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Consider a decision maker concerned with the true value of an unknown parameter

θ ∈ Θ. Let Θ be a finite set, Θ = {θ1, ..., θm} , and let the prior probability distribution

be fixed and denote it by r = (r1, ..., rm) .

The decision maker’s problem is to maximize the expected value of his utility by

the choice of an action from a set A. Utility is written as u: Θ×A→ R. The selection

of a ∈ A is made after receiving some information about θ.

Let us give two alternative formalizations of the idea of an information structure.

I. A set Y , and a collection of m probability distributions π1, ..., πm on Y . This

will be denoted (Y, π).
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II. A set X, a measure µ on Θ ×X such that the marginal distribution of θ is r,

and a partition S of X. This will be denoted (X,µ,S).

The interpretation of (I) is that a point y ∈ Y is observed according to the distri-

bution πi if θi is the true state. Then the action a ∈ A is chosen to maximize
mX
i=1

λ (θi | y)u (θi, a) ,

where λ is the posterior distribution of θ given y:

λ (θi | y) =
πi(y)riP
k πk(y)rk

.

The interpretation of (II) is that an event S ∈ S is observed and the conditional

distribution of θ is computed to be

µ ({θ} × S)

µ (Θ× S)
.

Obviously any information structure can be expressed in either form: for given

(Y, π1, ..., πm) we can let X ≡ Y, µ (θi, x) ≡ riπi (x), and S ≡ ({x})x∈X . Similarly,

(Y, π1, ..., πm) can be constructed immediately given (X,µ,S).

Therefore, it would seem that description (I) is generally to be preferred because

of its greater simplicity–there is really no need to describe a set X in detail since

the relevant objects are only the elements of S, and the joint distribution on Θ× S.

Description (II) is useful, however, when one has to compare information structures.

Information structures can be (partially) ordered according to the maximized value

of the objective function. One is said to be more informative than the other if the

objective function can be made at least as great for every possible utility function u.1

Let (Y, π) and (Y 0, π0) be two information structures. We assume further that Y and

Y 0 are finite sets: Y = {y1, ..., yn} , Y 0 =
©
y
0
1, ..., y

0
n0
ª
. Blackwell [1951] and others

have shown that (Y, π) is more informative than (Y 0, π0) if and only if there exists a

Markov matrix B satisfying

Π0 = ΠB, (1)
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where Πm×n = [πi (yj)] , Π
0
m×n0 =

£
π
0
i

¡
y
0
j0
¢¤
.2 Equation (1) can be used to check,

constructively, whether two information structures are related by this criterion. This

amounts to showing that a system of inequalities has a solution because the required

Markovian character of B entails bjj0 ≥ 0 for all j, j0, as well as
P

j0 bjj0 = 1 for all j.

If the two information structures (Y, π) and (Y 0, π0) were expressed in form (II)

as (X,µ,S) and (X 0, µ0,S 0) the required computations would be precisely the same.

However, if they could be expressed so that the same set X and the same joint

distribution µ were used, and so that S is a refinement of S 0, then the conclusion that

(Y, π) is more informative than (Y 0, π0) would be immediate upon inspection. We

would like to know whether such a choice of (X,µ), S and S 0 generally exists.

Let us view this problem the other way around. If (X,µ) is fixed, then the set of

all partitions of X corresponds to a set of information structures which are naturally

(partially) ordered by the criterion of refinement. Of course, these information struc-

tures may be only a small subset of all possible structures. Moreover, even if (Y, π)

is more informative than (Y 0, π0) and if (Y, π) and (Y 0, π0) are equivalent to (X,µ,S)

and (X,µ,S 0) respectively, for two partitions S and S 0, it may not be true that S

refines S 0. That is to say that refinement implies more informativeness, but not vice

versa—for example, S 0 may have more elements than S.

We know that (Y, π) can be converted directly into (X,µ,S) by identifying points in

Y with members of S. However there are other descriptions of form (II), refinements

of the n-member partition, with identical informational characteristics.

Definition: We will say that (X,µ,S) represents (Y, π) if there is a mapping:

f : S → Y such that

i) for each y ∈ Y and each S ∈ f−1 (y),

µ ({θi} × S)

µ (Θ× S)
= λ (θi | y) , i = 1, ..., n
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ii) for each y ∈ Y

X
S∈f−1(y)

µ (Θ× S) =
mX
i=1

π (y | θi) ri.

That is, (X,µ,S) represents (Y, π) if there is a class of subcollections of S with

the properties that the induced posterior on Θ is insensitive to the element S within

any subcollection, being identically to equal to λ (· | y) for some y ∈ Y , and that the

probability of occurrence of each such subcollection is the same as that for the y with

which it is associated. Thus, if T is the collection (f−1 (y))y∈Y generated in this way,

then (X,µ,S) and (X,µ, T ) are really equivalent information structures, both being

representations of (Y, π). The partition S merely refines T in a way that imparts no

extra information about θ.

Definition: Two information structures (Y, π) and (Y 0, π0) satisfying Blackwell’s

condition (1) are said to be imbeddable if there exists (X,µ,S,S 0) such that

(X,µ,S) represents (Y, π)

(X,µ,S 0) represents (Y 0, π0)

S is a refinement of S 0.

Theorem 1: Any two information structures (Y, π) , (Y 0, π0) satisfying (1) are

imbeddable.

Proof: Let X = Y × Y 0,

µ ({(θi, x)}) = µ
¡©¡

θi, yj, y
0
j0
¢ª¢

= riπi (yj) bjj0 ,

where Bn×n0 = (bjj0) is the Markov matrix in (1) relating Π and Π0. Further, take

S =
©¡
yj, y

0
j0
¢
| yj ∈ Y, y0j0 ∈ Y 0ª

and

S 0 =
©
Y ×

©
y0j0
ª
| y0j0 ∈ Y 0ª .
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Clearly S refines S 0 and µ is a probability distribution on Θ×X.

To show that (X,µ,S) represents (Y, π) take

f(S) ≡ f
¡©¡

yj, y
0
j0
¢ª¢

= yj,

so that

f−1(yj) =
©©¡

yj, y
0
j0
¢ª
| y0j0 ∈ Y 0ª .

Then
µ
¡©¡

θi, yj, y
0
j0
¢ª¢

µ
¡
Θ×

©¡
yj, y

0
j0
¢ª¢ = riπi (yj) bjj0Pm

k=1 rkπk (yj) bjj0
= λ (θi | yj) ,

verifying part i) of the definition of representation andX
S∈f−1(yj)

µ (Θ× S) =
n0X

j0=1

µ
¡
Θ×

©¡
yj, y

0
j0
¢ª¢

=
n0X

j0=1

mX
i=1

riπi (yj) bjj0

=
mX
i=1

riπi (yj) ,

since B is Markov matrix, verifying ii).

To show that (X,µ,S 0) represents (Y 0, π0) take

f(S0) = f
¡
Y ×

©
y0j
ª¢
= y0j

so that

f−1
¡
y0j
¢
= Y ×

©
y0j
ª
.

(That is, f−1 has only one member in S 0). Thus using (1),
µ
¡
{θi} × Y ×

©
y0j0
ª¢

µ
¡
Θ× Y ×

©
y0j0
ª¢ =

µ ({θi} × S0)
µ (Θ× S0)

=

Pn
j=1 riπi (yj) bjj0Pm

k=1

Pn
j=1 rkπk (yj) bjj0

=
riπ

0
i

¡
y0j0
¢Pm

k=1 rkπk
¡
y0j0
¢

= λ
¡
θi | y0j0

¢
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verifying i). Property ii) follows, as above, by applying Blackwell’s theorem to

µ (Θ× S 0). Q.E.D.

Bart McGuire has suggested the following matrix interpretation of Theorem 1.

Write the n× n0 Markov matrix B as the product of two Markov matrices, E and C

where E is n× (nn0) and C is (nn0)× n0, as follows:

E =



b11...b1n0 0 . . . 0 0 . . . 0

0 . . . 0 b21...b2n0
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 0
. . .

...

0 . . . 0

bn1...bnn0


has the (row) vector bk· as shown in the kth row and zeros elsewhere, and

C =


In0

In0
...

In0


stacks n identity matrices, each of which is n0 × n0.

By definition ΠB = (ΠE)C = Π0. Therefore the information structure given by

(Y 00,ΠE) (where Y 00 has n × n0 elements)3 is more informative than Π0, and they

are related by refinement as indicated by the matrix C. That is, all observations

Y 00
k = 1, ..., n× n0 in Y 00 are associated to some y0j,∈ Y 0 according to j0 = k mod n0.
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On the other hand, by choosing an (n× n0)× n Markov matrix D given by

D =



1n0 0n0 0n0 0n0

0n0 1n0 0n0 0n0
...

...
. . . . . . . . .

...
...

0n0 0n0 1n0 0n0

0n0 0n0 0n0 1n0


,

n blocks, each consisting of column vectors (of length n0) of zeros and ones, we have

that (ΠE)D = Π, so that (Y 00,ΠE). Therefore (Y,Π) and (Y 00,ΠE) are equivalent

information structures.

These results establish the existence of an information structure (Y 00,ΠE) equiva-

lent to (Y, π) which can be viewed as a refinement of (Y 0, π0).

Theorem 1 is useful in the following way: Suppose a proposition is valid for any

pair of partitions S,S 0 of X, where (X,µ) is arbitrary and S refines S 0. Is it valid to

conclude that the same proposition can be asserted for any two information structures

(Y, π) , (Y 0, π0) such that (Y, π) is more informative than (Y 0, π0)? This theorem allows

one to give a positive answer by simply constructing (X,µ,S,S 0) so as to imbed (Y, π),

(Y 0, π0). Because it is often easier to work with refinements of partitions that with

systems of inequalities such as (1), this theorem may provide a convenient analytical

tool.

Theorem 1 shows how to construct (X,µ) to imbed any two information structure

that are ordered by Blackwell’s criterion. The following theorem, on the other hand,

treats a fixed (X,µ) and characterizes alternative families of partitions of X that all

represent the same information structures (Y, π) and (Y 0, π0).

Theorem 2: Given any two information structures (Y, π) and (Y 0, π0), and any

set X for which there exist (X,µ, S) and (X,µ, S 0) representing (Y, π) and (Y 0, π0)

respectively:
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1) (Y, π) is more informative than (Y 0, π0) if and only if the finest partition of X

that represents (Y, π) is a refinement of every partition of X that represents (Y 0, π0);

2) (Y, π) is more informative than (Y 0, π0) if and only if for every partition S of X

that represents (Y, π) and every partition of S 0 of X that represents (Y 0, π0) the least

common refinement of S and S 0 represents (Y, π).

The proof follows the lines of Theorem 1.

Reference

Blackwell, D. [1951], “Comparison of Experiments” in Second Berkeley Symposium

on Mathematical Statistics and Probability, J. Neyman (Ed.), University of California

Press.

Notes

1Actually, Blackwell [1951] requires that the dominance apply for all utilities and

all prior probabilities. However his theorem shows that the partial ordering obtained

for any fixed, positive, prior coincides with that for any other such prior.

2This theorem generalizes to infinite sets Θ and Y . The corresponding condition

is stated in terms of a Markov kernel.

3The construction above, as in Theorem 1, requires the use of a space with nn0

points. One can observe that there is not, in general, an information structure

(Y 00,Π00) equivalent to (Y,Π) and refining (Y 0,Π0) (i.e. Π00D00 = Π0 for D00 a ma-

trix of zeros and ones), when Y 00 has fewer than nn0 points. For example consider

n = n0 = 2 and

Π =

 .6 .4

.3 .7

 , Π0 =

 .48 .52

.69 .31

 ,
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so that

B =

 .2 .8

.9 .1


uniquely satisfies ΠB = Π0.

Let us try to find (Y 00,Π00) as required with Y 00 consisting of three points. Without

loss of generality we can take

C 00 =


1 0

1 0

0 1

 .

Thus

E00 =

 .10 .10 .80

.45 .45 .10

 .

If ΠE00 is equivalent to Π, then we must be able to find a Markov matrix D00 so

that (ΠE00)D00 = Π. (The other direction, “Π more information the ΠE,” is trivially

verified by E00 itself.) Solving for D in this numerical example one derives directly

that d0031 > 1, so that D
00 cannot be non-negative as required.

Similar examples can be given for any n, n0. In some special cases, where certain

degeneracies occur, this construction can be done for less than n × n0 points. But

these are not really relevant, and n× n0 is the general lower bound.
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