PROBABILITY MODELS FOR ECONOMIC DECISIONS

Chapter 2: Discrete Random Variables

In this chapter, we focus on one simple example, but in the context of this example we
develop most of the technical concepts of probability theory, statistical inference, and decision
analysis that be used throughout the rest of the book. This example is very simple in that it
involves only one unknown quantity, which has only finitely many possible values. That is, in
technical terms, this example involves just one discrete random variable.

With just one discrete random variable, we can make a table or chart that completely

describes its probability distribution. Among the various ways of picturing a probability

distribution, the most useful in this book will be the inverse cumulative distribution chart. After
introducing such charts and explaining how to read them, we show how this inverse cumulative
distribution can be used to make a simulation model of any random variable.

Next in this chapter we introduce the two most important summary measures of a random
variable's probability distribution: its expected value and standard deviation. These two
summary measures can be easily computed for a discrete random variable, but we also show how
to estimate these summary measures from simulation data. The expected value of a decision-
maker's payoff will have particular importance throughout this book as a criterion for identifying
optimal decisions under uncertainty.

Later in the book we will consider more complex models with many random variables,
some of which may have infinitely many possible values. For such complex models, we may not

know how to compute expected values and standard deviations directly, but we will still be able



to estimate these quantities from simulation data by the methods that are introduced in this
chapter. We introduce these methods here with a simple one-variable model because, when you
first learn to compute statistical estimates from simulation data, it is instructive to begin with a

case where you can compare these estimates to the actual quantities being estimated.

Case: SUPERIOR SEMICONDUCTOR (Part A)

Peter Suttcliff, an executive vice-president at Superior Semiconductor, suspected that the
time might be right for his firm to introduce the first integrated T-regulator device using new
solid-state technology. This new product seemed the most promising of the several ideas that
had been suggested by the head of Superior's Industrial Products division. So Suttcliff asked his
staff assistant Julia Eastmann to work with Superior's business marketing director and the chief
production engineer to develop an evaluation of the profit potential from this new product.

According to Eastmann's report, the chief engineer anticipated substantial fixed costs for
engineering and equipment just to set up a production line for the new product. Once the
production line was set up, however, a low variable cost per unit of output could be anticipated,
regardless of whether the volume of output was low or high. Taking account of alternative
technologies available to the potential customers, the marketing director expressed a clear sense
of the likely selling price of the new product and the potential overall size of the market. But
Superior had to anticipate that some of its competitors might respond in this area by launching
similar products. To be specific in her report, Eastmann assumed that 3 other competitive firms
would launch similar products, in which case Superior should expect 1/4 of the overall market.

Writing in the margins of Eastmann's report, Suttcliff summarized her analysis as



follows:

u Superior's fixed set-up cost to enter the market: $26 million
u Net present value of revenue minus variable costs in the whole market: ~ $100 million
u Superior's predicted market share, assuming 3 other firms enter: 1/4

u Result: predicted net loss for Superior: ($1 million)

"Your estimates of costs and total market revenues look reasonably accurate," Suttcliff
told Eastmann. "But your assumption about the number of other firms entering to share this
market with us is just a guess. I can count 5 other semiconductor firms that might seriously
consider competing with us in this market. In the worst possible scenario, all 5 of these firms
could enter the market, although that is rather unlikely. There is no way that we could keep this
market to ourselves for any length of time, and so the best possible scenario is that only 1 other
firm would enter the market, although that is also rather unlikely. I would agree with you that
the most likely single event is that 3 other firms would enter to share the market with us, but that
event is only a bit more likely than the possibilities of having 2 other firms enter, or having 4
other firms enter. If there were only 2 other entrants, it could change a net loss to a net profit.
So there is really a lot of uncertainty about this situation, and your analysis might be more
convincing if you did not ignore it."

"We can redo the analysis in a way that takes account of the uncertainty by using a
probabilistic model," Eastmann replied. "The critical step is to assess a probability distribution
for the unknown number of competitors who would enter this market with us. So I should try to
come up with a probability distribution that summarizes the beliefs that you expressed." Then

after some thought, she wrote the following table and showed it to Suttclift:
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K Probability that K other competitors enter

1 0.10
2 0.25
3 0.30
4 0.25
5 0.10

Suttcliff studied the table. "I guess that looks like what I was trying to say. I can see that
your probabilities sum to 1, and you have assigned higher probabilities to the events that I said
were more likely. But without any statistical data, is there any way to test whether these are
really the right probability numbers to use?"

"In a situation like this, without data, we have to use subjective probabilities," Eastmann
explained. "That means that we can only go to our best expert and ask him whether he believes
each possible event to be as likely as our probabilities say. In this case, if we take you as best
expert about the number of competitive entrants, then I could test this probability distribution by
asking you questions about your preferences among some simple bets. For example, I could ask
you which you would prefer among two hypothetical lotteries, where the first lottery would pay
you a $10,000 prize if exactly one other firm entered this market, while the second lottery would
pay the same $10,000 prize but with an objective 10% probability. Assuming that you had no
further involvement with this project, you should be indifferent among these two hypothetical
lotteries if your subjective probability of one other firm entering is 0.10, as my table says. If you
said that you were not indifferent, then we would try increasing or decreasing the first probability

in the table, depending on whether you said that the first or second lottery was preferable. Then
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we could test the other probabilities in the table by similar questions. But if we change any one
probability in my table then at least one other probability must be changed, because the
probabilities of all the possible values of the unknown quantity must add up to 1."

Suttcliff looked again at the table of probabilities for another minute or two, and then he

indicated that it seemed to be a reasonable summary of his beliefs.

2.1 Unknown guantities in decisions under uncertainty

Uncertainty about numbers is pervasive in all management decisions. How many units of
a proposed new product will we sell in the year when it is introduced? How many yen will a
dollar buy in currency markets a month from today? What will be the closing Dow Jones
Industrial Average on the last trading day of this calendar year? Each of these number is an

unknown quantity. If our profit or payoff from a proposed strategy depends on such unknown

quantities, then we cannot compute this payoff without making some prediction of these
unknown quantities.
A common approach to such problems is to assess your best estimate for each of these

unknown quantities, and use these estimates to compute the bottom-line payoff for each

proposed strategy. Under this method of point-estimates, the optimal strategy is considered to be
the one that gives you the highest payoff when all unknown quantities are equal to your best
estimates.

But there is a serious problem with this method of point-estimates: It completely ignores
your uncertainty. In this book, we study ways to incorporate uncertainty into the analysis of

decisions. Our basic method will be to assess probability distributions for unknown quantities,



and then to create random variables that simulate these unknown quantities in spreadsheet
simulation models.

In the general terminology of decision analysis, the term "random variable" is often taken
by definition to mean the same thing as the phrase "unknown quantity." But as a matter of style

here, we will generally reserve the term unknown quantity for unknowns in the real world, and

random variable will be generally used for values in spreadsheets that are unknown because they

depend on unknown RAND values.

To illustrate these ideas, we consider the Superior Semiconductor case (Part A). In this
case, we have a decision about whether our company should introduce a proposed new product.
It is estimated that the fixed cost of introducing this new product will be $26 million. The total
value of the market (price minus variable unit costs, multiplied by total demand) is estimated to
be $100 million. It is also estimated that 3 other firms will enter this market and share it equally
with us. Thus, by the method of point-estimates, we get a net profit (in $millions) of
100/(3+1)—26 = -1 , which suggests that this product should not be introduced.
But all the quantities in this calculation (fixed cost, value of the market, number of competitive
entrants) are really subject to some uncertainty. We will see, however, that when uncertainty is
properly taken into account, the new product may be recognized as worth introducing.

The analysis in Part A of this case focuses on just one of these unknowns: the number of
entrants. Uncertainty about other quantities (fixed cost, value of the market) is ignored until the
end of this chapter, but it will be considered in more detail in Chapter 4. By focusing on just this
one unknown quantity for now, we can simplify the analysis as we introduce some of the most

important fundamental ideas of probability theory.



2.2 Charting a probability distribution

We use probability distributions to describe people's beliefs about unknown quantities.
When an unknown quantity has only finitely many possible values, we can describe it using a

discrete probability distribution. (Continuous probability distributions, for unknown quantities

with infinitely many possible values, will be discussed in Chapter 4.) A discrete probability
distribution can be presented in a table that lists the possible values of the unknown quantity and
the probability of each possible value.

In the Superior Semiconductor case, the number of competitors who will enter the market
is a quantity that is unknown to the company's decision-makers, and they believe that this
unknown quantity could be any number from 1 to 5. In our mathematical notation, let K denote
this unknown number of competitors who will enter this market. (We follow a mathematical
tradition of representing unknown quantities by boldface letters.) Then the decision-maker's
beliefs about this unknown quantity K are described in the case by a discrete probability
distribution such that

P(K=1)=10.10, P(K=2) =0.25, P(K=3) =0.30, P(K=4) =0.25, P(K=5)=0.10.

Here for any number k, the mathematical expression P(K=k) denotes the probability that the
unknown quantity K is equal to the value k. This probability distribution summarized by a chart
in Figure 2.1.
[Insert Figure 2.1 about here]
Figure 2.1 actually displays this probability distribution in two different ways. The five

solid bars in Figure 2,1 show the probabilities of the five points on the horizontal axis that



represent possible values of the unknown quantity K. Such point-probability bars are the most
common way of exhibiting a discrete probability distribution. But Figure 2.1 also contains a
dashed line that shows cumulative probability values, which we must now explain.

A cumulative probability of the unknown quantity K at a number k is the probability of K

being below the value k. It is a question of mathematical convention as to whether "cumulative
probability of K at 2" should be precisely defined as P(K<2) or P(K<2), that is, 0.10 or
0.10+0.25 = 0.35 in this case. In most books the latter definition is used. But in this book, let us
eclectically embrace both definitions and everything in between, and define a cumulative

probabilities of K at k to include P(K<k) and P(K<k) and every number in between. So in this

terminology, any number between 0.10 and 0.35 can be called a cumulative probability of K at 2
in this example. But notice that such ambiguity only occurs at numbers that have positive
probability for the random variable. For example, the cumulative probability of K at 2.5 is 0.35,

because P(K<2.5)=P(K<2.5)=0.10 + 0.25 = 0.35.

The dashed curve in Figure 2.1 as representing shows the cumulative probabilities for

each number k on the horizontal axis. For any number k between 1 and 2, the height of the
dashed cumulative-probability curve in Figure 2.1 is 0.10, because P(K<k) = P(K<k) = P(K=1) =
0.10 when 1<k<2. For any number k between 2 and 3, the height of the dashed cumulative-
probability curve in Figure 2.1 is 0.35, because

P(K<k) = P(K<k) = P(K=1) + P(K=2) = 0.10 + 0.25 = 0.35 when 2<k<3.
The unknown quantity K is sure to be less than 6, and so the height of the cumulative

probability-curve at 6 is 1 = P(K<6). The unknown quantity K is sure to not be less than 0, and



so the height of the cumulative-probability curve at 0 is 0 = P(K<O0).
In Figure 2.1, the dashed cumulative-probability curve has vertical jumps (representing

multiple cumulative probabilities from P(K<k) to P(K<k)) exactly where the point-probability

bars occur, and the height of each vertical jump is the same as the height of the corresponding
point-probability bar. For example, the dashed cumulative-probability curve jumps from 0.10 to
0.35 above the value 2 on the horizontal axis of Figure 2.1, which corresponds to the fact that
P(K=2)=0.25=10.35 —0.10 . So the cumulative-probability curve tells us everything about
the probability distribution that we could learn from the point probability bars. This observation
is important, because we will find that cumulative probability curves are generally more useful
for describing probability distributions than point-probability bars (which cannot be applied to
continuous probability distributions where there are infinitely many possible values).

Actually, we will find it most useful to invert the cumulative probability distribution,
turning the dashed line from Figure 2.1 on its side, with cumulative probabilities on the

horizontal axis and possible values of K on the vertical axis. Such an inverse cumulative-

probability curve is shown in Figure 2.2. Once you learn how to read it, you can find the discrete

probabilities of all possible values of K from this inverse cumulative-probability curve. For
example, the inverse cumulative-probability curve has height 2 over the interval of probabilities
from 0.10 to 0.35, which tells us that the point-probability of the value 2 is

P(K=2)=0.35 —0.10 = 0.25. The height of the inverse cumulative-probability curve goes
from 1 to 5 because these are the lowest and highest possible values of the unknown K.
(Because we will generally draw our cumulative charts in this inverse orientation, it should also

be acceptable here to drop the word "inverse" and simply refer to a chart like Figure 2.2 as a



"cumulative probability" chart.)
[Insert Figure 2.2 about here]
For any numbers q and k, if q is a cumulative probability of an unknown quantity K at

the k, then we may also say that k is a g percentile value of K. So in this example, the 0.2-

percentile value of K is 2, but any number from 2 to 3 could be called a 0.35-percentile value of

K.

2.3 Simulating discrete random variables

When we say that a random variable in a spreadsheet simulates (or represents) some
unknown quantity in real life, we mean that any event for this simulated random variable is, from
the perspective of our current information and beliefs, just as likely as the same event for the real
unknown quantity. If the unknown number of competitive entrants has a probability 0.10 of
equaling 1, for example, then the random variable in the spreadsheet should also have probability
0.10 of equaling 1 after the next recalculation of the spreadsheet. For any number £, the
probability that the random variable will be less than k after the next recalculation should be the
same as the probability that the real unknown quantity is less than «.

In our spreadsheets, all our random variables are constructed as functions of RAND()
values. So recall how the RAND function operates: Given any two numbers x and y such
that 0 =x =y=1 , the event that some particular RAND() in a spreadsheet formula
will take a value between x and y after the next recalculation is equal to the difference y — x
that is,

Px<RAND()=y)=vy —x
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For example, the probability that a RAND() will be between 0 and 0.10 is 0.10, and the
probability that the RAND() will be between 0.10 and 0.35 is
0.35 —0.10 = 0.25.

Let us now try to make a spreadsheet formula that depends on one RAND() such that the
value of our formula will simulates the unknown quantity K from the "Superior Semiconductors"
case. To be specific let us enter =RAND () into cell A13, as shown in Figure 2.3. Into another
cell, we want to enter a formula that depends on the RAND() in cell A13 in such a way that its
value is 1 with probability 0.10, 2 with probability 0.25, 3 with probability 0.30, 4 with
probability 0.25, and 5 with probability 0.10, just like the unknown quantity K. One way to get
these probabilities is to use some formula that returns a value that depends on the RAND() in cell
A13 as follows:

u the value is 1 when A13 is less than 0.10 (an event having probability 0.10),
u the value is 2 when A13 is between 0.10 and 0.10+0.25=0.35 (having probability 0.25),
u the value is 3 when A13 is between 0.35 and 0.35+0.30=0.65 (having probability 0.30),
u the value is 4 when A13 is between 0.65 and 0.65+0.25=0.90 (having probability 0.25),
u the value is 5 when A13 is greater than 0.90 (having probability 1 — 0.90 = 0.10).
Notice that we have gotten all the probabilities that we want with a collection of disjoint intervals
that exhaust all the possible RAND() values because the probabilities of all possible values of K
sum to 1. This is why all the possible values in any discrete probability distribution must have
probabilities that sum to exactly 1.

[Insert Figure 2.3 about here]

Figure 2.3 shows several different ways to create an Excel formula that has these
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properties. The possible values and corresponding probabilities for K are listed in the ranges
B5:B9 and C5:C9 of Figure 2.3. The (low) cumulative probabilities of the various possible
values are computed from this probability distribution in cells A5:A9 of Figure 2.3. Cell G5
contains the formula

=1F ($SAS13<A6,B5,0)
So cell G5 equals 1 (BS) if the RAND in A13 satisfies the inequality A13 < A6 =0.10, and
G5 equals 0 otherwise. Cell G6 contains the formula

=TF (AND (A6<=SAS$13, $A$13<A7),B6,0)
Excel's AND function returns the logical value TRUE if all of its parameters are TRUE, and
otherwise AND returns the logical value FALSE. So by the IF function in this formula, cell G6
equals 2 (B6) when the RAND in A13 is satisfies the inequalities
0.10 = A6 = A13 < A7 = 0.35 , and G6 equals 0 otherwise. (Excel uses <= to denote less
than or equal to, and uses >= to denote greater than or equal to.) The other formulas in cells
G5:G9 are constructed similarly so that one of these cells will equal the possible value of K that
would be designated by the RAND() in cell A13 under the above rule, while all the other cells in
G5:GY will equal 0. Thus, the formula =SUM (G5:G9) in cell B13 returns the random variable
that we wanted.

Simtools provides a function called DISCRINV to accomplish this same calculation more
easily. As you can verify by consulting the Insert-Function dialogue box, the DISCRINV
function takes three parameters. The first parameter (which is called "randprob" in the Insert-
Function dialogue box) should simply be a RAND(). The second parameter (called "values")

should be a range that lists the possible values of our discrete random variable. The third
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parameter (called "probabilities"), should be another range which has the same size as the values
range and which lists the corresponding probabilities of these values. Then the formula
DISCRINV(RAND(), values, probabilities)
returns a random variable that has values and discrete probabilities as listed in these ranges. In
this spreadsheet, the formula =DISCRINV (A13,B5:B9,C5:C9) in cell B14 returns a
random variable that depends on the RAND in A13 according to the rule that we described
above, and so the value of cell B14 is always the same as cell B13 for any value of the RAND in
cell A13.

The cell B15 contains a rather ugly formula that does the job in one line

=IF (A13<A6,B5,IF (A13<A7,B6,IF (A13<A8,B7, IF (A13<A9,B8,B9))))
We do not recommend using this formula. First, when a formula is so complicated, your chances
of typing it incorrectly are very high. Second, this method cannot be applied to larger problems,
because Excel may refuse to consider formulas where functions that are nested more than 8
parentheses deep. Cell B16 illustrates another more elegant way to compute the same random
variable using the Excel function VLOOKUP.

At this point you may wonder why the Simtools function for simulating a discrete
random variable should be called DISCRINV. The letters "DISCR" obviously come from the
word "discrete," but what does the "INV" signify? To see the answer, notice that this function
has been designed to return the value 1, 2, 3, 4, or 5, depending on the value of the RAND() that
is its first parameter, and the points where the function's value changes are 0.10, 0.10+0.25 =
0.35, 0.35+0.30 = 0.65, and 0.65+0.25 = 0.90. You have seen a function like this before: It is the

inverse cumulative function shown in Figure 2.2. Indeed, the "INV" in our function's name is
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short for "inverse cumulative."

In general, any random variable can be simulated by processing a RAND() through the
inverse cumulative-probability function. If a function G(- ) is the inverse cumulative-
probability function of an unknown quantity X then, for any numbers k and q, we get G(q) <k
when q < P(X<k). So for any number k, the random variable G(RAND()) will be less than k
when the RAND() is in the interval from 0 to P(X<k), which occurs with probability P(X<k). So
G(RANDY()) has the same probability distribution as X.

The bottom-line quantity of interest in the Superior Semiconductor case is profit. If we
assume that the $100 million total value of the market will be shared equally by Superior
Semiconductor and its K competitors then, after deducting $26 million of fixed costs, then
Superior Semiconductor's profit (in $millions) should depend on the number of competitors K by
the formula

Profit= 100/(1 + K) — 26
So if K equals 1 then profitis 100/(1 + 1) — 26 = 24 ($million), but if K equals 5 then
profitis 100/(1 +5) —26 = —9.33 . So profit is also an unknown quantity, with a

discrete probability distribution as shown in the following table:

Competitors Profit Probability
1 24 0.10
2 7.33 0.25
3 -1 0.30
4 -6 0.25
5 -9.33 0.10
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Figure 2.4 shows two attempts to make a model in which the number of competitors and the
resulting profit for Superior Semiconductors are both simulated.
[Insert Figure 2.4 about here]

The range B16:E18 in Figure 2.4 contains an attempt, called "Model 2," which illustrates
one of the most common errors that students make in simulation modeling. In Model 2, the
number of competitors and the profit are simulated in cells B18 and E18 respectively, with two
DISCRINYV formulas that depend on separate RANDs. The result is that profit is independent of
the number of competitors in Model 2, which is wrong. For example, Figure 2.4 shows a
realization of these random variables such that the simulated number of competitors in B18 is 4
while the simulated profit in E18 is 24 ($million); but if there were really 4 competitive entrants
then Superior Semiconductor's profit would be 100/(1 +4) — 26 = —6

The range B12:E14 in Figure 2.4 contains "Model 1," which is done correctly. In this
model, the number of competitors is simulated by a DISCRINV formula in cell B14, while the
profit is simulated in cell E14 as a function of the simulated number of competitors by the
formula =$ES$2/ (1+B14) -$ES$1 (where E2 contains the market value 100 and E1 contains
the fixed cost 26). Thus Model 1 always displays the correct relationship between the number of
competitors and the profit.

In general, a simulation model is a good representation of a real situation if our
uncertainty about the next recalculated values of the random variables in the model (that is, what
they will be after we next press [Recalc]) is the same as our uncertainty about the corresponding
unknown quantities in the real situation. Fancy formulas in a spreadsheet obviously cannot be

asked to magically return the actual values of real-world quantities that we are unable to observe

15



or measure by other means. Instead, what we must ask of our simulation models is that their
formulas should express our beliefs about the real unknown quantities, in the sense that our
beliefs about the next recalculated values of these formulas are the same as our beliefs about the

real unknown quantities.

2.4 Expected value and standard deviation

We have seen how a probability distribution can be used to describe our beliefs about an
unknown quantity that has finitely many possible values, and how to represent such a probability
distribution by a chart or simulation model. But when there are many possible values, the
probability distribution may be quite complicated. In such cases, we may want to describe the
overall pattern of a probability distribution by a few summary numbers which people could
interpret more easily than some complicated a chart or some simulated random variable that
jumps around whenever [Recalc] is pressed.

There are many formulas that people have used to generate summary measures of
probability distributions (expected value, median, mode, standard deviation, mean absolute error,
etc.). Each of these formulas has some drawbacks and limitations, because it is impossible to
perfectly summarize everything we want to know about every probability distribution by just a

couple of simple numbers. But two summary measures have been found particularly useful and

will be emphasized throughout this book: the expected value and the standard deviation.

The expected value or mean of an unknown quantity X may be denoted by E(X) or uy

and it is defined by the formula

EX)=puy = 2, P(X=x) * x
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where the summed terms include P(X=x)*x for all numbers x that are possible values of the
unknown quantity X. For example, in the Superior Semiconductor case, the expected value of
the unknown number of competitors K is

E(K)=0.10*%1 + 0.25*2 + 0.30*3 + 0.25*4 + 0.10*5 = 3.
Similarly, if we let ¥ = 100/(1 + K) — 26 denote the profit in this case, then the expected
value of profit is

E(Y)=0.10*24 + 0.25%7.33 + 0.30*(-1) + 0.25*(-6) + 0.10*(-9.33) = 1.5.
These calculations are illustrated in cells B13 and F13 of Figure 2.5, where the Excel function
SUMPRODUCT is used. When "rangel" and "range2" denote two ranges that have the same
numbers of rows and columns in a spreadsheet, the Excel formula SUMPRODUCT (rangel,
range2) multiplies the values of each pair of corresponding cells in these ranges (starting with the
top-left cell of range1 multiplied by the top-left cell in range 2) and then adds up all of these
multiplicative products. Thus, when the possible values of K are listed in the range B5:B9 and
the corresponding probabilities are listed in C5:C9, the expected number of competitors E(K)
can be returned by the formula

=SUMPRODUCT (B5:B9, $C$5:5C$9)
in cell B13. Similarly, when the corresponding profit levels in are computed in the range F5:F9,
the expected profit E(Y) can be returned by the formula

=SUMPRODUCT (F5:F9, $C$5:5C$9)
in cell F13 of Figure 2.5.

[Insert Figure 2.5 about here]

The expected value is interpreted as a measure of the center of a probability distribution.
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There will generally be some possible values that are higher than the expected value and other
possible values that are lower. Notice, however, that the expected value of an unknown quantity
is not necessarily itself a possible value of the unknown quantity. In this example, the expected
value of K (E(K)=3) happens to be a possible value of K. But the expected value of Y
(E(Y)=L1.5) is not among the possible values of the unknown profit Y. So the term "expected" is
being used here in a technical sense that may be different from common English usage of the
word. In each case, however, the expected value could be reasonably described (in some
intuitive sense) as "near the center" of the possible values of the unknown quantity.

Notice also that the expected profit in this example is different from the profit that occurs
at the expected number of competitors, even though profit here is a function that depends on the
number of competitors. When the number of competitors K is 3, which is E(K), the
corresponding profitis ¥ = 100/(1+ 3) —26 = —1 , but E(Y) = 1.5. More generally,
if X is an unknown quantity and f (+) is any function, the function evaluated f at E(X) may be
different from the expected value of the unknown quantity f (X), that is:

f (E(X)) may be different from E(f (X)).
The only case where f (E(X)) is guaranteed to equal E(f (X)) is when f is a linear function.
The erroneous assumption that f (E(X)) ought to be the same as E(f (X)) has been called

the fallacy of averages. This error seems to arise in people's minds because, after computing the

expected value of an unknown quantity, there is a temptation to simplify the world by assuming
that the unknown quantity will be equal to its expected value. For example, in the Superior
Semiconductor case, we might be tempted to assume that the number of competitors will be 3 for

sure, in which case the profit would be 100/(1 +3) — 26 = —1 (a loss of $1 million).
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But when the uncertainty is not assumed away we actually get a positive expected profit of 1.5
$million. This positive expected value of profits should seem intuitively reasonable when you
notice that the positive profits (24 and 7.33) that could be generated by a number of competitors
less than 3 are significantly larger in absolute value than the equally-likely negative profits (-9.33
or -6) that could be generated by a number of competitors greater than 3. This result is in turn
caused by a kind of nonlinearity in our profit function (where a decrease of K below 3 would
increase profit by more than the a similar increase of K above 3 would decrease profit).

Now that we have the expected value as a summary measure of the center of a probability
distribution, we should also want some summary measure of the spread of a probability
distribution, to say something about what kinds of deviations from this expected value are likely
to occur. The most useful summary measure of spread is the standard deviation.

The standard deviation of a random variable X may be denoted by Stdev(X) or oy , and

it is defined by the formula

Stdev(X) = oy = (E((X — p4)"2))"0.5

X PX =x) = (x — ux)"2]"0.5

(Here puy = E(X), and the summation Xy includes all numbers x that are possible values of the
unknown quantity X. The symbol """ is used in here and in Excel to indicate exponentiation, so
372 =3%2=9 for example.) In words, the standard deviation of X may be defined as the square
root of the expected squared deviation of X from its mean. If we dropped the square root (*0.5)
from this definition, then we get the definition of the variance of X, which is the expected value

of the squared deviation of X from its mean

Var(X) = E((X — px)"2) =X, P(X = x) * (x — ux)"2= (Stdev(X))"2
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In the Superior Semiconductor example, the unknown number of competitors K has

standard deviation

(0.10%(1-3)"2 + 0.25*(2-3)"2 + 0.30*(3-3)"2 + 0.25%(4-3)"2 + 0.10%(5-3)"2)"0.5 = 1.14
To see how these calculations may be done in a spreadsheet, look at cells D5:D9 and D13 in
Figure 2.5. Recall that the possible values of K are listed in cells B5:B9, the corresponding
probabilities are listed in C5:C9, and the expected value or mean of K is listed in cell B13 of
Figure 2.5. So entering the formula

=(B5-$BS13) "2

into cell D5, and copying D5 to D5:D9, we get the possible squared deviations of K from its
mean listed in cells D5:D9. Then the formula SUMPRODUCT(D5:D9,C5:C9) returns the
expected squared deviation of K from its mean. This expected squared deviation of a random

variable from its mean is called the variance of the random variable. The standard deviation is

the square root of the variance, and it is returned in cell D13 by the formula
=SUMPRODUCT (D5:D9,C5:C9) *0.5

To simplify these calculations, we may also use the Simtools function STDEVPR. This
function is designed to compute standard deviations from discrete probability distributions. (Be
careful not to be confuse Simtools's STDEVPR function with Excel's functions STDEV.S and
STDEV.P, which are used to compute sample standard deviations from sample data. The "PR"
in STDEVPR is short for "PRobability distribution.") STDEVPR takes two parameters, which
should be ranges that have the same size (the same number of rows and the same number of
columns). The first parameter, called "values" in the Insert-Function dialogue box, should be a

range that lists the possible values of some discrete random variable. The second parameter,
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called "probabilities" in the Insert-Function dialogue box, should be a range which lists the

corresponding probabilities of these values. Then the formula STDEVPR(values, probabilities)

returns the standard deviation of the discrete random variable. For example the formula
=STDEVPR (B5:B9, $C$5:$CS$9)

in cell C13 of Figure 2.5 returns the same standard deviation (1.14) that we computed in cell

D13.

If you have never seen a standard deviation before, then we should tell you that learning
to interpret standard deviations takes time. There is no simple rule about how to interpret them.
The most that we can say now is that the unknown quantity generally has some substantial
probability of being more than one standard deviation above or below its expected value, but it is
generally very unlikely to be more than three standard deviations above or below its expected
value. Thus, for example, if we were told only that E(K) = 3.0 and Stdev(K) = 1.14 for some
unknown quantity K, then we could infer that the probability of K being above 3.0+1.14 =4.14
or below 3.0 — 1.14 = 1.86 was substantial (this probability is actually 0.20 in our example),
but the probability of K being above 3.0 + 3*1.14 = 6.42 or below
30 —3=1.14 = —042 was very small (this probability is actually 0 in our example). If
these vague inferences were not enough for us, then we might ask to be shown the (inverse)
cumulative chart for this unknown quantity.

There are two formulas that you should know about how multiplication by a nonrandom
constant ¢ and addition of a nonrandom constant d would affect expected values and standard
deviations. If X is a random variable but ¢ and d are numbers which are not random, then

B(c*X + d) = ¢*E(X) + d,
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Stdev(c*X + d) = |c| * Stdev(X).
(In the second formula, |c| denotes the absolute value of c, that is, |c| = ¢ if ¢>0, while
lc] = —c¢ if ¢ <0.) For example, let the random variable R denote the Superior
Semiconductor's total revenue in dollars (not $millions) from the new product, ignoring the fixed
costs. This revenue number R in dollars and the profit Y in millions of dollars are obviously
related by the formula R = 1,000,000*Y + 26,000,000. So knowing that E(Y) = 1.5 and
Stdev(Y) = 9.317, we can compute

E(R) = 1,000,000 * E(Y) + 26,000,000 = 27,500,000

Stdev(R) = 1,000,000 * Stdev(Y) = 9,317,000.

2.5 Estimates from sample data

In complex decision problems, we will want to estimate the expected values, standard
deviations, and cumulative distributions of unknown quantities that we can study only by
simulation. In this section we show how such estimates can be generated. It will be helpful to
begin studying these techniques in the context of the simple Superior Semiconductor example,
where we know how to explicitly compute the numbers that we are trying to estimate from
simulation, because this simplicity will enable you to get a hands-on feel for the accuracy of
these simulation methods.

Figure 2.6 shows a table of simulations of the unknown number of competitors K from
the Superior Semiconductor case. The possible values of K are listed in cells A3:A7, and their
corresponding probabilities are listed in cells B3:B7. So of course we can compute the expected

value and standard deviation of K directly from this probability distribution, as shown in cells
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D7 and E7. But let us pretend that we did not know how to do these computations and instead
try to work with simulation data.
[Insert Figure 2.6 about here]

A random variable that simulates the unknown quantity K has been created in cell B14 of

Figure 2.6 by the formula

=DISCRINV (RAND() ,A3:A7,B3:B7)
Then data from 401 independent simulations of this random variable has been entered below into
cells B15:B415 of this spreadsheet, by selecting the range A14:B415 and using the command
sequence SimTools > SimulationTable. (Simtools's SimulationTable command also entered the
label "SimTable" into cell A14, and filled the range A15:A415 with a percentile index consisting
of 401 equally-spaced numbers from 0 to 1.)

To remind us how many data points we have in our simulation data (401), the formula
=COUNT (B15:B415) has been entered into cell B11. Notice that the data range, as defined
here, does not include the original random variable in cell B14. If we had included it, the
statistics that we compute would change slightly every time the spreadsheet was recalculated. In
our mathematical formulas, the number of independent data points that we are using to compute
our statistics will be commonly denoted by the letter "n".

The best estimate of E(K) that can be computed from a sample of independent simulated
values of K is the average or sample mean of this simulation data. So to estimate E(K) in
Figure 2.6, the formula

=AVERAGE (B15:B415)

has been entered into cell B9. Excel's AVERAGE function, of course, just sums the n numerical
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values in our data range and divides this sum by n. You can see that the value returned in this
case (2.975) is reasonably close to the actual expected value (3).

The law of large numbers is a mathematical theorem which asserts that, when we have a

very large number of values drawn independently from a fixed probability distribution, the
average of these values is very likely to be very close to the expected value of the probability
distribution. (We are giving you just an informal description of this theorem here. Its formal
mathematical statement gives precise meanings to my phrases "very large", "very likely", and
"very close".) To see why this law is true, consider any discrete probability distribution like the
one for K here. If we let mkx denote the number of times that the value k occurs in our data range
and let n denote the size of the whole data range, then the average of the data range is

(Zk k*myi)/n = Zi k*(mi/n)
where the summation (Xx) includes all numbers k that are possible values of the random variable.
But when we generate hundreds of independent samples from the probability distribution of K,
we should anticipate that the relative frequency my/n of each possible value k should be close to
its probability. That is, mi/n should be quite close to P(K=k). Thus, the average of the data range
should be close to the expected value

E(K) = 2k k*P(K=k).

For example, in the spreadsheet shown in Figure 2.6, the value 1 actually occurs 41 times
among the 401 data values in the range B15:B415 (most of which are not shown in the figure).
So mi/n=41/401 = 0.102, which is not far from 0.10 = P(K=1). The other frequencies in this
data set happen to be such that

(Zk k*mi)/n = (1*41 +2*%92 + 3*134 + 4*104 + 5*30)/401
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=2 k*my/n = 1*41/401 + 2*92/401 + 3*134/401 + 4*104/401 + 5*30/401

=1%0.102 + 2*0.229 + 3*0.334 + 4*0.259 + 5*0.075 = 2.975
which is the value shown in cell B9 of Figure 2.6. Matching the actual relative frequencies with
the theoretical probabilities, you can see why this average is close to the true expected value
E(K) = 2k k*P(K=k) = 1*0.10 + 2*0.25 + 3*0.30 + 4*0.25 + 5*0.10 = 3.

To estimate the standard deviation from sample data, we use the Excel function

STDEV.S. For example, cell B10 of Figure 2.6 contains the formula

=STDEV.S (B15:B415)
which returns the value 1.095. You can see that this estimate is not far from the true standard
deviation shown in cell E7 (1.140).

Cells D13:D415 in Figure 2.6 have been set up to show you how Excel's STDEV.S
function really works. Recall that the standard deviation of a random variable is the square root
of its variance, and its variance is the expected squared deviation of this random variable from its
expected value. So to estimate the standard deviation a random variable from sample data,
Excel's STDEV.S function must begin by estimating the expected value, which it does by
computing the sample average, just as we have done in cell B9. Next, the STDEV.S function
computes the squared deviation of each value in the data range from this sample average. These
squared deviations have been computed in Figure 2.6 by entering the formula

=(B15-SB$S9) "2
into cell D15, and then copying D15 to cells D15:D415. Next, you might think that we should
estimate the variance (which is the expected squared deviation) by computing the average of

these squared deviations. But statisticians have recommended instead that at this step we should
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instead compute a modified average in which the sum of the squared deviations is divided by n-1
instead of n. (Computing deviations from the sample average instead of the true expected value
tends to slightly reduce the average of these squared deviations, which could cause a downward
bias in our estimates of the variance. To correct for this downward bias, statisticians have
recommended dividing by n-1 in the variance estimator.) In Figure 2.6, this modified average of
the squared deviations would be returned by the formula

SUM(D15:D415)/(B11-1)
(Recall that the sample size n is in cell B11.) Finally, to reverse the squaring of the deviations,
STDEV.S takes the square root of this sample variance estimate. Taking the square root is the
same as raising to the 0.5 power, so the formula

=(SUM(D15:D415) / (B11-1))"0.5
has been entered into cell D13 in Figure 2.6. You can verify that the result of this formula is
exactly the value returned by the STDEV.S function (1.095). This estimated standard deviation

computed by STDEV.S from sample data is called the sample standard deviation.

The law of large numbers can be extended to these estimated sample standard deviations.
That is, when we have a very large number of values drawn independently from a fixed
probability distribution, the sample standard deviations of these values is very likely to be very
close to actual standard deviation of the probability distribution.

Notice that Microsoft has provided STDEV.S as a built-in Excel function, because
practical statistical work often requires that standard deviations be estimated from data. But the
STDEVPR function is provided only by the Simtools.xla add-in because, in practice, standard

deviations are only rarely computed from the probability distributions that define them.
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To estimate the inverse cumulative distribution of a random variable from data in a
simulation table, we only need to sort the simulation data and plot the sorted values on the
vertical (Y) axis of in an XY-scatter chart, with the corresponding percentile-index values from
the left column of the simulation table plotted on the horizontal (X) axis of the chart. Figure 2.7
shows such a chart, made from the simulation table in Figure 2.6. To make Figure 2.7, we first
selected the simulated data range B15:B415, and then we entered the command sequence Data >
Sort. When Excel's "sort warning" dialogue box interrupted the task, we chose the "continue"
option, and then we chose to sort the values smallest to largest. Next, we selected the range
A15:B415, which includes the percentile index numbers that go from 0 to 1 as well as the now-
sorted data range, and then we entered the command sequence Insert > Chart > Scatter (selecting
the option to show lines and point markers), to create the chart as shown in Figure 2.7. Notice
that Figure 2.7 is indeed a good approximation to the actual inverse cumulative-probability chart
shown previously as Figure 2.2.

[Insert Figure 2.7 about here]

2.6 Accuracy of sample estimates

When we estimate an expected value by computing the average of sample data, we need
to know something about how accurate this estimate is likely to be. Of course the average of
several random variables is itself a random variable that has its own probability distribution.
Figure 2.8 shows a spreadsheet designed to help you learn about how sample averages behave as
random variables. Like other figures in this chapter, Figure 2.8 begins with the probability

distribution for the unknown quantity K from the Superior Semiconductors case, with the
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possible values listed in cells A3:A7 and their corresponding probabilities listed in cells B3:B7.
Then to create 30 independent random variables with this probability distribution, the formula
=DISCRINV (RAND (), $AS3:SAS$7, $BS$S3,$BS7T)
has been entered into every cell in the range A15:C24. The average or sample mean of these 30
random variables is entered into cell E15 by the formula
=AVERAGE (A15:C24)
[Insert Figure 2.8 about here]

You should make a spreadsheet like Figure 2.8 and recalculate it many times, watching
the sample mean in cell E15. If you watch any individual cell in the sample range A15:C24, you
will see it jump around to all the integer values from 1 to 5. But when you watch cell E15, the
average of all 30 cells in this sample, you will see it vary much less widely around 3, almost
never going below 2.2 or above 3.8. A remarkable mathematical fact called the Central Limit
Theorem tells us much more about the way this average varies.

Before stating the Central Limit Theorem, we must introduce the idea of a Normal
probability distribution. In probability theory, the phrase "Normal probability distribution" is
used in a technical sense, which we will emphasize by capitalizing it, referring to a particular
collection of mathematical probability distributions that have some important properties. For
any two numbers p and o such that 6>0, there is precisely-defined Normal probability
distribution that has mean (or expected value) p and standard deviation 6. We will discuss such
Normal distributions at length in Chapter 4, but for now it is enough to introduce them by citing
a few basic facts about them.

In an Excel spreadsheet, you can make a random variable that has a Normal probability
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distribution with mean p and standard deviation ¢ by the formula

NORM.INV(RAND(),11,6)
We have tried to suggest here that, once you know how to make a spreadsheet cell that simulates
a given probability distribution, you can learn anything that anybody might want to know about
this distribution by simulating it many times in a spreadsheet. So if you want to know what a
"Normal distribution with mean 100 and standard deviation 20" is like, you should simply copy
the formula

=NORM.INV (RAND(),100,20)
into a large range of cells and watch how the values of these cells jump around whenever you
press the [Recalc] key.

Let us give you now a few other useful formulas about Normal distributions. If a random
variable X has a Normal probability distribution with mean p and standard deviation ¢ (where p
and o are given numbers such that 6>0), then

PX<p)=0.5=PX>p),

P(u-6 <X < pto) =0.683

P(u-1.96*c < X < p+1.96*c) = 0.95

P(u-3*c < X < put+3*c) = 0.997
That is, a Normal random variable is equally likely to be above or below its mean, it has
probability 0.683 of being less than one standard deviation away from its mean, it has probability
0.997 (almost sure) of being less than 3 standard deviations of its mean. For constructing 95%
confidence intervals, we will use the fact that a Normal random variable has probability 0.95 of

being within 1.96 standard deviations from its mean.
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Now we are ready for the remarkable Central Limit Theorem, which tells us Normal

distributions can be used to predict the behavior of sample averages:

Consider the average of n random variables that are drawn independently from a

probability distribution with expected value p and standard deviation ¢. This

average, as a random variable, has expected value p, has standard deviation

o/(n™0.5), and has a probability distribution that is approximately Normal.
For example, cell E15 of Figure 2.8 contains the average of n=30 independent random variables
that are drawn from a probability distribution which has expected value u=3 and standard
deviation ¢ = 1.14. So the Central Limit Theorem tells us that this sample mean should behave
like a random variable that has a Normal distribution where p=3 is the mean and o¢/(n"0.5) =
1.14/(3070.5) = 0.208 is the standard deviation. Such a Normal random variable is entered into
cell H12 of Figure 2.8. If you watch cell H12 and cell E15 through many recalculations, the only
difference in their pattern of behavior that you should observe is that the average in cell E15 is
always a multiple of 1/30. To show more precisely that the sample average in cell E15 has a
probability distribution very close to that of the Normal random variable in cell H12, you could
make a simulation table containing several hundred independently recalculated values of each of
these random variables. Then by separately sorting each column in this simulation table, you
could make a chart that estimates the inverse cumulative distribution of each random variable.
These two curves should be very close.

This Central Limit Theorem is the reason why, of all the formulas that people could
devise for measuring the center and the spread of probability distributions, the expected value

and the standard deviation have been the most useful for statistics. Other probability
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distributions that have the same expected value 3 and standard deviation 1.14 could be quite
different in other respects, but the Central Limit Theorem tells us that an average of 30
independent samples from any such distribution would behave almost the same. (For example,
try the probability distribution in which the possible values are 2, 3, and 7, with respective
probabilities P(2)=0.260, P(3)=0.675, and P(7)=0.065.)

Now suppose that we did not know the expected value of K, but we did know that its
standard deviation was 6=1.14, and we knew how to simulate K. Then we could look at any
average of n independently simulated values and we could assign 95% probability to the event
that our sample average does not differ from the true expected value in absolute terms by more
than 1.96*c/(n"0.5). That is, if we let Y, denote the average of our » simulated values, then the
interval from Y,—1.96 *o/(n"0.5) to Yat+1.96*6/(n0.5) would include the true E(K) with
probability 0.95. This interval is called a 95% confidence interval. With »=30 and c=1.14, the
radius r (that is, the distance from the center to either end) of this 95% confidence interval would
be

r=1.96*c/(n"0.5) = 1.96*1.14/(30"0.5) = 0.408.
If we wanted the radius of our 95% confidence interval around the sample mean to be less than
some number r, then we would need to increase the size of our sample so that
1.96*c/(n"0.5) <r, and so n> (1.96*c/r)"2
For example, to make the radius of our 95% confidence interval smaller than 0.05, the
sample size n must be
n>(1.96*c/r)"2 = (1.96*%1.14/0.05)"2 = 1997.

Now consider the case where we know how to simulate an unknown quantity but we do
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not know how to calculate its expected value or its standard deviation. In this case, where our
confidence-interval formula calls for the unknown probabilistic standard deviation 6, we must
replace it by the sample standard deviation that we compute from our simulation data. If the
average of n independent simulations is X and the sample standard deviation is S, then our
estimated 95% confidence interval for the true expected value is from X—1.96*S/(n"0.5) to
X+1.96*S/(n™0.5), where the quantity S/(rn"0.5) is our estimated standard deviation of the sample
average. In Figure 2.8, for example, the sample standard deviation S is computed in cell E16 by
the formula =STDEV. S (A15:C24), the sample size n is computed in cell B10 by the formula
=COUNT (A15:C24), the quantity S/(n"0.5) is computed in cell E17 by the formula
=E1l6/ (B1070.5)
and then a 95% confidence interval for E(K) is calculated in cells E20 and F20 by the formulas
=E15-1.96*E17 and =E15+1.96*E17
(Recall that E15 is the sample average.)

To say that the interval from E20 to F20 is a 95% confidence interval for the true
expected value is to say that the true expected value of 3 (in cell E8) should be between these
two numbers 95% of the time when the spreadsheet in Figure 2.8 is recalculated many times
independently. You can verify this by watching cell E22 while recalculating. Cell E22 contains
the formula

=AND (E20<E8, E8<F20)
and so it should read TRUE about 95% of the time (about 19 times out of 20). (Recall that the
Excel function AND(statement],statement2) returns the value TRUE if statementl and

statement2 are both TRUE, and returns FALSE otherwise.)
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So based only on the 30 independent simulations shown in Figure 2.8, the formulas in
cells E20 and F20 give us a 95% confidence interval from 2.608 to 3.458, that is 3.033+0.425,
for E(K). If the radius 0.425 seems too large, then we could get a narrower 95% confidence
interval by using a larger sample. If we only knew this estimated sample standard deviation of
1.188, we could estimate that the radius of our 95% confidence interval could be reduced below
0.05 if the sample size n were increased so that 1.96*1.188/(n0.5) were less than 0.05, which
happens when n is greater than (1.96*1.188/0.05)"2 = 2170.

It is important to understand the difference between cells E16 and E17 in Figure 2.8. The
value of cell E16 is the sample standard deviation STDEV.S(A15:C24). So E16 is our statistical
estimate of the standard deviation of any one random cell in the range A15:C24. The value of
cell E17 is the sample standard deviation in E16 divided by the square root of the sample size.
So E17 is our estimate of the standard deviation of the random cell E15, which is average of all
the random cells in the range A15:C24. When we recalculate the 30 simulated values in
cells A15:C24, the sample average tends to vary less than any one cell in the sample range,
because when one cell is relatively high there is usually some other relatively low cell to cancel
it out. That is why the standard deviation of the sample average is smaller than the standard
deviation of any one cell in the sample, by a factor of 1/n"0.5.

NOTE (You might wonder whether we should broaden our 95% confidence intervals
when we use an estimated sample standard deviation instead of the true standard deviation. The
answer is that we should, but the adjustments are relatively minor unless the sample size is small.
The corrected formula is based on something that statisticians call a T-distribution. When the

sample size n is small, we should replace the constant 1.96 in our 95% confidence formulas by
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the value of the Excel formula T.INV(0.05,#-1). When # is 30, this value is 2.045. As the
sample size n increases, the value of T.INV(0.05,1-1) rapidly approaches 1.96, and so we will
not worry about this T-adjustment in this book.)

Another application of the Central Limit Theorem can also be used to tell us something
about the accuracy of our statistical estimates of points on the inverse cumulative probability
curve. Suppose that X is a random variable with a probability distribution that we know how to
simulate, but we do not know how to directly compute its cumulative probability curve. For any
number y, let Qu(y) denote the percentage of our sample that is less than y, when we get a
sample of n independent values drawn from the probability distribution of X. Then we should
use Qu(y) as our estimate of P(X<y). But how good is this estimate? When 7 is large, Qu(y) is a
random variable with an approximately Normal distribution, its expected value is P(X<y), and its
standard deviation is (P(X<y)*(1-P(X<y))/n)"0.5. But (p*(1—p))*0.5 < 0.5 for any probability
p, and so the standard deviation of Qx(y) is always less than 0.5/(n"0.5), and multiplying this
standard deviation by 1.96 yields a number slightly less than 1/n0.5. Thus, around any point
(Qn(y),y) in an estimated inverse cumulative probability curve like Figure 2.7, we could put a
horizontal confidence interval over the cumulative probabilities from Qn(y)—1/n"0.5
to Qu(y)+1/n™0.5, and this interval would have a probability greater than 95% of including the
true cumulative probability at y. When # is 400, for example, the radius of this cumulative-
probability interval around Qn(y) is 1/#°0.5 = 1/20 = 0.05. If we wanted to reduce the radius of
this 95%-confidence interval below 0.02, then we would increase the sample size to

1/0.0272 = 2500.
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2.7 Decision criteria

We have used the Superior Semiconductor case as an example to introduce basic ideas of
probability and statistics. But after all these ideas have been introduced, we are still left with a
decision problem. On the basis of our analysis of the uncertainty in this situation, should we
recommend that Superior Semiconductors introduce the new T-regulator product or not? To
answer this question, we need some fundamental assumption about what determines an optimal
decision under uncertainty. The assumption that we will usually apply in this course is the

criterion of expected value maximization (or the expected value criterion).

Any quantitative decision analysis must involve some numerical measure of payoff, such
that increasing the decision-maker's payoftf is considered an improvement. For most economic
decision problems, net monetary returns or profit (or the present-discounted value of future
profit) may be identified as the payoftf that the decision-maker wants to increase whenever
possible. But in situations with uncertainty, we may not know whether a particular decision (like
that of introducing the new T-regulator product) would increase or decrease the decision-maker's
payoff. The criterion of expected value maximization asserts that, among the various
alternatives that are available to a decision-maker, the optimal decision is the one that yields the
highest expected value of the decision-maker's payoff.

So if we take Superior Semiconductor's profit to be the measure of "payoff" in this
decision problem, then the optimal decision can be identified simply by computing the expected
value of Superior Semiconductor's profit from the proposed new product. As we have seen, this
expected value is

E(Profit) = 0.10%24 +0.25%7.33 + 0.30*(—1) + 0.25%(—6) + 0.10%(~9.33) = 1.5
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The alternative of not introducing the new product generates an expected profit of 0, of course.
So by the criterion of expected value maximization, Superior Semiconductor should introduce
the new product, because 1.5 > 0.

The expected value formula has many good properties to recommend it as a criterion for
decision-making under uncertainty. It takes account of all possible outcomes in a sensible way,
and it is more sensitive to outcomes that are more likely. The argument for expected value
maximization is particularly compelling in games that can be repeated. If we know that we will
repeat a given type of decision problem many times, with new payoffs from each repetition being
added to the payoffs from previous rounds, but with the new outcome being determined
independently each time, then a strategy of choosing the alternative that yields the highest
expected value will almost surely maximize our long-term total payoff, by the law of large
numbers.

This expected-value criterion may be interpreted to mean that all we should care about is
the expected value of some appropriately measured payoff. But this interpretation can lead to
trouble if the words "of ... payoff" are forgotten. If you thought that our expected-value criterion
meant that we should only care about the expected number of competitors, then you would act as
though the number of competitors would be 3, in which case profit would be —1, and your
recommendation would be to not introduce the new product. The error here is to compute the
expected value of the wrong random variable (not payoff), and then to try to compute an
expected payoff from it according to the fallacy of averages (as discussed in Section 2.4).

Figure 2.9 shows a decision analysis of the Superior Semiconductor case. In cell E14, the

expected value is profit is calculated directly from the probability distribution. Under the
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expected value criterion, this positive expected value in E14 tells us that we should recommend
the new product. But to illustrate what we would do if we could not compute expected profit
directly from the probability distribution, the spreadsheet also contains a table of 401
independent simulations of the unknown profit, and the average of these profits is exhibited in
cell B21 as an estimator of the expected profit. Even if we could not see the true expected value
in cell E14, our simulation data is strong enough to support reasonable confidence that the
expected value is greater than 0, because we find a positive lower bound (0.8937) in the 95%
confidence interval for expected profit that is computed in cells E26 and F26.

[Insert Figure 2.9 about here]

But now, having advocated the expected value criterion, we must now admit that it is
often not fully satisfactory as a basis for decision-making. In practice, people often prefer
decision alternatives that yield lower expected profits, when the alternatives that yield higher
expected profits are also more risky. People who feel this way are risk averse. Because most
people express attitudes of risk aversion at least some of the time, a serious decision analysis
should go beyond simply reporting expected payoff values, and should also report some
measures of the risks associated with the alternatives that are being considering.

As we have seen, the standard deviation is often used as a measure of the spread of likely
outcomes of an unknown quantity, and so the standard deviation of profit may be used as a
measure of risk. Thus, cell B22 in Figure 2.9 estimates the standard deviation of profit from the
proposed new product in this case. The large size of this sample standard deviation
(9.61 $million, much larger than the expected value) is a strong indication that this new product

should be seen as a very risky.
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Another measure of risk that has gained popularity in recent years is called value at risk.
The value at risk is defined to be the level of net profit that has some small pre-specified
cumulative probability, often taken to be 0.05, so that the probability of profit being below this
level is not more than 1/20. So cell B23 in Figure 2.9 estimates the profit level that has 5%
cumulative probability from our simulation data in B28:B428, using the formula
=PERCENTILE.INC (B28:B428,0.05).

The cumulative risk profile for a decision may be defined as the inverse cumulative

probability distribution of the payoff that would result from this decision. Figure 2.10 shows the
cumulative risk profile for the decision to introduce the new product in this case. This
cumulative risk profile was made from the simulation table in Figure 2.9. (First the simulated
profit data in cells B28:B428 were sorted by Excel's Data > Sort command, and then these sorted
profit values were plotted on the vertical axis of an XY-chart, with the percentile index in cells
A28:A428 plotted on the horizontal axis.) Notice that this cumulative risk profile contains all the
information about the value at risk, for any probability level. By definition, the value at risk for
the cumulative-probability level 0.05 is just the height of the cumulative risk profile above 0.05
on the horizontal cumulative-probability axis. So the cumulative risk profile may give the most
complete overall picture of the risks associated with a decision.
[Insert Figure 2.10 about here]

More generally, the limitations of the expected value maximization as a criterion for

decision-making have been addressed by two important theories of economic decision-making:

utility theory and arbitrage-pricing theory. Utility theory is about decision-making by risk-

averse individuals. Arbitrage-pricing theory is about decision-making for publicly held
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corporations, which may be owned by people who have different attitudes towards risks and
different beliefs about the probabilities of various events. Utility theory will be discussed in
Chapter 3 of this book, and arbitrage-pricing theory will be discussed in Sections 8.6 of Chapter
8. But each of these theories turns out to be mathematically equivalent to a simple extension of
the expected value criterion. In utility theory, the expected value criterion is extended by
introducing a new way of measuring payoffs, called a utility function, that takes account of the
decision-maker's personal willingness to take risks. In arbitrage pricing theory, the expected
value criterion is extended by introducing a new way of measuring probabilities, called market-

adjusted probabilities, that takes account of asset-pricing in financial markets. Thus, the

techniques that we have developed in this chapter for estimating expected values will also be
applicable to more sophisticated theories of individual and corporate decision-making.

NOTE (For a preview of the results of utility theory, you can look in column H of Figure
2.9 above. In Part B of the Superior Semiconductor case, the decision-maker will remark that a
simple gamble that could generate either a profit of $20 million or a loss of $10 million for
Superior Semiconductor, each with probability 1/2, may be just as good for the company as
$2 million for sure. Based on this assessment, cell H11 in Figure 2.9 applies a Simtools function
called RISKTOL to compute a measure of the company's "risk tolerance." Then with this
measure of the company's "risk tolerance," cell H14 applies a Simtools function called CEPR to
compute a risk-adjusted "certainty equivalent" value of the T-regulator project, using the
probability distribution of its profits. Cell H24 applies another Simtools function called CE to
estimate this same "certainty equivalent" value using simulation data. The meanings of these

mysterious functions and quantities will be discussed at length in Chapter 3.)
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2.8 Multiple random variables

We have been considering a simple example with just one random variable, because this
simplicity allowed us to compare our first estimates from simulation data to the actual quantities
being estimated. But now that we understand how simulation works, we can begin applying it to
more interesting problems that have many random variables, where probabilities, expected
values, and standard deviations may be very difficult to calculate from probability distributions,
so that simulation analysis becomes our best technique.

For example, Figure 2.11 shows an analysis of a more complicated version of the
Superior Semiconductor case where the development cost and total market value are also
unknown quantities. Instead of assuming that development cost D is $26 million for sure, it is
assumed now that the development cost could be $20, 26, 30, or $34 million with probabilities
0.2, 0.5, 0.2, and 0.1 respectively. Instead of assuming that the total market value M is $100
million for sure, it is assumed now that the development cost could be $70, 100, 120, or 150
$million with probabilities 0.3, 0.4, 0.2, and 0.1 respectively. The number of competitors K as
before could be 1, 2, 3, 4, or 5, with probabilities 0.1, 0.25, 0.3, 0.25, and 0.1 respectively. The
profit depends on these quantities by the formula Y = M/(1+K)—D because we assume that the
total market value will be divided equally among Superior Semiconductors and its K
competitors.

[Insert Figure 2.11 about here]
Cells A11, D11, and G11 in Figure 2.11 contain random variables (made with

DISCRINV) that simulate the number of competitors, the development cost, and the total market
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value for Superior Semiconductor's new T-regulator device. The spreadsheet uses an assumption
that these unknown quantities are independent (that is, learning about any one of them would not
influence our beliefs about the others), because the three random variables in cells A11, D11 and
G11 are independently driven by their own separate RANDs. Then profit is calculated in cell
B13 by the formula =G11/ (1+A11)-D11.

Profit data from 501 simulations of this model are stored in B14:B514. The sample
average is calculated in D14, and a 95% confidence interval for the true expected profit is
calculated around this sample average in cells G14 and H14. Based on this analysis, it appears
that the strategy of introducing the new T-regulator product can be recommended under the
expected value criterion, but a larger simulation table may be needed to be more confident about
the positivity of expected profit. The risks appear even greater in this model, as evidenced by a
higher standard deviation (in cell D15) and a lower 0.05 cumulative-probability profit level (in
cell D16), compared to the analogous statistics in Figure 2.9.

A fuller picture of the probability distribution of profit in this example is offered by the
cumulative risk profile, which plots the sorted simulation data in B14:B514 on the vertical axis
against the simulation table's percentile index (in A14:A514) on the horizontal axis. The Excel
functions PERCENTILE.INC and PERCENTRANK.INC are also used in Figure 2.11 to extract
numerical information about this distribution. To estimate the cumulative probability of profit at
$0, the fraction of the simulated profits in B14:B514 that are less than $0 is computed in cell
D17 by the formula

=PERCENTRANK.INC (B14:B514,0).

To estimate the profit value that has cumulative probability 0.05, or value at risk, cell D16 finds

41



the value that is greater than 5% of the simulated profits, using the formula
=PERCENTILE.INC (B14:B514,0.05).

In Figure 2.11 this value is -$14.333 million. This means that there is a 0.05 probability that

losses will be $14.333 million, or worse.

Sometimes we may also be interested in knowing what would be the average loss, given
that this 0.05 threshold is crossed. This is another popular measure of risk known as the
conditional tail expectation, (also known as the conditional value at risk, and the expected
shortfall). We can calculate the conditional tail expectation at the 0.05 level for the model of
Superior Semiconductor’s profits in Figure 2.11 in cell J17 using the formula

=AVERAGETIF (B14:B514, "<="&D16)
This formula uses the Excel function AVERAGEIF, which only averages the numbers in an
array that meet a particular condition. In this case, the condition is for profits to be no greater
than the profit value that has cumulative probability 0.05. In providing an estimate of what is at
risk, the conditional tail expectation takes into account all the losses that are greater than the
value at risk, together with their probabilities, and in that sense the conditional tail risk

summarizes the possible losses better than value at risk alone.

2.9 Summary

In this chapter, we focused on a simple decision problem involving an unknown quantity
that has only finitely many possible values. In this context, we introduced some basic concepts
for describing discrete probability distributions: the expected value or mean of the distribution,

the standard deviation and the variance, and cumulative probability charts. We saw how to make
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a random variable with any given probability distribution by using the inverse cumulative-
probability function with a RAND() as input. The Simtools function DISCRINV was introduced
to facilitate such simulations.

We then introduced techniques for estimating expected values, standard deviations, and
cumulative probabilities from simulation data, using the law of large numbers for assurance that
these estimates are very likely to be quite accurate if the sample size is very large. For a more
precise assessment of the accuracy of the sample average as an estimate for an unknown
expected value, we introduced Normal distributions and the Central Limit Theorem. We learned
that a sample average, as a random variable, has a standard deviation that is inversely
proportional to the square root of the sample size. We then saw how to compute a 95%
confidence interval for the expected value of a random variable, using simulation data.

Finally, criteria for optimal decision-making were discussed, beginning with the basic
concept of expected value maximization. The expected value of monetary income or some other
suitably-measured payoff quantity was recommended as the best single number to guide
decision-making under uncertainty. The standard deviation of payoff, the value at risk (for some
pre-specified cumulative-probability level), and the entire cumulative risk profile were
recommended as also worth reporting in a decision analysis, to better describe the levels of risk
entailed by different decision alternatives.

Excel functions used in this chapter include AND, NORM.INV, STDEV.S,
AVERAGEIF and SUMPRODUCT. Simtools functions introduced in this chapter include
DISCRINV and STDEVPR. We also used the Data > Sort and Insert > Chart > Scatter

commands to make inverse cumulative charts from simulation data.
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EXERCISES

1. Let X denote an unknown quantity that has three possible values: 2, 3, and 7, and suppose that
their probabilities are P(X=2) =0.260, P(X=3) =0.675, P(X=7) = 0.065.

Let Y denote another unknown quantity that has three possible values: —1, 3, and 4, and suppose
that their probabilities are P(Y=—1) =0.065, P(Y=3) = 0.675, P(Y=4) =0.260.

(a) Compute E(X), Stdev(X), E(Y) and Stdev(Y).

(b) According to the central limit theorem, an average of 36 random variables drawn from the
probability distribution of X should have approximately what probability distribution? (Be sure
to specify the mean and standard deviation.)

(c) In a spreadsheet, make a simulation table that tabulates values of five random variables as
follows:

the first is a single cell that simulates X,

the second is a single cell that simulates Y,

the third is an average of 36 cells independently drawn from the probability distribution of X,

the fourth is an average of 36 cells independently drawn from the probability distribution of Y,
the fifth is a single random cell drawn from the probability distribution that you predicted in (b).
Include at least 400 data rows in your simulation table. (This calculation may take a few minutes
on older computers.)

(d) Using your simulation table in (c), compute the sample mean and standard deviation for each

of the five random variables, and make an XY -chart that estimates the (inverse) cumulative
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distribution for these five random variables. (Hint on charting keystrokes: You can separately
sort each of your five columns of simulation data, then select the percentile index and five sorted

data columns in the simulation table, and insert an XY-chart.)

2. In a simulation table with data from 400 independent simulations of a random variable W, the
sample mean is 220.12, and the sample standard deviation is 191.63.

(a) Estimate the standard deviation of the sample mean when the sample size is 400.

(b) Based on this data, compute a 95% confidence interval for the true expected value of this
random variable E(W).

(c) Suppose that we want to make a new table of simulation data which will generate a 95%
confidence interval for E(W) that has a radius of about 5. How large should this new simulation

table be? (That is, how many independent simulations should it include?)

3. What is the discrete probability distribution of the random variable that would be generated
by each of the following Excel formulas? Check your answer by a large simulation.

(a) =IF(RAND()>0.3,2,0)+IF(RAND()>0.6,3,0)

(b) =IF(AND(0.3<RAND(),RAND()<0.4),1,0)

(c) =IF(RAND()<0.6,IF(RAND()<0.5,1,2),3)

(d) How would your answers change if we entered =RAND() into cell Al and we replaced

every RAND() in the above formulas by a reference to cell A1?

4. Acme Widget Company has substantial uncertainty about many factors that will affect its
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profit from selling widgets next year. Acme's director of marketing estimates that the total
demand for widgets (sold by all firms in the market) may be 60,000 or 70,000 or 80,000 widgets
next year, and the probabilities of these three possibilities are 0.2, 0.6, and 0.2 respectively.
Acme's share of this total market for widgets next year may be 0.15 or 0.20 or 0.25 or 0.30, with
probabilities 0.2, 0.3, 0.3, and 0.2 respectively. The price of widgets next year may be $90 or
$100 or $110 per widget, with probabilities 0.2, 0.7, and 0.1 respectively.
Suppose that, after the assembly line is set up, Acme can produce its widgets as customers order
them, and so Acme's production quantity will equal its demand. Acme's costs can be separated
into two parts: a fixed cost of setting up the assembly line, and a variable cost per widget
produced. Acme's production manager estimates that the fixed cost may be $450,000 or
$500,000 or $550,000 or $600,000, each with probability 0.25. The variable cost per widget
may be either $50 per widget, with probability 0.6, or $60 per widget, with probability 0.4.
(a) Make a spreadsheet simulation model to represent this situation, assuming that these
unknown quantities are independent.
(b) Generate a large table of simulated profits and compute a 95% confidence interval for
Acme's expected profit from widget production next year. Make sure that the simulation table is
large enough that the radius of your 95% confidence interval for Acme's expected profit is less
than $10,000. (That is, get a 95% confidence interval of the form m + r where r < 10,000.)
(c) Using the simulation data from part (b) also estimate:

(1) the standard deviation of Acme's profit next year,

(i1) the probability of Acme's profit next year being negative,

(ii1) the median level of Acme's profit next year,
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(iv) the level of Acme's profit next year that has cumulative probability 0.75.
(d) Based on the simulation data from part (b), make a chart showing the cumulative risk profile

for Acme's profit next year.

5. The Grade Point Average, X, of a student in a prestigious school is a random variable that is
normally distributed with mean E (X) and standard deviation 2.15. The school would like to only
award degrees to students with E (X) greater than or equal to some number 7 but it could be that,
by the luck of the draw, a student’s X is below T even though E(X) is at T or above. The school
holds as (null) hypothesis that E(X) is greater than or equal to 7 and rejects the null hypothesis
only if X is sufficiently below 7, that is, if X is below some value S smaller than 7. When this is
the case, the student does not get to graduate.
A “Type I error” occurs when the null hypothesis is rejected even though it is true, that is, when X
ends up being below S even though E(X) is at 7 or above. This particular school selected a value
of S equal to 75.
(a) Type I errors are very painful for the students. If the school selected S=75 to keep the
probability of a Type I error at 1%, what is the value of 7 implied by that choice?
(b) The school administrators, seeing the answer to part (a) above, realize that they meant for
T'to actually be equal to 75. Find the corresponding value of S, as defined above, that would

keep the probability of a Type I error at 1%.

6. Katherine’s wealth is tied to the outcome of a uniformly distributed random variable in the

[0,1] interval. In particular, her wealth equals $1,000,000 times the outcome of the random
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variable. She is contemplating buying a small vacation cottage in a remote area near Echo Lake

for $200,000.

a. What is the probability that Katherine will not be able to afford the vacation cottage?

Half of Arkady’s wealth is tied to the outcome of a uniformly distributed random variable in the
[0,1] interval. The other half is tied to the outcome of another independent and identically
distributed random variable. His final wealth is equal to $500,000 times the outcome of the first
random variable plus $500,000 times the outcome of the second random variable. He is

contemplating buying a small vacation cottage in a remote area near Frazier Park for $200,000.

b. What is the probability that Arkady will not be able to afford the vacation cottage?

c. Let L. be the risk of ruin for Arkady estimated in part b above. The precision of your estimate
of this risk of ruin increases as the number of trials in your Monte Carlo simulation grows. What
number of trials guarantees that, with a confidence of at least 95%, the interval L.+ 1% contains

the ‘true’ risk of ruin? (Hint: See Section 2.6).

7. Whitney Madison is an analyst who has been asked to estimate the expected value of a
random variable in a simulation model, and she needs to generate an estimate with a 95%
confidence interval such that the radius of the interval is less than 1% of the estimate. That is,

when m is the estimate of the expected value, then a 95% confidence interval for the expected
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value should be contained in the interval from 0.99*m to 1.01*m. In a preliminary sample of
100 independent simulated values of this random variable, the analyst found a sample average of
19.3 and a sample standard deviation of 5.13. Based on these results, estimate how many
simulations the analyst should need to generate an estimated expected value with a sufficiently

narrow 95% confidence interval.
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A B | C | D | E | F | G | H

1 |A DISCRETE RANDOM VARIABLE FROM THE "SUPERIOR SEMICONDUCTOR" CASE
2 K = (unknown number of competitors entering market).
3 Little k = (possible value of big K).

4 | P(K<k) k P (K=k) (for B16)
5 0.00 1 0.10 0
6 0.10 2 0.25 2
7 0.35 3 0.30 0
8 0.65 4 0.25 0
9 0.90 5 0.10 0
10 1

11

12 Simulated value

13| 0.3274s8 2

14 2

15 2

16 2

17 |FORMULAS

18 |A6. =A5+C5

19| A6 copied to A6:A9

20 |C10. =SUM(C5:C9)

21|a13. =RAND() \

22 |G5. =IF($A$13<A6,B5,0)

23 |G6. =IF(AND (A6<=$A$13,$A$13<A7) ,B6,0)

24| G6 copied to G6:G8

25|G9. =IF(A9<=$A$13,B9,0)

26 |B13. =SUM(G5:G9)

27 |[B14. =DISCRINV(Al1l3,B5:B9,C5:C9)

28 |[B15. =IF(Al13<A6,B5,IF(Al13<A7,B6,IF(A13<A8,B7,IF(A13<A9,B8,B9))))

29 [B16. =VLOOKUP (A13,A5:B9,2) \ \ \ \

Figure 2.3. Simulation with a discrete probability distribution (4 equivalent formulas)
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A | B | C | D E F | G
1 |"SUPERIOR SEMICONDUCTOR" CASE 26|FixedCost
2 | | | 100 MarketValue
3 |Let K = (unknown number of competitors entering market)
4 k P (K=k) Profit (in $millions)
5 1 0.10 24.00
6 2 0.25 7.33
7 3 0.30 -1.00
8 4 0.25 -6.00
9 5 0.10 -9.33
10 1|sum
11
12 Model 1 (correct)
13 #Competitors entering Profit
14 2 7.33
15
16 Model 2 (WRONG!!!)
17 #Competitors entering Profit
18 4 24
19
20 |[FORMULAS FROM RANGE Al:F18
21 |[E5. =$E$2/(1+B5)-$ES1
22| E5 copied to E5:E9
23|c10. =sUM(C5:C9) |
24 |B14. =DISCRINV(RAND(),B5:B9,$C$5:5C$9)
25 |E14. =$E$2/(1+B14)-$E$1 | |
26 |B18. =DISCRINV(RAND() ,B5:B9,$C$5:$C$9)
27 |E18. =DISCRINV(RAND() ,E5:E9,$C$5:5C$9)

Figure 2.4. Making a simple simulation model of competitors and profit
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a | B | C | D | E | F | G | H
1 |DISCRETE RANDOM VARIABLES FROM THE "SUPERIOR SEMICONDUCTOR" CASE
2 K = (unknown number of competitors entering market).
3 Little k = (possible value of big K).
4 k P (K=k) | (k-E(K)) "2 Y=Profit
5 1 0.1 4 24
6 2 0.25 1 7.333333
7 3 0.3 0 -1
8 4 0.25 1 -6
9 5 0.1 4 -9.33333
10 1
11
12 Mean or E (K) [Stdev (K) E(Y) Stdev (Y)
13 3/1.14018/1.140175 1.5| 9.31695
14
15 |[FORMULAS FROM RANGE Al:G1l3
16 [ID5. =(B5-$BS$13)"2
17 | D5 copied to D5:D9
18 |[F5. =100/ (1+B5)-26
19| F5 copied to F5:F9
20 [C10. =SUM(C5:C9)
21 ([B13. =SUMPRODUCT (B5:B9,$C$5:5C$9)
22 [c13. =STDEVPR(B5:B9,$C$5:$C$9) |
23 |D13. =SUMPRODUCT (D5:D9,C5:C9)70.5
24 |F13. =SUMPRODUCT (F5:F9,$C$5:5C$9)
25]|G13. =STDEVPR(F5:F9,$C$5:5C$9) |

Figure 2.5. Expected values and standard deviations of discrete random variables
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A | B J|c| b | E F ¢ | =
1 |Probability distribution of K (#competitors entering market)
2 k P (K=k)
3 1 0.1
4 2 0.25
5 3 0.3
6 4 0.25 E (K) Stdev (K)
7 5 0.1 3 1.140175
8
9 2.975062 E (K) estimated from SimTable
10 1.095161 Stdev (K) estimated from SimTable
11 401 Sample size n
12
13 Sim'd K 1.095161 (SumSgDevs/(n-1))70.5
14 |SimTable 2 Squared deviations from sample mean
15 0 4 1.050497
16 0.0025 3 0.000622 FORMULAS FROM RANGE Al:E15
17 0.005 2 0.950747 D7. =SUMPRODUCT (A3:A7,B3:B7)
18 0.0075 2 0.950747 E7. =STDEVPR(A3:A7,B3:B7)
19 0.01 1 3.900871 B9. =AVERAGE (B15:B415)
20 0.0125 5 4.100373 B10. =STDEV.S(B15:B415)
21 0.015 4 1.050497 Bll. =COUNT (B15:B415)
22 0.0175 2 0.950747 D13. =(SUM(D15:D415)/(B11-1))%0.5
23 0.02 1 3.900871 B14. =DISCRINV(RAND() ,A3:A7,B3:B7)
24 0.0225 1 3.900871 D15. =(B15-$B$9)"2
25 0.025 4 1.050497 D15 copied to D15:D415

Figure 2.6. Estimating an expected value and standard deviation from simulation data
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Figure 2.7. Estimate of an inverse cumulative distribution from simulation data
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a | B8 | ¢ | »p | F | ¢ H
1 |[Probability distribution of K (#competitors entering market)
2 k P (K=k)
3 1 0.1
4 2 0.25
5 3 0.3
6 4 0.25
7 5 0.1 Calculated from probability distribution:
8 1 3 E(K)
9 1.140175 Stdev (K)
10 30 Sample size n 0.208167 Stdev of sample mean
11
12 Normal random variable with same E & Stdev as sample mean: 2.726072
13
14 |Simulated sample, size 30 Calculated from the sample:
15 3 4 3 3.033333 sample mean or average
16 3 4 4 1.188547 sample standard deviation
17 3 2 1 0.216998 Est'd stdev of sample mean
18 1 5 5
19 3 2 3 95% confidence interval for E (K)
20 3 2 5 2.608017 3.458649
21 5 4 3] E(K) actually in the interval?
22 3 1 1 TRUE
23 3 4 2
24 3 3 3
25
26 ([FORMULAS
27 |E8. =SUMPRODUCT (A3:A7,B3:B7) E15. =AVERAGE (A15:C24)
28 |[E9. =STDEVPR (A3:A7,B3:B7) E16. =STDEV.S(A15:C24)
29 |B8. =SUM(B3:B7) El17. =E16/(B1070.5)
30 |[B10. =COUNT (A15:C24) E20. =E15-1.96*El7
31 [E10. =E9/(B1070.5) F20. =E15+1.96*E17
32 |[H12. =NORM.INV (RAND (),E8,E10) E22. =AND (E20<E8,E8<F20)
33 |A15. =DISCRINV (RAND (), $AS$3:$A$7,$BS$3:$BS7)
34 | A15 copied to Al5:C24

Figure 2.8. A spreadsheet for studying the properties of a sample mean
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|

B

c | o | E F | G H

(B) 26 FixedCost
100 MarketValue

(unknown number of competitors entering market)

P (K=k) Profit ($millions) if k=#compet'rs
0.10 24 .00
0.25 7.33 Measuring risk tolerance
0.30 -1.00 High$ 20.0¢C
0.25 -6.00 Low$ -10.0¢C
0.10 -9.33 Assessed values$ 2.0cC
RiskTolerance 36.4891

Computations from probability distribution

E (Profit) CertaintyEquivalent
1.5 0.42390¢

Profit Cond. Tail exp.5%
-9.33 -9.3333:

1.83458 E(Profit) est'd from SimTable
9.611946 Stdev (Profit) est'd from SimTable
-9.33333 5% cumulative-probability level

401 Sample size

Estimated CE 0.69603¢
95% conf.intl for E (Profit)
0.8937847 2.775376

FORMULAS
E6. =$E$2/(1+B6)-SES1
E6 copied to E6:E10 and E18

1 |SUPERIOR SEMICONDUCTOR (A)
2

3 |Let K =

4 |(Probability distribution of K
5 k

6 1
7 2
8 3
9 4
10 5
11

12

13 E (K)
14 3
15

16 [Simulation model
17 K

18 5
19

20 |Statistics from simulations:
21

22

23

24

25

26 Sim'd profit
27 |SimTable -9.33
28 0 -6
29 0.0025 -9.33333
30 0.005 -6
31 0.0075 -6
32 0.01 -1
33 0.0125 -6
34 0.015 -6
35 0.0175 -1
36 0.02 -1
37 0.0225 -1
38 0.025 7.333333
39 0.0275 -1
40 0.03 24
41 0.0325 -1
42 0.035 -1
43 0.0375 -9.33333
44 0.04 -9.33333

Bl4. =SUMPRODUCT (B6:B10,%$C$6:5C$10)
E14. =SUMPRODUCT (E6:E10,%$C$6:$C$10)
B18. =DISCRINV (RAND (),B6:B10,C6:C10)
B27. =E18

B21. =AVERAGE (B28:B428)

B22. =STDEV.S (B28:B428)

B23. =PERCENTILE.INC (B28:B428,0.05)
B24. =COUNT (B28:B428)

E26. =B21-1.96%*B22/(B2440.5)

F26. =B21+1.96%*B22/(B2440.5)

H11. =RISKTOL (H8,H9,H10)

H14. =CEPR(E6:E10,C6:C10,H11)

H18. =AVERAGEIF (B28:B128,"<="&B23)
H24. =CE(B28:B428,H11)

Figure 2.9. Analysis of Superior Semiconductor case
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Figure 2.10. Cumulative risk profile, from simulation data
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a | B Jc] b E | F|] @ H I
1 #Competitors Dev't cost Total market
2 value proby value proby value proby
3 1 0.1 20 0.2 70 0.3
4 2 0.25 26 0.5 100 0.4
5 3 0.3 30 0.2 120 0.2
6 4 0.25 34 0.1 150 0.1
7 5 0.1 1 1
8 1
9 |SIMULATION MODEL
10 |[#Competitors Development cost Total market$
11 3 20 100
12 Profit
13 |SimTable 5 Ests from SimTable 95% ConflIntl for EProfit
14 0 -22.333 1.11477 E(Profit) -0.0069 2.23647
15 0.002 -20 12.8097 Stdev (Proft)
16 0.004 -20 -14.333 5%ile Profit Sample size
17 0.006 -20 0.582 P(Profit<0) 501
18 0.008 -20 FORMULAS Cond. tail exp.5%
19 0.01 -20 B8. =SUM(B3:B7) -17.383
20 0.012 -18.333 E7. =SUM(E3:E6) E7 copied to H7
21 0.014 -18.333 All. =DISCRINV(RAND() ,A3:A7,B3:B7)
22 0.016 -18.333 D11. =DISCRINV(RAND(),D3:D6,E3:E6)
23 0.018 -18.333 Gll. =DISCRINV(RAND(),G3:G6,H3:H6)
24 0.02 -18.333 B13. =G11/(1+Al1)-D11
25 0.022 -18.333 D14. =AVERAGE (B14:B514)
26 0.024 -16.5 D15. =STDEV.S(B14:B514)
27 0.026 -16.5 D16. =PERCENTILE.INC(B14:B514,0.05)
28 0.028 -16.5 D17. =PERCENTRANK.INC(B14:B514,0)
29 0.03 -16.5 H17. =COUNT (B14:B514)
30 0.032 -16 Gl14. =D14-1.96*D15/H1770.5
31 0.034 -16 H14. =D14+1.96*D15/H1770.5
32 0.036 -16 H19. =AVERAGEIF(B14:B514,"<="&D16)
33 0.038 -16
34 0.04 -16 60 T Cumulative risk profile
35| 0.042 -16| 07
36| 0.044 -16 | 240 7T
37 0.046 -16 §30 T
38| 0.048 -14.333| E20 T
39 0.05 -14.333| 10 +
40| 0.052 -14.333| 3 0 — e
41 0.054 -14 m_lo 0 0.1 3 04 05 06 07 08 09 1
42 0.056 -14 220 A
43| 0.058 I I Cumulative probabilty
44 0.06 -14
45 0.062 -14 Data in B14:B514 is sorted for chart.
46 0.064 -14 Chart plots (Al4:A514,B14:B514).

Figure 2.11. A simulation model with three random variables affecting profit
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