Reforming Japan's Power Industry

Koichiro Ito

Stanford Institute for Economic Policy Research, Stanford University

February 27, 2012

- Outline of the talk
 - 1) Brief introduction of Japan's electricity industry
 - 2) Key issues for reforming Japan's electricity industry
 - 3) Smart grid and dynamic pricing experiments in Japan

- 1) Regulated regional monopoly
- 2) Vertical integration
- 3) Partial deregulation since 1990's

4) Adequate & stable supply until 3/11 and few demand response policies

1) Regulated regional monopoly - 10 regional electric utilities

Source: msnbc.com

- Partial deregulation in 1990's
- But each region is still almost entirely covered by a regulated monopolist

2) Vertical integration - the electricity industry is not yet "unbundled"

- Before 1990's: Vertical integration in most countries
- After 1990's : Transmission and distribution were unbundled in many counties
- In Japan, transmission and distribution were not yet unbundled
- Regional monopolists own and operate the four parts almost entirely

- Three main phases of deregulation (1995, 2000, and 2003)
- Main policy objective: lower electricity price
- Outcome:
 - Partial deregulation in generation (1995) and retailing (2000)
 - Failed to unbundle transmission and distribution (2003) for a few reasons
 - Opposition from power companies
 - Lack of political leadership
 - Critiques for the California electricity crisis

4) Adequate & stable supply and few demand response policies

- Adequate and stable supply until 3/11
- Annual average hours of blackouts per customer in 2007:

Japan	US	UK	Germany	France	Korea
16	292	75.7	19.3	61.6	17.2

Source: Japanese Agency for Natural Resource and Energy (2011)

• Higher electricity prices: cents per kWh (source: EIA 2008)

	Japan	US
Industrial	11.6	7
Residential	20.6	11.6

- Regional utilities build their capacity to meet any levels of max demand
- Customers have enjoyed the stable supply in exchange for the high price
- Few "demand response" policies to shift peak demand to off-peak

- Outline of the talk
 - 1) Brief introduction of Japan's electricity industry
 - 2) Key issues for reforming Japan's electricity industry
 - 3) Smart grid and dynamic pricing experiments in Japan

a) How to unbundle transmission and distribution?

- Unbundling is necessary to open the electricity market for new entrants
- After unbundling, who should 1) own and 2) operate the system?

b) How to restructure the regional electric utilities?

- Inter-regional transactions are low (5.2% in 2008) despite the deregulation
- Regional utilities have not invested much on the inter-regional transmission
- This under-investment was a reason for the limited flexibility in transmission right after 3/11, which caused rolling blackouts in Tokyo
- The central problem is, the wholesale and retail markets are still far from competitive despite the deregulation since 1990's

Is the wholesale market competitive now?

- Regional utility companies still generate over 70% of total power in Japan
- The deregulation (1995) allowed IPP (independent power producer) to enter
- However, their share is still very small
- Also, most transactions are bilateral long-run contracts with regional utilities
- Transactions in the wholesale market (JEPX) is less than 1% of total volume

Is the retail market competitive now?

- 63% of the retail markets are now deregulated
- The deregulation (2000) allowed PPS (Power producer and Supplier) to enter
- However, their share of the market is about 2%

d) How to take advantage of "smart grid" technology?

• Peak time demand is reaching near the max capacity level this winter

- Need to shift peak time demand to off-peak
- Better to use market mechanisms rather than rationing

d) How to take advantage of "smart grid" technology?

• Among other things, smart grid and smart meter technology can be used to:

1) Allow customers to have dynamic (time-varying) pricing

- 2) Allow customers to access real-time price and usage information
- 3) Make the most use of EV and plug-in hybrid vehicles as "storage"

- Outline of the talk
 - 1) Brief introduction of Japan's electricity industry
 - 2) Key issues for reforming Japan's electricity industry
 - 3) Smart grid and dynamic pricing experiments in Japan

Peak time demand is reaching near the maximum capacity level

• Reasons:

- Not only Fukushima but also other nuclear power plants were stopped
- Cold wether hit many areas in Japan this winter

Generally, the cost of electricity is very high at the peak demand periods

- Example: the marginal cost curve of thermal plants in CA (Borenstein 2002)
- Expensive power plants have to be run at the peak time
- The social cost would be even larger (e.g. blackouts) if demand exceeds supply
- However, usually, electricity prices do not reflect these costs:
 - Most customers do NOT pay "time-varying" electricity prices

Usually, these peak demand 6 7 8 A Blim d hours per year

APPENDICATE ON FOR STATE

- Load duration curve (left) and wholesale price duration curve (right) in PJM
- Peak demand periods are limited hours per year
- Thus, wholesale electricity prices are very high only at limited hours per year
- Large economic gains just by shifting this peak demand to off-peak

- Basic idea:
 - Set high prices only for the peak demand hours for "emergency days"
 - Lower off-peak prices
 - Customers get larger incentives to shift their peak time consumption
 - No technological barriers now with smart meters
- Several experiments in the US
 - Frank Wolak (2011) Field experiment in D.C.
 - Finds significant peak demand reductions by dynamic pricing

Smart grid and dynamic pricing experiments in four locations in Japan

- Sponsored by the government and partnered with companies and academics
 - Current main target: residential customers
 - Different "treatments" in the four locations
 - Customers are randomly assigned to different treatment groups

Example of the price schedule for residential customers

- Critical peak pricing (CPP) with variable peak prices
 - Customers get "day-ahead" notice about the peak price for tomorrow
 - Peak hours for summer (1pm to 5pm)
 - High peak prices are announced when temperature exceeds a "cutoff" level
 - Customers get notified by phone, email, and through their information device

Treatments to be examined in addition to dynamic pricing

- Information devices integrated with HEMS (Home Energy Management System)
 - In-home display
 - Smart phone with a smart energy application
- Automated demand response (ADR) technology
 - Electric appliances with ADR in response to time-varying electricity prices
- Electric and plug-in hybrid vehicles
 - Long-time lease for free for some customers
 - EV and PHV can be potentially used as "storage"

Goals of the experiments:

- Examine what is possible with smart grid and smart meter technologies
- Create a platform for firms to explore new business opportunities