney Madison is an analyst who has been asked to estimate the expected value of a random variable in a simulation model, and she needs to generate an estimate with a 95% confidence interval such that the radius of the interval is less than 1% of the estimate. That is, when m is the estimate of the expected value, then a 95% confidence interval for the expected

value should be contained in the interval from $0.99*m$ to $1.01*m$. In a preliminary sample of 100 independent simulated values of this random variable, the analyst found a sample average of 19.3 and a sample standard deviation of 5.13. Based on these results, estimate how many simulations the analyst should need to generate an estimated expected value with a sufficiently narrow 95% confidence interval.

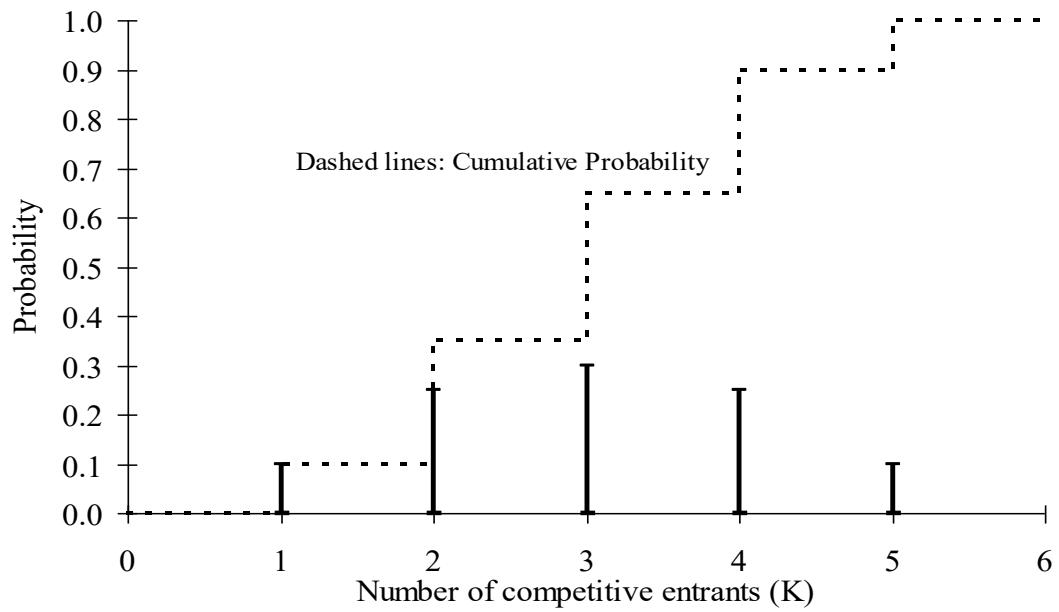


Figure 2.1. Discrete probability distribution for the number of entrants (K)

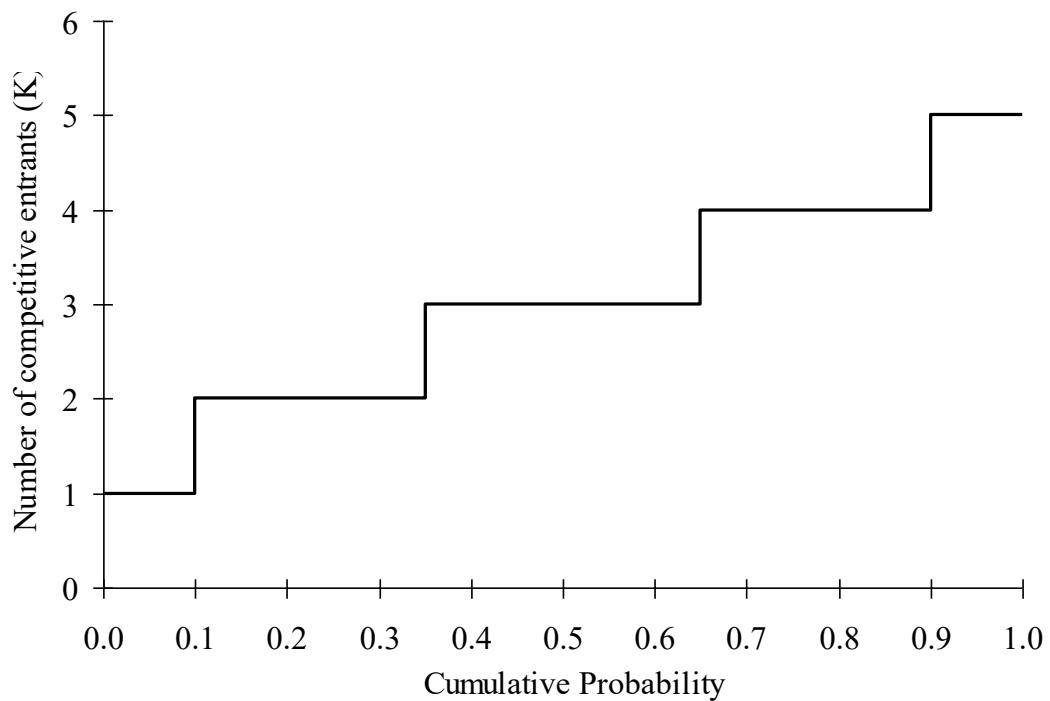


Figure 2.2. Inverse cumulative probability curve for number of entrants (K)

	A	B	C	D	E	F	G	H
1	A DISCRETE RANDOM VARIABLE FROM THE "SUPERIOR SEMICONDUCTOR" CASE							
2		K = (unknown number of competitors entering market) .						
3		Little k = (possible value of big K) .						
4	P (K<k)	k	P (K=k)				(for B16)	
5	0.00	1	0.10				0	
6	0.10	2	0.25				2	
7	0.35	3	0.30				0	
8	0.65	4	0.25				0	
9	0.90	5	0.10				0	
10			1					
11								
12		Simulated value						
13	0.32748	2						
14		2						
15		2						
16		2						
17	FORMULAS							
18	A6. =A5+C5							
19	A6 copied to A6:A9							
20	C10. =SUM(C5:C9)							
21	A13. =RAND()							
22	G5. =IF(\$A\$13<A6,B5,0)							
23	G6. =IF(AND(A6<=\$A\$13,\$A\$13<A7),B6,0)							
24	G6 copied to G6:G8							
25	G9. =IF(A9<=\$A\$13,B9,0)							
26	B13. =SUM(G5:G9)							
27	B14. =DISCRINV(A13,B5:B9,C5:C9)							
28	B15. =IF(A13<A6,B5,IF(A13<A7,B6,IF(A13<A8,B7,IF(A13<A9,B8,B9))))							
29	B16. =VLOOKUP(A13,A5:B9,2)							

Figure 2.3. Simulation with a discrete probability distribution (4 equivalent formulas)

	A	B	C	D	E	F	G
1	"SUPERIOR SEMICONDUCTOR" CASE				26	FixedCost	
2					100	MarketValue	
3	Let K = (unknown number of competitors entering market)						
4		k	P(K=k)		Profit	(in \$millions)	
5		1	0.10		24.00		
6		2	0.25		7.33		
7		3	0.30		-1.00		
8		4	0.25		-6.00		
9		5	0.10		-9.33		
10			1 sum				
11							
12	Model 1 (correct)						
13	#Competitors entering		Profit				
14	2		7.33				
15							
16	Model 2 (WRONG!!!)						
17	#Competitors entering		Profit				
18	4		24				
19							
20	FORMULAS FROM RANGE A1:F18						
21	E5. =\$E\$2/(1+B5)-\$E\$1						
22	E5 copied to E5:E9						
23	C10. =SUM(C5:C9)						
24	B14. =DISCRINV(RAND(), B5:B9, \$C\$5:\$C\$9)						
25	E14. =\$E\$2/(1+B14)-\$E\$1						
26	B18. =DISCRINV(RAND(), B5:B9, \$C\$5:\$C\$9)						
27	E18. =DISCRINV(RAND(), E5:E9, \$C\$5:\$C\$9)						

Figure 2.4. Making a simple simulation model of competitors and profit

	A	B	C	D	E	F	G	H
1	DISCRETE RANDOM VARIABLES FROM THE "SUPERIOR SEMICONDUCTOR" CASE							
2		K = (unknown number of competitors entering market).						
3		Little k = (possible value of big K).						
4		k	P(K=k)	$(k-E(K))^2$	Y=Profit			
5		1	0.1	4		24		
6		2	0.25	1		7.333333		
7		3	0.3	0		-1		
8		4	0.25	1		-6		
9		5	0.1	4		-9.33333		
10			1					
11								
12	Mean or E(K)	Stdev(K)			E(Y)	Stdev(Y)		
13		3	1.14018	1.140175		1.5	9.31695	
14								
15	FORMULAS FROM RANGE A1:G13							
16	D5.	= $(B5-B13)^2$						
17	D5 copied to D5:D9							
18	F5.	= $100/(1+B5)-26$						
19	F5 copied to F5:F9							
20	C10.	=SUM(C5:C9)						
21	B13.	=SUMPRODUCT(B5:B9, \$C\$5:\$C\$9)						
22	C13.	=STDEVPR(B5:B9, \$C\$5:\$C\$9)						
23	D13.	=SUMPRODUCT(D5:D9, C5:C9)^0.5						
24	F13.	=SUMPRODUCT(F5:F9, \$C\$5:\$C\$9)						
25	G13.	=STDEVPR(F5:F9, \$C\$5:\$C\$9)						

Figure 2.5. Expected values and standard deviations of discrete random variables

	A	B	C	D	E	F	G	H
1								
1								
2	k	P(K=k)						
3	1	0.1						
4	2	0.25						
5	3	0.3						
6	4	0.25	E(K)	Stdev(K)				
7	5	0.1		3	1.140175			
8								
9			2.975062	E(K) estimated from SimTable				
10			1.095161	Stdev(K) estimated from SimTable				
11			401	Sample size n				
12								
13		Sim'd K		1.095161 (SumSqDevs/(n-1))^0.5				
14	SimTable	2		Squared deviations from sample mean				
15	0	4	1.050497					
16	0.0025	3	0.000622	FORMULAS FROM RANGE A1:E15				
17	0.005	2	0.950747	D7. =SUMPRODUCT(A3:A7,B3:B7)				
18	0.0075	2	0.950747	E7. =STDEVPR(A3:A7,B3:B7)				
19	0.01	1	3.900871	B9. =AVERAGE(B15:B415)				
20	0.0125	5	4.100373	B10. =STDEV.S(B15:B415)				
21	0.015	4	1.050497	B11. =COUNT(B15:B415)				
22	0.0175	2	0.950747	D13. =(SUM(D15:D415)/(B11-1))^0.5				
23	0.02	1	3.900871	B14. =DISCRINV(RAND(),A3:A7,B3:B7)				
24	0.0225	1	3.900871	D15. =(B15-\$B\$9)^2				
25	0.025	4	1.050497	D15 copied to D15:D415				

Figure 2.6. Estimating an expected value and standard deviation from simulation data

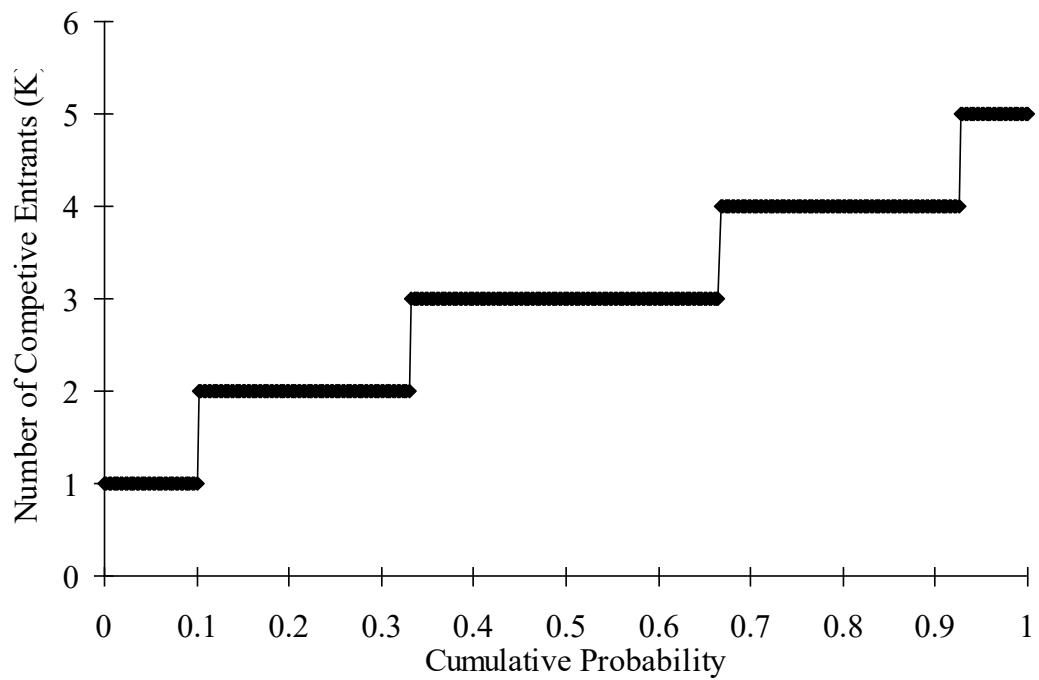


Figure 2.7. Estimate of an inverse cumulative distribution from simulation data

	A	B	C	D	E	F	G	H									
1	Probability distribution of K (#competitors entering market)																
2	k	P (K=k)															
3	1	0.1															
4	2	0.25															
5	3	0.3															
6	4	0.25															
7	5	0.1		Calculated from probability distribution:													
8		1		3 E (K)													
9				1.140175 Stdev (K)													
10		30 Sample size n		0.208167 Stdev of sample mean													
11																	
12	Normal random variable with same E & Stdev as sample mean: 2.726072																
13																	
14	Simulated sample, size 30			Calculated from the sample:													
15	3	4	3	3.033333	Sample mean or average												
16	3	4	4	1.188547	Sample standard deviation												
17	3	2	1	0.216998	Est'd stdev of sample mean												
18	1	5	5	95% confidence interval for E(K)													
19	3	2	3	2.608017	3.458649												
20	3	2	5	E(K) actually in the interval?													
21	5	4	3	TRUE													
22	3	1	1														
23	3	4	2														
24	3	3	3														
25																	
26	FORMULAS																
27	E8. =SUMPRODUCT(A3:A7,B3:B7)			E15. =AVERAGE(A15:C24)													
28	E9. =STDEVPR(A3:A7,B3:B7)			E16. =STDEV.S(A15:C24)													
29	B8. =SUM(B3:B7)			E17. =E16/(B10^0.5)													
30	B10. =COUNT(A15:C24)			E20. =E15-1.96*E17													
31	E10. =E9/(B10^0.5)			F20. =E15+1.96*E17													
32	H12. =NORM.INV(RAND(),E8,E10)			E22. =AND(E20<E8,E8<F20)													
33	A15. =DISCRINV(RAND(),\$A\$3:\$A\$7,\$B\$3:\$B\$7)																
34	A15 copied to A15:C24																

Figure 2.8. A spreadsheet for studying the properties of a sample mean

	A	B	C	D	E	F	G	H
1	SUPERIOR SEMICONDUCTOR (A)	(B)			26	FixedCost		
2					100	MarketValue		
3	Let K = (unknown number of competitors entering market)							
4	Probability distribution of K							
5		k	P(K=k)		Profit (\$millions) if k=#compet'rs			
6		1	0.10		24.00			
7		2	0.25		7.33	Measuring risk tolerance		
8		3	0.30		-1.00	High\$ 20.00		
9		4	0.25		-6.00	Low\$ -10.00		
10		5	0.10		-9.33	Assessed value\$ 2.00		
11						RiskTolerance	36.4891	
12	Computations from probability distribution							
13		E(K)		E(Profit)		CertaintyEquivalent		
14		3		1.5		0.423906		
15								
16	Simulation model							
17		K		Profit		Cond. Tail exp.5%		
18		5		-9.33		-9.33333		
19								
20	Statistics from simulations:							
21		1.83458	E(Profit) est'd from SimTable					
22		9.611946	Stdev(Profit) est'd from SimTable					
23		-9.33333	5% cumulative-probability level					
24		401	Sample size			Estimated CE	0.696039	
25				95% conf.intl for E(Profit)				
26		Sim'd profit		0.8937847	2.775376			
27	SimTable	-9.33						
28	0	-6	FORMULAS					
29	0.0025	-9.33333	E6. =\$E\$2/(1+B6)-\$E\$1					
30	0.005	-6	E6 copied to E6:E10 and E18					
31	0.0075	-6	B14. =SUMPRODUCT(B6:B10,\$C\$6:\$C\$10)					
32	0.01	-1	E14. =SUMPRODUCT(E6:E10,\$C\$6:\$C\$10)					
33	0.0125	-6	B18. =DISCRINV(RAND(),B6:B10,C6:C10)					
34	0.015	-6	B27. =E18					
35	0.0175	-1	B21. =AVERAGE(B28:B428)					
36	0.02	-1	B22. =STDEV.S(B28:B428)					
37	0.0225	-1	B23. =PERCENTILE.INC(B28:B428,0.05)					
38	0.025	7.333333	B24. =COUNT(B28:B428)					
39	0.0275	-1	E26. =B21-1.96*B22/(B24^0.5)					
40	0.03	24	F26. =B21+1.96*B22/(B24^0.5)					
41	0.0325	-1	H11. =RISKTOL(H8,H9,H10)					
42	0.035	-1	H14. =CEPR(E6:E10,C6:C10,H11)					
43	0.0375	-9.33333	H18. =AVERAGEIF(B28:B128,"<="&B23)					
44	0.04	-9.33333	H24. =CE(B28:B428,H11)					

Figure 2.9. Analysis of Superior Semiconductor case

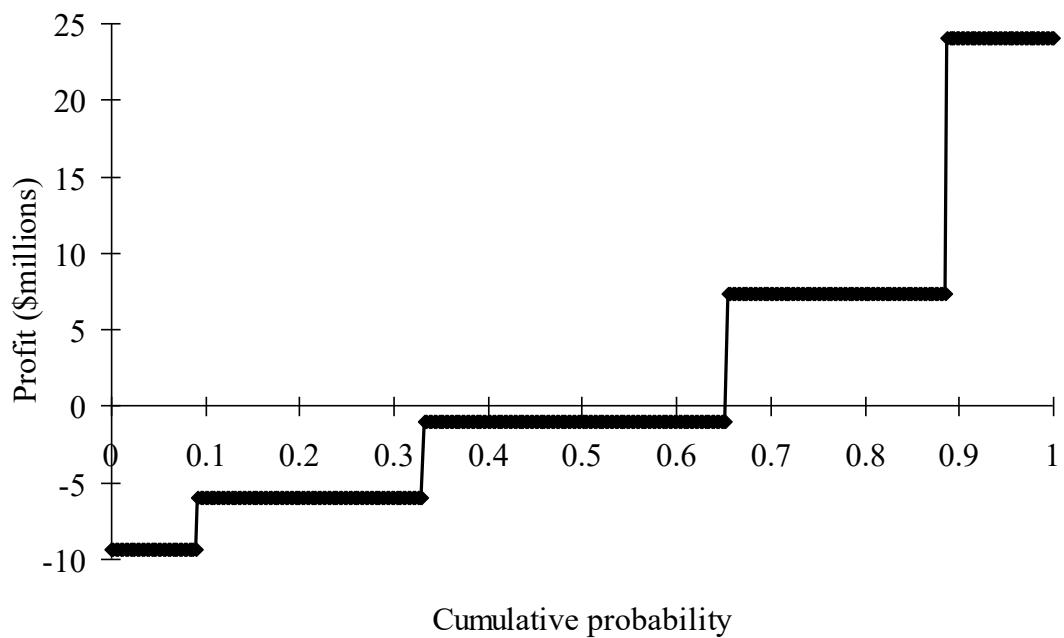


Figure 2.10. Cumulative risk profile, from simulation data

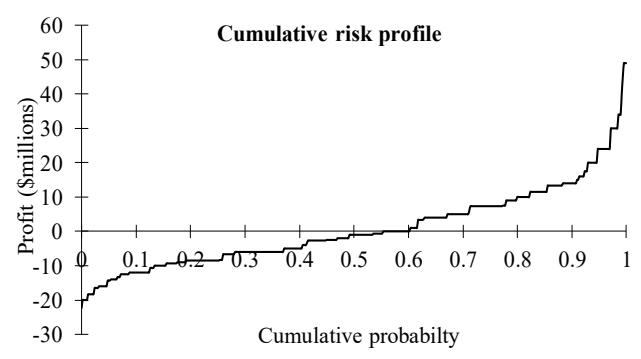
	A	B	C	D	E	F	G	H	I
1	#Competitors		Dev't cost		Total market				
2	value	proby		value	proby		value	proby	
3	1	0.1		20	0.2		70	0.3	
4	2	0.25		26	0.5		100	0.4	
5	3	0.3		30	0.2		120	0.2	
6	4	0.25		34	0.1		150	0.1	
7	5	0.1		1			1		
8		1							
9	SIMULATION MODEL								
10	#Competitors		Development cost		Total market\$				
11	3		20		100				
12	Profit								
13	SimTable	5	Ests from SimTable		95% ConfIntl for EProfit				
14	0	-22.333	1.11477 E(Profit)		-0.0069 2.23647				
15	0.002	-20	12.8097 Stdev(Profit)						
16	0.004	-20	-14.333 5%ile Profit		Sample size				
17	0.006	-20	0.582 P(Profit<0)		501				
18	0.008	-20	FORMULAS		Cond. tail exp. 5%				
19	0.01	-20	B8. =SUM(B3:B7)		-17.383				
20	0.012	-18.333	E7. =SUM(E3:E6)		E7 copied to H7				
21	0.014	-18.333	A11. =DISCRINV(RAND(), A3:A7, B3:B7)						
22	0.016	-18.333	D11. =DISCRINV(RAND(), D3:D6, E3:E6)						
23	0.018	-18.333	G11. =DISCRINV(RAND(), G3:G6, H3:H6)						
24	0.02	-18.333	B13. =G11/(1+A11)-D11						
25	0.022	-18.333	D14. =AVERAGE(B14:B514)						
26	0.024	-16.5	D15. =STDEV.S(B14:B514)						
27	0.026	-16.5	D16. =PERCENTILE.INC(B14:B514, 0.05)						
28	0.028	-16.5	D17. =PERCENTRANK.INC(B14:B514, 0)						
29	0.03	-16.5	H17. =COUNT(B14:B514)						
30	0.032	-16	G14. =D14-1.96*D15/H17^0.5						
31	0.034	-16	H14. =D14+1.96*D15/H17^0.5						
32	0.036	-16	H19. =AVERAGEIF(B14:B514, "<=" &D16)						
33	0.038	-16							
34	0.04	-16							
35	0.042	-16							
36	0.044	-16							
37	0.046	-16							
38	0.048	-14.333							
39	0.05	-14.333							
40	0.052	-14.333							
41	0.054	-14							
42	0.056	-14							
43	0.058	-14							
44	0.06	-14							
45	0.062	-14	Data in B14:B514 is sorted for chart.						
46	0.064	-14	Chart plots (A14:A514, B14:B514).						

Figure 2.11. A simulation model with three random variables affecting profit