Some syntactic definitions

Jason Merchant, University of Chicago, 2019

- A grammar G consists of a pair of a set of lexical elements L and a set of operations O: G =< L, O >
- 2. A derivation on a numeration D_N is a pair: $D_N = \langle N, \langle PM_1, ..., PM_n \rangle \rangle$, where
 - 1. N, called the Numeration, is a nonempty set of lexical elements drawn from L and a possibly empty set S of phrase markers PM (each of which is itself the result of a separate convergent or semi-convergent derivation), and
 - 2. $< PM_1, ..., PM_n >$ is an ordered n-tuple of phrase markers PM.
- 3. A derivation D_N is said to be *convergent* (or to *converge*)¹ iff
 - 1. PM_n contains no unvalued (:___) features
 - 2. PM_n contains no unchecked phrasal movement (> or <) features
 - 3. PM_n contains no selectional features
 - 4. PM_n contains no head movement features (=)
 - 5. All elements in the Numeration have been Merged
 - 6. For each adjacent pair of phrase markers $\langle PM_k, PM_{k+1} \rangle$ in D_N , there is an operation $\omega \in O$ such that ω applied to PM_k yields PM_{k+1} .
- 4. A phrase *P* (including a sentence) is *well-formed* iff there is at least one convergent derivation for *P*.
- 5. The Minimalist Program, in essence = min|O| (Minimize the number of operations in O).

¹A derivation D_N is *semi-convergent* iff it satisfies conditions 2-6 of this definition.

1 Operations

(1) Merge(α, β)

For any syntactic objects α , β , where α bears a nonempty selectional list $\ell = \langle \bullet F_1, \ldots, \bullet F_n \rangle$ of selectional features, and β bears a categorial feature F' that matches $\bullet F_1$,

call α the *head* and

- a. let $\alpha = \{ \gamma, \{ \alpha \ell, \beta \} \}$ call γ the projection of α , and b. if n > 1, let $\ell = \langle \bullet F_2, ..., \bullet F_n \rangle$, else let $\ell = \emptyset$, and c. let $\gamma = \begin{bmatrix} CAT & [cat(\alpha)] \\ SEL & [\ell] \end{bmatrix}^2$
- (2) Adjoin(α , β)

For any syntactic objects α , β , where neither α nor β has any unchecked selectional feature,

call α the host, and

- a. let $\alpha = \{ \gamma, \{ \alpha, \beta \} \}$ call γ the label (or projection) and
- b. let $\gamma = \alpha$
- (3) Move_{head}(X,Y) (read: 'Y moves to X' or 'X attracts Y')
 For any syntactic heads X, Y, where X has feature F= ('suffixing on F') or =F ('prefixing on F'), Y has a matching feature F, and X c-commands Y,

and there is no head Z that intervenes between X and Y, then

a. if X has F=, let X = [$_{cat(X)}$ Y X], otherwise let X = [$_{cat(X)}$ X Y], and b. let Y = <Y>

(4) $Move_{phrase}(Y, X)$ (read: 'Y moves to specXP')

If X is a projection with a feature F, Y a maximal projection with a matching feature F', and X contains Y, and F is strong (marked >F) on X or Y or both, then

- a. let $X = \{X, \{Y, X\}\}$ and
- b. let all occurrences of >F on X, $Y = F^{<>}$, and
- c. let $Y = \langle Y \rangle$

²In other words, all category features project, all unused selectional features project, and no inflectional features project. Inflectional features are therefore found only on heads, never on projections.

(5) Agree(X,Y; F) (read: 'X triggers agreement on Y with respect to F' or 'Y agrees with X in F' or 'X controls agreement on target Y for F') For any syntactic objects X and Y in a phrase marker, where X bears a feature F with value Val(F) and Y bears a matching³ unvalued⁴ inflectional feature F':___, and X is accessible to Y ,
a. let Val(F') = Val(F)

2 Feature Structures

A lexical item LI has the following feature structure, with categorial, inflectional (or morphological), and selectional feature arrays:⁵

$$LI \begin{bmatrix} CAT[...] \\ INFL[...] \\ SEL[...] \end{bmatrix}$$

Some examples:

 $(6) \quad \sqrt{libro} \begin{bmatrix} CAT & [N, gender: \underline{masc}, number: \underline{sg}] \\ INFL & [Case: _] \\ SEL & [] \end{bmatrix}$ $(7) \quad \sqrt{eat} \begin{bmatrix} CAT & [V] \\ INFL & [person: _, number: _] \\ SEL & [< (D) >] \end{bmatrix}$ $(8) \quad \sqrt{dog} \begin{bmatrix} CAT & [N, \phi : 3sm] \\ INFL & [Case: _] \\ SEL & [] \end{bmatrix}$ $(9) \quad \sqrt{see} \begin{bmatrix} CAT & [V] \\ INFL & [\\ SEL & [] \end{bmatrix}$

³A feature F matches a feature F' iff F=F'.

⁴A feature F is unvalued iff Val(F)= \emptyset .

⁵If Georgi 2014 is right, then we don't need to structure the 'inflectional' (including Agree and movement-triggering) and selectional features this way; we merely need to order them with respect to each other, on a possibly language-particular basis.

$$\begin{array}{ccc} (10) & v_{trans} \begin{bmatrix} \text{CAT} & [v, -aux, \text{Case:ACC}] \\ \text{INFL} & \begin{bmatrix} \phi : _ \\ V = \\ \text{Infl:_} \end{bmatrix} \\ \text{SEL} & \begin{bmatrix} < V, D > \end{bmatrix} \end{bmatrix} \\ \begin{array}{cccc} (11) & T_{mv}^{Pres} \begin{bmatrix} \text{CAT} & [T, +fin, \textit{Tns:Pres}, \text{Case:NOM}] \\ \text{INFL} & \begin{bmatrix} \phi : _, D < \\ v[-aux] \end{bmatrix} \\ \text{SEL} & \begin{bmatrix} v[-aux] \end{bmatrix} \end{bmatrix} \\ \begin{array}{ccccc} (12) & T_{aux}^{Pres} \begin{bmatrix} \text{CAT} & [T, +fin, \textit{Tns:Pres}] \\ \text{INFL} & \begin{bmatrix} \phi : _, v =, D < \\ v[+aux] \end{bmatrix} \end{bmatrix} \\ \end{array}$$

3 Other

Three **major** syntactic phenomena have largely been factored out of the above definitions and must be added to the system to make it account for word order and other important syntactic facts:

- (13) Linearization (an algorithm or principle to determine the linear order of any two sister nodes)⁶
- (14) Locality of application (Relativized Minimality)
- (15) The spellout of complex heads by the Morphology⁷

⁶This could be done on some general basis, as Kayne 1994 does with his Linear Correspondence Axiom (LCA: x precedes y iff x c-commands y, for any two heads x and y, roughly), or on a more mundane, potentially head-by-head differing basis, by e.g. making the strong diacritic that drives movement come in two varieties: *< and *>, with *< resulting in the moved element preceding the probe, and *> following; the minimal changes to the definitions of the Move operations are left as an exercise for the reader. The same applies, *mutatis mutandis*, to Merge of complements and specifiers, and to adjoined elements.

⁷The input to the morphological component of the grammar is PM_n ; the notion of generating a string can be defined on the output of the morphological component:

^{1.} A string *s* is *generated* iff there is a well-formed phrase for which it holds that the concatenation of the Vocabulary Items that realize its ordered terminal nodes corresponds to *s*.