Market Power through the Lens of Trademarks

Kyle Kost Jeremy Pearce Liangjie Wu*

November 14, 2019

Abstract

This paper explores the link between market power and brands using comprehensive data on trademarks from the U.S. Patent and Trademark Office (USPTO). We construct a novel dataset that links the life-cycle of a trademark to its full set of owners and dates of registration, transfer, and cancellation. We document the macroeconomic trends in brand ownership and the microeconomic impact of brand transactions on markups at the firm-level. Using reallocation measures from Davis et al. (1996), we find an increase in brand reallocation since 1960. We then build a bridge from the trademark firms to their balance sheet information. We find that after a trademark purchase event, the buying firm’s sales and costs both increase, but sales increase more, indicating a rising profit margin. Lastly, we build a quantitative model to evaluate the link between the brand ownership distribution at the micro-level and the aggregate markup. With this model, we discuss an identification strategy with trademark transactions linked to price and sales data at the product level.

*We thank Simon Mongey, Steve Davis and Jean-Pierre Dube for helpful comments and Simon Mongey and the University of Chicago for data funding. Author affiliations and contact information.
All: University of Chicago, Department of Economics (kkost@uchicago.edu, jgpearce@uchicago.edu, liangjie@uchicago.edu).
1 Introduction

Interest in the product market power of firms is rising, with empirical studies pointing to an increasing trend in firms’ profit margins (De Loecker et al., 2016; De Loecker and Eeckhout, 2017, 2018). One important source of market power is a product’s brand, which enables a firm to make use of consumer goodwill. The total number of brands and their distribution has important implications for understanding the profit margin of U.S. firms. However, no quantitative studies have yet linked the dynamics of brand ownership to the trend of rising aggregate market power, largely because of the lack of an appropriate dataset.

In this paper, we introduce a new dataset to address this issue. We study the implications of brand ownership for the product market power of firms. We construct a dataset on the universe of trademarks registered with the U.S. Patent and Trademark Office (USPTO) and the firms that own these trademarks. We then link this dataset to firm-level outcomes (Compustat) and product-level outcomes (Nielsen Scanner Data). Using this combined dataset, we document several macroeconomic and microeconomic facts regarding brands: (1) the aggregate trend in the ownership of brands, such as the entry rate, exit rate, and reallocation rate of brands across firms; and (2) the impact of brand transactions on firm-level outcomes. We then build a quantitative model of competition among multi-product firms to evaluate how changing brand ownership affects aggregate product market power.

Brands matter for economic activity. In marketing, it has long been known that brand loyalty is a “fact, not a fiction” (Brown, 1953). Economists and marketing experts alike have acknowledged that brand loyalty is an important barrier to entry (Bain, 1956; Bronnenberg et al., 2019). Bronnenberg et al. (2012) have shown that individual preferences have inertia to brands even over long time horizons. Therefore, brand building is a key aspect of improving sales of products. Firms build large marketing departments to think about how to build, trade, and maintain brands. Brands change hands across firms, too. When a firm buys brands from another firm, it inherits consumer goodwill and loyalty to the purchased brands. This enables the purchasing firm to price above marginal cost.
thanks to this brand appeal.

We argue that trademarks are the best empirical counterpart to brands. When a trademark is granted to an assignee, this assignee gets the exclusive right of the product’s public association and, thus, the corresponding loyalty. Existing trademarks can be exchanged, or canceled by competing firms if they are too broad in scope. The USPTO keeps records of all of the trademarks registered with the office, including information on owners and dates of registration/transaction/cancellation. Using the records provided by USPTO, we further link registration and transaction records across a firm’s history through fuzzy matching. Thus, the dataset encompasses the life-cycle of brands and their movement across firms, delivering a novel opportunity to investigate the ownership of U.S. brands and their evolution over time.

We link the trademark dataset to CRSP/Compustat data in order to examine features of the firms involved in branding and address how sales and profit margins react to trademark transaction events. We link USPTO and Compustat data using a name matching algorithm. This dataset links firm balance sheet information, firm-level stock data, and flows of trademarks. With this merged dataset in hand, we further evaluate the role of trademarks from a macroeconomic and microeconomic perspective.

For the macro trend, we first ask: What are the trends of brand ownership in the U.S.? We explore some general trends of trademarks, including their relationship to GDP, employment, and the number of firms. Directing our attention to a measure of dynamism, we apply reallocation measures that Davis et al. (1996) developed to measure reallocations. In this paper, we employ them to focus on the trademark market. Contrary to the diminishing dynamism found in other markets, trademarks exhibit increasing reallocation.

We then ask about the microeconomics of trademarks. We look into the connection between individual trademark transactions and firm outcomes on both the buying and selling sides. We find a markup effect for the buying firm; sales increase more than costs. We find small negative responses in markups from selling firms, who are losing brand power when they sell.

The main goal of this paper to unite the microeconomics and macroeconomics of
trademarks quantitatively. We do this by quantifying a model of competition between multi-brand firms. Merging the USPTO Trademark data with Nielsen scanner data enables the use of brand transactions as experiments to identify the substitution elasticity across brands and brand appeal. We then ask: What is the counterfactual evolution of aggregate markup if the brands are owned by the same firms as in 1980s and 1990s.

In our theoretical framework, both firms and brands matter for market power. Stronger consumer goodwill in the economy, or stronger brands, allows for larger markups. In addition, larger firms can leverage their size to allow for larger markups. Because brand concentration matters, studying brands in and of themselves will not lead to a better understanding of market power. Because brand composition matters, studying sales shares at the firm-level will not yield a full understanding of market power.

This paper is structured as follows. The rest of this section details the institutional background of trademarks and reviews the related literature. Section 2 introduces the USPTO Trademark Dataset in a more complete manner and describes some aggregate trends in trademarks. We then discuss the merge of trademarks to CRSP/Compustat in order to map out some of these trends and their relation to firms. Section 3 discusses empirical results through the lens of the macroeconomics and microeconomics of trademarks. Section 4 introduces a quantitative model that we map to Nielsen scanner data. Section 5 concludes.

Institutional Background

All firms, to a greater or lesser extent, build brands. The most straightforward way of demarcating an exclusive brand is through trademarks—either registering new trademarks or buying existing trademarks. Trademarks are often transacted, and many products are understood through their brand rather than through the underlying firm. For instance, Procter & Gamble (P&G) currently holds 1700 trademarks, which represent a host of well-known brands. Many consumers reliably purchase brands such as Pantene, without knowledge or concern that P&G is the underlying parent company. Nearly the entire universe of P&G brands has at least one trademark. Figure 1 shows some of the many brands associated with P&G.1

1Appendix Figure A.5 shows the stock of brands P&G holds, which saw a large expansion in the late
While P&G has built some brands from the ground up, it has purchased others. In the data, each purchase shows up as a trademark transaction. For instance, Pantene was introduced in 1945 by Hoffman-La Roche. In 1983, Richardson-Vicks Inc purchased the trademark. In 1985, Richardson-Vicks Inc was acquired by P&G, and in 1994 the trademark was consolidated to P&G as a firm. These transfers illustrate the dynamic nature of brands. With a host of transactions in the data, we can separate out the brand component from the firm component that will be a key feature of our analysis.

The lifecycle of trademarks is another key component of our analysis. Figure 2 visualizes the process a trademark goes through from inception to end stage along with the hurdles it faces along the way.

Related Literature

Our project unites two literatures: microeconomic work on brands and marketing and macroeconomic work of market power.

A long literature on brands and advertising stretches back to the 19th century (Marshall, 1890; Fogg-Meade, 1901). Academics have noted that advertisement overcomes information frictions (Stigler, 1961), and provides incentives for firms to maintain or
Figure 2: Steps to Trademark Registration through Exchange and Cancel

build their reputation (Nelson, 1970, 1974). Other papers have suggested that branding is socially wasteful because it inspires a zero-sum spirit and increases barriers to entry (Galbraith, 1958). Nonetheless, there is essentially unanimous agreement among economists and marketers that brands matter.

Recent studies have used microdata to show how brands affect consumer decisions. Bronnenberg et al. (2012) show that because of brand inertia, individuals may stay attached to brands over long periods of time, implying leverage for increasing prices on the basis of consumer goodwill. Bronnenberg et al. (2009) find an important path-dependent element of entry wherein a firm has more persistence in areas closer to its initial launching point. It is natural to imagine trademarks as playing a central role in these discussions. However, these papers do not leverage trademark data to understand brands.

Market power is of increasing interest to economists. Papers have explored trends in both markups (Furman and Giuliano, 2016; Autor et al., 2017a,b; Barkai, 2017; Grullon et al., 2017) and market concentration (Nekarda and Ramey, 2013; De Loecker and Eeckhout, 2017; Gutiérrez and Philippon, 2017; Eggertsson et al., 2018; Hall, 2018). In this discourse, few papers evaluate the connections between aggregate trends and the role of brands. Some papers have focused on more general concerns, such as intellectual property as a source of monopoly power, but this is most often related to patents rather
than trademarks (Boldrin and Levine, 2013; Farrell and Shapiro, 2008).

We introduce trademarks as another lens through which to view this burgeoning discussion. In building the bridge from brands to market power, we make use of empirical exercises related to market dynamism pioneered by Davis and Haltiwanger (1992); Davis et al. (1996). We link these results with a quantitative framework inspired by geographical variation in market power.

Our work builds on a paper studying multi-product firms (Hottman et al., 2016) and another studying labor market competition (Berger et al., 2019). In these papers, firms are modeled as oligopolies. They charge a size-based markup on prices or a size-based markdown on wages. Through the lens of the equilibrium model, one can recover the substitution elasticity and firm/product heterogeneities from observed data on market shares and prices/wages. This paper shares a similar interest in that we care about the welfare implications of markups and the contribution of concentration to the aggregate markup. Our paper contributes by providing a new dataset to the discussion in order to explore the role of brand concentration. Inspired by the identification strategy in Berger et al. (2019) for the labor market, we recover the substitution elasticity within the product market context.

Economists have not widely used trademarks as a lens to understand product markets. However, several papers in the marketing literature have noted the high potential returns to integrating trademark data into the discussion of brands. In particular, Graham et al. (2013) provide a general overview of the dataset and provide insights about the uses of trademarks. Schautschick and Greenhalgh (2016), who document the importance of trademarks to firms, review other literature that confirms the growing recognition of the importance of trademarks. Dinlersoz et al. (2018) document the newly available USPTO bulk dataset on trademarks and document facts about trademarks over a firm’s life cycle.
2 Data

Our project makes use of a variety of datasets, the most novel of which is the US Patent and Trademark Office (USPTO) Trademark data. We also employ two other datasets: CRSP Compustat data on firm sales, firm costs, and industry; and stock market data from CRSP, which allow us to look at how stocks move around trademarks registration and assignment dates. In uniting our quantitative model with the microdata, we merge the USPTO and Compustat CRSP data to Nielsen scanner data and focus on a subset of the firms in our dataset that are active in retail markets. Figure 3 shows these different data sources and some of their relevant features.

2.1 USPTO Trademark Data

USPTO Trademark data can potentially provide significant insights into brands and advertisements, but they have received little attention from economists. Trademarks are a huge part of the economy: firms register for trademarks whenever they want their brand protected. In Figure 4, we see the “R” trademark, indicating that Coca-Cola has registered their trademark. Coca-Cola now holds the intellectual property on this insignia, and any entity that improperly represents itself as this brand can be held liable.
To register for a trademark, a firm must undergo a process. First, an initial fee that ranges from $225-$400 is turned in with a trademark application. Within three months of filing, an examining attorney checks for compliance and if the application is approved, it “publishes for opposition.” After this, there is a 30-day period during which third parties that may be affected by the trademark registration can step forward to file an “Opposition Proceeding” to stop the registration. This process is again evaluated by an examiner. If all passes, the trademark will get filed in “due course.”

With a registered trademark in hand, the owner now has exclusive rights to use the mark within the sphere of activity designated in the process. For the most part, trademark law also allows the owner to prevent any unauthorized use even outside the domain of their products and services. Underlying this law is the principle that consumer confusion should be minimized. If consumer confusion is possible, the trademark owner has a case. Outside, however, one can still petition to cancel a trademark and end the exclusive rights of the owner. This often comes from competing firms that think the intellectual property is too broad. Cancellations are an important part of the data.

In addition to registration (new trademarks) and cancellations (ending trademarks), firms can exchange trademarks. For several reasons, the exchange of trademarks will be a key component of our analysis. First, it allows us to identify a component of branding rather than firm-specific activity. Second, trends in these exchanges can be very informative about the patterns in markups. Third, because the life-cycle of brands is a key component, studying mature (and tradable) trademarks will allow us to understand the evolution of brand behavior.
While some economists have used Nielsen scanner data to identify brands, it is impossible to build a history of brands across firms in this dataset. It is also difficult even within firms to link a component of the brand to its history through an evolving basket. Furthermore, because trademark data have a long history, we can examine long-run trends in branding – a possibility not available in other datasets.

Trademarks have a long history. The first legislative act concerning trademarks was passed in 1266 under Henry III. In France, first comprehensive trademark system passed in 1857. In our US dataset, the first registered trademark was granted to Averill Chemical Paint Company in 1870. Since then, there has been massive growth in trademarks through the 20th and 21st century.

The USPTO Trademark data consists of more than 5.3 million unique trademark registrations since 1870. Using a fuzzy match, we identify over 1.3 million unique owners from 1870 to the present.

Table 1 provides summary statistics for the dataset. Many trademarks have been registered and many firms trademark. Overall, there are over one million unique “firms” in our dataset that have produced at least one trademark in the past. Lots of firms are active, but the median firm has only two trademarks.

One striking feature of the data noted in Table 1 is the number of cancellations and transactions. If trademarks are bundled according to a unique ID, there are more transactions+cancels than there are total registrations. This indicates that the market for trademarks is highly contested and dynamic. Cancels require that other firms are concerned about their territory – many cancellations suggests a competitive market for accruing goodwill. Even these results indicate that trademarks are an important element of a firm’s structure.

Trademarks over time

We document here some long-run trends in trademarks. Figure 5 shows the trends in trademark registration. Since 1870, trademark registrations have averaged 3.8% growth per year. This trend is slightly larger than the growth rate of real GDP. However, trademarks exhibit even larger cycles than GDP.²

²Figure A.1 shows how trademarks move with employment/population and compares this to patents.
Table 1: Summary statistics on Trademarks from USPTO

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td># unique “firms”</td>
<td>1.35M</td>
</tr>
<tr>
<td># unique registrations</td>
<td>5.36M</td>
</tr>
<tr>
<td># unique transactions by bundle</td>
<td>915076</td>
</tr>
<tr>
<td># unique transactions by ID</td>
<td>4.46M</td>
</tr>
<tr>
<td># unique cancels</td>
<td>2.12M</td>
</tr>
<tr>
<td>1st percentile firm size**</td>
<td>83</td>
</tr>
<tr>
<td>25th percentile firm size</td>
<td>5</td>
</tr>
<tr>
<td>Median firm size</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Firm size is defined as the number of trademarks within a firm

Figure 5b plots the ratio of trademark stock to GDP. By plotting this ratio we ask how much branding activity fluctuates relative to overall economic production (measured by real GDP). Trademarking seems to be procyclical, but takes on long cycles. We note in particular the early 1900s compared to the later 1990s. World War I and World War II saw low trademarking relative to GDP, while the 1920s boom saw high trademarking. Since the 1980s, trademark registrations have exploded relative to GDP.

Figure 6 illustrates over a time series the facts suggested in Table 1. Trademarks are often traded, renewed, and canceled. We note from this figure that overall registrations are a more important part of the economy than cancellations and exchanges, yet all three are very significant, with cancellations showing the largest increase since 1980. Overall, Figure 6 illustrates the dynamism of the trademark market.

Trademarks by Industry

The USPTO trademark data is classified into categories according to 45 NICE codes. Trademarks are highly cyclical relative to patents. Which came from the Nice agreement in Nice, France, in 1957. “The countries party to the Nice Agreement constitute a Special Union within the framework of the Paris Union for the Protection of Industrial Property. They have adopted and apply the Nice Classification for the purposes of the registration of
Figure 5: Trademarks over Time

(a) Log Trademarks and Real GDP, Normalized to 0 in 1900

(b) The Ratio of Trademark Registrations to Real GDP, Normalized to 1 in 1900
While these are convenient for many analyses, our goal is to build a bridge from this dataset to a host of other datasets to better understand the relationship between brands and other economic data, such as markups. For this reason, we would prefer a more general industry classification. Zolas et al. (2017) use a probabilistic method to match in order to match NICE industries to 2007 NAICS industries at various granularities. Given that this is a probabilistic match, a single NICE code can be mapped to multiple two digit NAICS industries. Therefore, we assign a fraction of each trademark to industry codes on the basis of the given probability weights associated with the two-digit NAICS classification. An advantage of this concordance is that it does not require mapping trademarks to firms and then using the firm industry classifications. Instead, in our analysis we work directly at the trademark level.

marks. Each of the countries party to the Nice Agreement is obliged to apply the Nice Classification in connection with the registration of marks, either as the principal classification or as a subsidiary classification, and has to include in the official documents and publications relating to its registrations of marks the numbers of the classes of the Classification to which the goods or services for which the marks are registered belong.”—https://www.wipo.int/classifications/nice/en/preface.html
Figure 7 plots the percent of trademarks in each of the two-digit NAICS industries using the probabilistic weighting of the previously mentioned concordance. Most trademarks are in the manufacturing sectors of NAICS 31-33 with Agriculture, Forestry, Fishing, and Hunting (NAICS 11) and Professional, Scientific, and Technical Services (NAICS 54) following slightly behind. This aligns with our understanding as illustrated in Figure 7, wherein scientifically related industries are some of the predominant factors along with some manufacturing, such as clothing.

Understanding the distribution of trademarking firms across industries provides intuitive results on the role of trademarks in industry. Appendix A.2 provides more information on the underlying NICE classification, which finds many trademarking firms in computers and advertising.
2.2 Compustat/CRSP Data

We link trademarks to Compustat/CRSP data in order to evaluate how company balance sheet information changes with trademark transactions and registrations. The first major undertaking of this paper is to build a bridge between USPTO patent data and CRSP/Compustat data. There is no unique firm ID that bridges these two datasets, and, thus, we proceed by string-name matching.

We proceed with the following algorithm. After trimming the data for punctuation and spaces, we perform an exact match on company names. We then supplement this algorithm with a fuzzy match. Following Autor et al. (2016), we build in company location information with an exact match on year.

The merge links 40% of Compustat firms (70% weighted by observations) to firms with at least one trademark in the USPTO data. The incomplete merge could be due to limits in the algorithm. The trademarking firms are not often represented in the Compustat data. Only 1.3% of trademarking firms are in Compustat, 13.2% weighted by observation.

Table 2 provides summary statistics on the data and merge. The matched trademarking firms are larger on average than the average Compustat firm across many dimensions including total assets, capital, and sales. They also are over-represented in manufacturing and services. This is to be expected given the public nature of the firms in Compustat.

2.3 Nielsen Scanner Data

We perform a similar exercise to unite the USPTO trademark data with Nielsen scanner data. This merge, which is achieved in multiple steps, uses GS1 barcode information as a bridge to link the separate pieces together.

The GS1 Company Database includes information about each firm that has registered a barcode with GS1, such as company name, location information, and, importantly, the company GS1 prefix information. A GS1 company prefix is a unique identifier assigned to the beginning of every barcode registered by that company. The prefix allows us to
Table 2: Summary Statistics on Industries, Compustat-USPTO merge

<table>
<thead>
<tr>
<th></th>
<th>Unmatched mean</th>
<th>Matched mean</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>total assets</td>
<td>964.71</td>
<td>2865.96</td>
<td>1901.25</td>
</tr>
<tr>
<td>capital</td>
<td>458.25</td>
<td>1059.66</td>
<td>601.41</td>
</tr>
<tr>
<td>net invest</td>
<td>6.84</td>
<td>11.34</td>
<td>4.50</td>
</tr>
<tr>
<td>real sales</td>
<td>102.02</td>
<td>316.45</td>
<td>214.44</td>
</tr>
<tr>
<td>agriculture</td>
<td>0.02</td>
<td>0.00</td>
<td>-0.02</td>
</tr>
<tr>
<td>mining</td>
<td>0.15</td>
<td>0.03</td>
<td>-0.12</td>
</tr>
<tr>
<td>construction</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>manufacturing</td>
<td>0.38</td>
<td>0.57</td>
<td>0.18</td>
</tr>
<tr>
<td>transportation</td>
<td>0.10</td>
<td>0.06</td>
<td>-0.04</td>
</tr>
<tr>
<td>wholesale</td>
<td>0.05</td>
<td>0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td>retail</td>
<td>0.08</td>
<td>0.08</td>
<td>-0.00</td>
</tr>
<tr>
<td>services</td>
<td>0.19</td>
<td>0.22</td>
<td>0.02</td>
</tr>
<tr>
<td>N</td>
<td>99888</td>
<td>371979</td>
<td>471867</td>
</tr>
</tbody>
</table>

assign individual produce UPC codes to the owning company.

We first link the Nielsen retail scanner data to the GS1 Company Database using the GS1 company prefix. Next, we separately use a fuzzy merge on company name and location information to merge our USPTO trademark dataset to the GS1 Company Database; the method resembles that used to match the USPTO trademark data with Compustat. Finally, we combine these two pieces to obtain a link between trademarking companies in the USPTO dataset and Nielsen retail scanner data.

Among the total of 71,113 unique firm prefixes that we find in both the GS1 and Nielsen data, 24,961, or 35% of all prefixes, can be linked to trademark data. These firms, which tend to be large firms, account for 55% of UPCs observed in the Nielsen Scanner data. We then link these firms to the transaction records of trademarks between 2006 and 2017. In 1,307 of these transactions both the buyer and the seller of a particular transaction can be found in the Scanner data. 8,758 transactions involve selling firms that are in the Scanner data, and 6,327 transactions involve buying firms that are in the Scanner data.
3 Empirical Results

To frame our discussion and quantitative model, we document some striking facts in the data that illustrate both trademark dynamism and evidence trademarks matter at the firm-level. Adopting a “macro-micro” approach, we start with an analysis of trademarks through a macro lens, then look into the response to trademarks at the firm, or micro, level. To evaluate the macroeconomics of trademarks, we follow the literature that documents labor market dynamism and apply this framework to trademarks. This provides preliminary evidence of the connection between firms and brands and how the connection changes over time.

3.1 The Macroeconomics of Trademarks

To understand the cross-sectional properties of trademarks over time, we apply the intuition of Davis et al. (1996) to collect measures of reallocation in the market for trademarks. While Davis et al. (1996) build a framework on labor markets, we think this reallocation measure in trademarks generates an understanding of churn in a similar spirit. Building on this, and to understand the composition of the market for trademark exchange, we examine the structure of firms engaged in the buying and selling of trademarks and, in particular, their size.

To motivate our question related to the macroeconomics of trademarks, we apply the sales-weighted aggregate markup from De Loecker and Eeckhout (2017):

$$\text{MARKUP}_t = \sum_i \frac{\text{sales}_{it}}{\text{SALES}_t} \times \text{markup}_{it}$$ \hspace{1cm} (1)

Markups can change over time in two ways. First, the markup can increase even when the sales share is held constant. This occurs when the distribution of brands across firms is held equal, but individual firms accrue more brand loyalty and market power. Second, the sales share of high markup firms can increase. For instance, a firm that consolidates brands and holds high markups can increase its market share at the same time that the market share of small firms declines.
Trademark transactions can affect both of these channels. In addition, by tracking the dynamics of trademarks we can speak to the distribution of brands across firms and better understand the brand lifecycle. We begin this discussion by evaluating trademark dynamism.

Trademark Dynamism

Equation 1 provides the framework of our analysis of trademark dynamism. In order to link components of trademarks to an understanding of market dynamism, we apply the Davis et al. (1996) framework to trademarks. After this, we look into what is driving the reallocation of trademarks across firms by focusing on trademark exchange. We start by defining the following terms:

- \(x_{ft} \): avg stock of trademarks for firm \(f \) at \(t \)
- \(X_t \): avg stock of all firm trademarks at time \(t \)
- \(g_{ft} \): \(\frac{\Delta \text{stock}}{x_{ft}} \)

Thus, we define the reallocation rate first as positive and negative as in Davis and Haltiwanger (1992) where:

\[
POS_t = \sum_{g_{ft}>0} \left(\frac{x_{ft}}{X_t} \right) g_{ft}
\]

\[
NEG_t = \sum_{g_{ft}<0} \left(\frac{x_{ft}}{X_t} \right) |g_{ft}|
\]

Then, following Davis and Haltiwanger (1992), we define the total reallocation rate \(RE_t = POS_t + NEG_t \). The reallocation measure gets at the degree of churn in the economy. The process is normalized by the general growth of the stock, which, we have noted, is increasing. When trademarks are more frequently registered to growing firms or are canceled or are exchanged, the aggregate dynamics exhibit a higher reallocation.

Figure 8 illustrates the trend since the 1960s in reallocation among trademarks. We note that the overall reallocation in trademarks has risen over time. This is of interest for two reasons. First, the rising reallocation confirms that dynamism in the trademark
market remains high even though previous work has documented falling reallocation in other areas of the economy (Decker et al., 2018; Gourio et al., 2014). Second, the overall reallocation rate of trademarks is consistent with what we have previously noted: as discussion of markups heats up, so does the trademark market.

Figure 8: Davis and Haltiwanger (1992) Reallocation Rate by Year

We want to stress two main results in this section. First, the movement of trademarks in aggregate indicate that unlike other markets (i.e., firm, labor), trademark dynamism is on the rise. Given that economists have noted the declining dynamism in other markets, this should be of interest to those thinking about the sources and consequences of falling dynamism on these other margins. Second, even controlling for the increase in activity in the trademark market, the churn of the economy is also rising in trademarks. This speaks to the fact that trademarks provide information about aggregate trends in brand dynamism. Next, we evaluate what occurs at the firm level in a brand transaction.

3.2 The Microeconomics of Trademarks

In the previous section, we illustrated the aggregate trends in trademarks. Now we show that trademarks matter at the firm level. This section uses an event study framework to build a suggestive understanding of the role of trademarks at the firm level. In particular, we focus on how sales and costs respond to trademark events. Events have two sides,
that of a buyer and that of a seller. We evaluate both sides for firms in the USPTO and Compustat data.

Our y-variable will be a measure of markups. The markup is measured as the gross profit margin on variable cost in an accounting sense. It is as follows:

$$\text{markup}_{it} = \Xi_i \times \frac{\text{sales}_{it}}{\text{variable cost}_{it}}$$

The economic interpretation of the above equation is a measure of the marginal markup, with Ξ_i as the elasticity of output elasticity with respect to variable cost. In our event studies, we condition on a firm fixed effect to deliver as follows:

$$\log \text{markup}_{it} = \xi_i + \log \frac{\text{sales}_{it}}{\text{variable cost}_{it}}$$

Thus, the markup is the log-difference between sales and variable cost. We plug this in as our relevant y-variable but we also test measures of sales and two measures of marginal cost in the following equation:

$$\log Y_{i,t} = \beta_0 + \beta_1 \text{Transaction}_{i,t} + \Gamma'X_{i,t} + \xi_i + \phi_t + \epsilon_{i,t}$$

As we noted the $Y_{i,t}$ could be Sales, COGS, OPEX, or markup. Transaction measures the count of Transactions per quarter. We also include a host of controls in $X_{i,t}$: capital stock; assets; current ratio; long-term debt ratio; and lagged Y.

We cluster at the firm-level. Table 3 shows the responsiveness of a buying firm to a trademark event both on the intensive and extensive margin. We find that the markup indeed increases for firms that experience a trademark buying event, and this effect remains when the full set of controls is used (Column (6)). Table 4 shows the responsiveness of a selling firm to a trademark event both on the intensive and extensive margin. We also find here a responsiveness of sales and costs, but we note that the markup does not increase or decrease. This confirms to some degree what we would expect: Firms purchasing brands see a response in markup, while firms selling brands do not see an increase in their markup.
Table 3: Buying Firm and Buying Event

<table>
<thead>
<tr>
<th>Dependent: log(Sales)</th>
<th>Nce</th>
<th>(\mathbb{I}{Nce > 0})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.15***</td>
<td>0.49***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>14.0***</td>
<td>2.09***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent: log(OPEX)</th>
<th>Nce</th>
<th>(\mathbb{I}{Nce > 0})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.14***</td>
<td>0.31***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td></td>
<td>12.5***</td>
<td>1.11***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent: log(MarkUp)</th>
<th>Nce</th>
<th>(\mathbb{I}{Nce > 0})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0042</td>
<td>0.061</td>
</tr>
<tr>
<td></td>
<td>(0.536)</td>
<td>(0.138)</td>
</tr>
<tr>
<td></td>
<td>1.42***</td>
<td>0.39**</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.010)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Trim(1%)</th>
<th>Lag,LHS</th>
<th>Firm Control</th>
<th>Time FE</th>
<th>Firm FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>219214</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>206240</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>188434</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>219214</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>208362</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>190423</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 4: Selling Firm and Selling Event

<table>
<thead>
<tr>
<th>Dependent: log(Sales)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{or}</td>
<td>0.069**</td>
<td>0.58***</td>
<td>0.45***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>$I{N_{or} > 0}$</td>
<td>12.0***</td>
<td>1.97***</td>
<td>1.61***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent: log(OPEX)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{or}</td>
<td>0.075**</td>
<td>0.44***</td>
<td>0.30***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>$I{N_{or} > 0}$</td>
<td>11.9***</td>
<td>1.31***</td>
<td>0.98***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent: log(MarkUp)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{or}</td>
<td>-0.0063</td>
<td>-0.043</td>
<td>-0.036</td>
</tr>
<tr>
<td></td>
<td>(0.225)</td>
<td>(0.557)</td>
<td>(0.602)</td>
</tr>
<tr>
<td>$I{N_{or} > 0}$</td>
<td>0.054</td>
<td>-0.048</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>(0.880)</td>
<td>(0.781)</td>
<td>(0.707)</td>
</tr>
</tbody>
</table>

N	219214	206240	188434	219214	208362	190423
Trim(1%)	No	Yes	Yes	No	Yes	Yes
Lag.LHS	No	Yes	Yes	No	Yes	Yes
Firm Control	No	No	Yes	No	No	Yes
Time FE	Yes	Yes	Yes	Yes	Yes	Yes
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes

The regressions suggest a heterogeneous responsiveness of buying and selling firms. Given the richness of the data, we can apply a more comprehensive event study framework to understand the path that firm outcomes take in response to an event. Equation 3 illustrates this framework, which follows standard techniques in the event study literature. In particular, we want to track firms that exist through the sample but purchase a trademark at a given event date.

$$\log Y_{i,t} = \alpha + \sum_{\tau=-5}^{5} \beta_{\tau} \text{Transaction}_{i,t+\tau} + \xi_i + \phi_t + \epsilon_{i,t}$$ \hspace{1cm} (3)
In Equation 3, we consider the same firm-level left-hand side variables as before: \(Y_{i,t} = \text{Sales, OPEX/COGS, Markup} \). The Transaction dummy is the lead/lag/active quarter under which a trademark event (buying or selling) occurs at the firm-level. We cluster our standard errors at the firm-level. \(\xi_i, \phi_t \) are firm and time fixed effects, respectively.

We use log sales and look at the first event of trademarking. Here, we plot two separate regressions on one graph with different outcome variables of interest: cost, sales, and markups. We plot each coefficient with the clustered standard error.

The results are consistent with the hypothesis that brands matter. For firms buying a trademark, there is a striking trend-break of sales and costs to the event. Both are fairly flat prior to the event. Once a trademark transaction happens, sales and costs increase significantly – by almost 10% after 5 years. Further, sales increase more than costs. This provides evidence that after adding additional brands, firms may increase their market power over time.

This evidence, although compelling, is only suggestive. Firms that buy trademarks are simultaneously likely to expand their market presence. Due to these endogeneity concerns, and to better understand the transfer of brands, we build a quantitative model that leverages spatial variation. This topic is discussed next.

4 Quantitative Model

How is trademark ownership linked to market power? The reduced form results do not describe the whole picture due to the equilibrium forces from competition among firms. To quantify the implications of trademark ownership structure for aggregate markups and welfare, we build a quantitative model that features product differentiation and multiproduct firms. We rely on a large literature that indicates heterogeneous brand appeal across products that is sticky for consumers. We link brands to product markups through the brand appeal generated by trademarks.

We use the sales response to brand transactions to estimate the key parameters. In this model, we explicitly differentiate the role played by products (a variety that enters the consumer’s utility function) and firms (a decision maker who chooses prices for a
Figure 9: IRF to Selling Events

(a) Sales and OPEX, Buying Event

(b) Sales and COGS, Buying Event
Figure 10: IRF to Selling Events

(a) Sales and OPEX, Selling Event

(b) Sales and COGS, Selling Event
basket of products). Firms engage in Bertrand price competition. When a firm prices one product, it considers the impact of price on demand for the specific product, on the general market price, and on other products owned by the same firm.

4.1 Environment

Agents – The economy has K counties, each with a representative household. The representative household consumes products from I brands. These I brands are owned by J firms, where $B(j)$ denotes the collection of brands owned by firm j.

Production and Preference – Suppose there are I brands and J firms in the economy. Firm j owns a collection of brands $B(j)$. Brand j is sold in K different counties. The representative household values consumption using a CES aggregator, as in equation 4. In equation 4, C_{ik} is the county k household’s consumption from brand i. ϕ_{ik} is the preference shifter for brand i for household k, or the brand appeal. The substitutability across brands is measured by σ, the substitution elasticity.

\[
\left(\frac{1}{\sigma} \sum_{i=1}^{I} (\phi_{ik} C_{ik})^{\frac{\sigma}{\sigma-1}} \right)^{\frac{\sigma-1}{\sigma}} \tag{4}
\]

Firms that operate a brand-specific constant return to the scale production function. To produce one unit of output for brand i, they incur a cost g_i. Here we assume that cost is uniform across all counties, but consumers in different counties might differ in their preference for brands. Because most of the goods we study in the scanner data are tradable, uniform cost is not a very restrictive assumption. Evidence from the brand inertia literature shows that product preference tends to be localized. Thus, we consider our preference and cost assumptions to be well motivated.

4.2 Oligopoly Equilibrium

Household’s Problem – First consider the household’s problem in county k, given the prices of different brands within the county. The representative household chooses the con-
Assumption bundle to maximize the CES aggregator, subject to its budget constraint. We focus on the goods market equilibrium and take the income of household k, m_k, as given.

$$W = \max_{C_{ik}} \left(\sum_{i=1}^{I} \left(\phi_{ik} C_{ik} \right)^{\frac{-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

s.t.

$$C_{ik} P_{ik} = m_k$$

The household’s problem yields a downward-sloping demand curve for product I. The consumption for brand k is a decreasing function of the ratio of brand price P_{ik} and the price index in county k. The slope of this demand function is governed by elasticity of substitution.

$$C_{ik} = P_{ik}^{-\sigma} \phi_{ik}^{1-\sigma} \frac{P_k^{\sigma-1}}{P_k^{1-\sigma}}$$

$$P_k^{1-\sigma} = \sum_{i=1}^{I} (P_{ik} \phi_{ik})^{1-\sigma}$$

Firm’s Problem – Firm j has a collection of brands $B(j)$. It decides on the price to charge in every county. We assume the firms are large in the sense that they internalize their impacts on the market price index. This assumption is motivated by the observation that many product markets are dominated by a few big players. We are looking for an oligopoly equilibrium where firms engage in Bertrand competition. Consider firm j’s problem, given other firms’ actions. By choosing a price level P_{ik} at county k for brand i, the firm attracts consumption of C_{ik}. The relationship between C_{ik} and P_{ik} comes from the household’s optimization problem. The firm internalizes its impact on C_{ik} through two channels. First, through the demand curve for brand i, a higher price leads to lower consumption of a particular brand. Second, through the impact on the aggregate price index, a higher price from brand i makes households cut consumption of all brands,
which then hurts sales of other brands held by the firm.

\[
\max_{P_{ik}} \sum_{i \in B(j)} [P_{ik} - \gamma_i]C_{ik}
\]

s.t.

\[
C_{ik} = P_{ik}^{-\sigma} \phi_{ik}^{1-\sigma} P_k^{\sigma-1}
\]

\[
P_k^{1-\sigma} = \sum_{i=1}^{l} (P_{ik}\phi_{ik})^{1-\sigma}
\]

Oligopoly Equilibrium – We are looking for \(P_{ik}\) such that all firms maximize their profit, given other firms’ actions. The standard result implies that in the equilibrium, the oligopolistic firms charge a price above their marginal cost of production. The markup is an increasing function of the market share of brand \(i\) in county \(k\) and is governed ultimately by the preference shifter \(\{\phi_{ik}\}_k\) and the substitution elasticity \(\sigma\). These two sets of primitives will be the key inputs for our quantitative analysis.

\[
P_{ik} = \frac{\sigma(1 - \bar{s}_{jk}) + \bar{s}_{jk}}{\sigma(1 - \bar{s}_{jk}) + \bar{s}_{jk} - 1} \gamma_i
\]

where

\[
\bar{s}_{jk} = \sum_{i \in B(j)} s_{ik}
\]

4.3 Markup from the Model

We are interested in the implications of brand ownership for the aggregate markup. From the oligopoly model, the aggregate markup can be written as the sales-weighted average of the firm-level markups. All brands within the same firm have the same markup. The key equation for our quantitative analysis is equation 5. The aggregate markup, \(\bar{\mu}\), can be decomposed into the competitive benchmark 1 plus the profit times a competition index. When firms are very small relative to market, \(s_j \to 0\) and \(\sum_j s_j = 1\), this index converges to 1, the monopolistic competition result. When one firm dominates
the market, \(s_j = 1 \), we get \(\bar{I} = \infty \), the monopolistic result.

\[
\bar{\mu} = 1 + \frac{\bar{I}}{\sigma - 1}
\]

\[
\bar{I} = \sum_j \frac{s_j}{1 - s_j}
\]

Equation 5 has attractive properties that enable a great degree of quantitative analysis. From this equation it suffices to know the substitution elasticity and the sales shares, \(\{s_j\}_{j=1...J} \), to derive the aggregate markup. With this structural equation, we ask the following questions:

1. What is the contribution of brand concentration to the aggregate markup?
2. How much can the changing distribution of brands across owners explain the rising markup?

To answer the first question, we consider the difference between the actual markup and the counterfactual markup wherein firms price each brand separately. To answer the second question, we perform another counterfactual: we compare the realized markup to the aggregate markup if brand ownership distribution is fixed at the 1980s level.

4.4 Estimation of Model

The model is parametrized by three sets of parameters: (1) the ownership structure of brands across firms \(\{B(j)\}_j \), and (2) the demand shifters \(\{\phi_{i,k}\}_{i,k} \), and (3) the cost of production \(\{\gamma_i\} \), along with the substitution elasticity among brands \(\sigma \).

Estimation of Substitution Elasticity – The transaction information on trademarks gives us a unique experiment with which to estimate the substitution elasticity and compare it to structural methods that rely on second moment variations of prices (7). Our key identification assumption, made to recover the substitution elasticity, is that brand transactions happen on a national level and are orthogonal to the local sales shares of...
the particular brand. We think this is a reasonable assumption given the wide degree of national demand for products and large spatial heterogeneity.

We then leverage spatial variation in the brand sales share to identify the substitution elasticity. In the model, the price ratio across counties is linked to sales variation by equation 6. Taking an approximation of this equation, we reach an equation that links the log price ratio to the log competitor market shares, as in equation 7.

\[
\frac{p_{i,j,k'}}{p_{i,j,k}} = \frac{1 + \frac{1}{(\sigma-1)(1-s_{j,k'})}}{1 + \frac{1}{(\sigma-1)(1-s_{j,k})}} \quad (6)
\]

\[
p_{i,j,(k,k')} \approx \frac{1}{\sigma-1} \log \frac{1-s_{j,k}}{1-s_{j,k'}} \quad (7)
\]

\[
p_{i,j,(k,k')} = \alpha + \beta \log \frac{1-s_{j',k}}{1-s_{j,k}} + \epsilon_{i,k} \quad (8)
\]

If the sales distribution across local markets is exogenously given, then OLS produces an unbiased estimator for \(\frac{1}{\sigma-1}\). However, sales shares are endogenous both in this model and in reality. To estimate the substitution elasticity, we instead use the transaction of brands as an experiment. Specifically, using the linked trademark - scanner data, we run the reduced-form estimation as in equation 8. Our dataset consists of price changes when brand \(i\) is sold from firm \(j\) to firm \(j'\). We regress the ratio of competitor market share \(\frac{1-s_{j',k}}{1-s_{j,k}}\) on the log-difference of prices. The identification assumption is that the transaction of brands is orthogonal to the specific market share of county \(k\). With the structural equation 8, we retrieve \(\hat{\sigma} = \hat{\beta}^{-1} + 1\).

Estimation of Demand Shifter

To recover the demand shifter, we rely on equation 9, which links sales share of a brand to its price. Intuitively, when two brands have the same price, the more appealing brand will have larger sales share. With the constant elasticity of substitution, and with knowledge of the substitution elasticity \(\sigma\), we can recover the demand shifter from the observation of sales share of brand \(i\) in county \(k\) and the price of brand \(i\) in county \(k\). In equation 9, both the sales share of brands and the price of brands are observed.
from Nielsen Scanner data. We cannot pin down the demand shifter to its level without normalization because any multiplication of $\phi_{i,k}$ will result in the same relationship between prices and market shares. Following the literature, we normalize $\phi_{i,k}$ according to equation 10.

$$s_{i,k} = \frac{(P_{i,k}/\phi_{i,k})^{1-\sigma}}{\sum_{i'}(P_{i',k}/\phi_{i',k})^{1-\sigma}}$$ (9)

$$1 = \sum_{i'} \phi_{i',k}^{1-\sigma}$$ (10)

Estimation of Cost of Production

The price charged for brand i in county k is the marginal cost multiplied to a markup. This markup depends on the substitution elasticity and the market share of firm j in county k. Using the transaction events as an experiment, we obtain an estimate for σ. We directly observe the market shares from data. Given the estimator for substitution elasticity σ, γ_i can be recovered by inverting equation 11.

$$P_{i,k} = \frac{\sigma + \sigma(1-s_{j(i),k})}{\sigma + \sigma(1-s_{j(i),k}) - 1} \gamma_i$$ (11)

4.5 Next Steps: Counterfactuals

We are interested in the implications of brand ownership for the aggregate markup. To be precise, we are interested in the evolution of aggregate markup in two counterfactual cases: (1) when all brands are priced separately, holding their appeal and production cost to the estimated level, and (2) when brand ownership is distributed in its 1980/1990/2000 structure instead of the the observed structure in Nielsen data. The first counterfactual is the core question in Hottman et al. (2016)’s study of multi-product firms. In our study of the trademark dataset, the second counterfactual is novel, and we argue that it is of policy interest.

Merger and acquisition is under regulation precisely because of the possibility of market power that could result from a large market share. Counterfactual (2) asks, if we can undo the sales of brands across firms, what will happen to the aggregate markup?
The trademark dataset allows us to trace the ownership of brands observed in Nielsen data back to the 1980s. To our knowledge, no other comprehensive dataset allows for this type of study. Merger and acquisition can impact the market in many different ways. To provide a systematic answer to the question about aggregate markup, our paper employs a simple framework of oligopoly competition. We also draw attention to the transaction of brands, which includes mergers and acquisitions as well as other transactions. Our study contributes to the literature by (1) conducting a more comprehensive study than do studies that focus on individual cases and (2) providing a more realistic counterfactual. We do not compare a multi-brand firm equilibrium to a single-brand equilibrium. Instead, we examine an equilibrium in which brand ownership does not change.

We have merged the trademark data to Nielsen scanner data, yet this is still a work in progress. We plan on completing the project with this data in early 2020.

5 Conclusion

Given the modern structure of the market economy, understanding consumer goodwill is key to understanding product market power. This paper argues that trademarks are the best data analog for capturing consumer goodwill and demonstrating this both in macroeconomic patterns and at the transaction level. Trademarks allow analysts to elucidate the creation, transfer, and cancellation of brands. In this institutional environment, such data allow us to explore the institutional aspects of brands.

This paper has proceeded in four steps, each of which provides a framework for further analysis. First, we introduce the trademark dataset and a host of new facts about branding over time. Second, we empirically document the interaction of trademarks and firms at the macro and micro levels.

Third, to pose more penetrating structural questions about brand transactions and perform a tighter analysis, we build a standard quantitative model that has an oligopolistic structure. This standard model delivers a novel result that links the distribution of brands across firms to aggregate markups that illustrate price elasticity with respect to
market share. This provides a new framework for structurally analyzing markups.

Fourth, we apply this framework to the study of brand transactions and discuss the key identifying assumptions of the process. We currently have a crosswalk to Nielsen scanner data that will help us identify these forces and, thus, provide novel evidence about brands.

We hope this framework will inspire further investigations into market power that employ the lens of trademarks. Standard quantitative frameworks applied to trademark data can open a broad examination of questions that are highly relevant for economists. Trademarks provide a rich source of data that can improve our understanding of innovation, market power, and institutional property arrangements. We think this paper is just the beginning of a fruitful investigation into these forces.
References

A Data Appendix

A.1 Trademarks in the Aggregate

In the main text, we argue that trademarks provide a great insight into certain components of market dynamism. Figure A.1 illustrates that trademarks move fairly closely with the aggregate employment/population dynamics. One more note from this figure is that trademarks are rising at an even more rapid rate than patents, which experienced a boom in the 1990s. Trademarks both move more closely with the business cycle than patents and are rising at a more rapid rate.
A.2 Trademarks by Industry

In this section, we illustrate more detail about trademarks at the NICE (Trademark classification) and NAICS (industry classification) level. Figure A.2 plots the percent of trademarks in each of the 45 NICE categories. We see that a majority of trademarks fall into the following categories: Computers and software (NICE 9), Advertising (NICE 35), Education (NICE 41), Clothing (NICE 25), and Scientific and technological services (NICE 42). This is using data that is post-1973, so will pick up the rise of the computing sector over this time period.

Figure A.3 plots the percent of firms that on average trademark in a given year in each of the 2-digit NAICS industries. As expected, this pattern closely follows the pattern observed in Figure 7 in the text. The industries with the most trademarks also see the firms that trademark most. For instance, we again see that the most trademark-registration-intensive industries are Manufacturing (NAICS 31-33), Agriculture (NAICS 11), and Professional, Scientific, and Technical Services (NAICS 54). Thus, it appears that many industries, and many firms within those industries, trademark.

To further understand how trademark activities are linked to production activity, we examine two sectors, the manufacturing sector and the service sector, that underwent changes during the past decades. As has been documented elsewhere, the number of manufacturing firms is declining and the number of service firms is growing. Figure A.4 plots the number of newly registered trademarks within these two sectors against the number of firms. Panel (a) plots the number of firms from Business Dynamics
Figure A.2: Trademarks by NICE Classifications
Figure A.3: Firms by NAICS Classifications

Average Annual Percent of Firms Registering Trademarks in Given NAICS Industry
Statistics and the number of registered trademarks, both of which are normalized as ratio to the 1980 level. We find that although the number of firms in manufacturing has declined since mid-1990, the number of registered trademarks has been rising since 1980. One potential interpretation is that while production activities are decreasing within manufacturing firms, branding activities are increasing. Panel (b) plots the same data series for service firms. As the number of firms doubled from 1980 to 2010, the number of trademarks grew 80 times. Comparing these two sectors, we observe that the fast-growing sector (service) experienced more growth in branding than the declining sector (manufacturing).

A.3 Specific Company: Procter and Gamble

Figure A.5 shows the evolution of the number of brands Procter and Gamble held in the trademark dataset. We see a large expansion in the early 2000s in their stock and then a leveling off.
Figure A.4: Trademarks over Time

(a) Registered Trademarks and Number of Firms

(b) Registered Trademarks and Number of Firms
Figure A.5: Tracing the brands of P&G over time