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Abstract

We develop a framework to estimate willingness to pay (WTP) for clean air from defensive

investments on di↵erentiated products. Applying this framework to scanner data on air purifier

sales in China, we find that households are willing to pay $1.34 per year to remove 1 µg/m3 of

PM10 and $32.7 per year to eliminate policy-induced air pollution created by the Huai River

heating policy. Substantial heterogeneity in WTP is explained by household income and expo-

sures to media coverage on air pollution. Using these estimates, we examine welfare implications

of existing and counterfactual environmental policies in China.
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1 Introduction

Air quality is remarkably poor in developing countries, and severe air pollution is imposing a

substantial health and economic burden on billions of people. For example, the annual average

exposure to fine particulate matter in China was more than five times higher than that of the US

in 2013 (Brauer et al., 2016). Such severe air pollution causes large negative impacts on various

economic outcomes, including infant mortality (Jayachandran, 2009; Arceo et al., 2012; Greenstone

and Hanna, 2014), life expectancy (Chen et al., 2013; Ebenstein et al., 2017), and labor supply

(Hanna and Oliva, 2015). For this reason, policymakers and economists consider air pollution to

be one of the first-order obstacles to economic development.

However, a large economic burden of air pollution does not necessarily imply that existing

environmental regulations are not optimal. Optimal environmental regulation depends on the extent

to which individuals value air quality improvements—that is, their willingness to pay (WTP) for

clean air (Greenstone and Jack, 2013). If WTP for clean air is low, the current level of air pollution

could be optimal because a social planner should prioritize economic growth over environmental

regulation. On the other hand, if WTP is high, the current stringency of regulations can be far from

optimal. Therefore, WTP for clean air is a key parameter when considering the tradeo↵s between

economic growth and environmental regulation. Despite the importance of this parameter, the

economics literature provides limited empirical evidence. This is primarily because obtaining a

revealed preference estimate of WTP for clean air is challenging in developing countries because

of limited availability of data and a lack of readily available exogenous variation in air quality for

empirical analysis.

In this paper, we provide among the first revealed preference estimates of WTP for clean air in

developing countries. Our approach is based on the idea that demand for home-use air purifiers,

a main defensive investment for reducing indoor air pollution, provides valuable information for

the estimation of WTP for air quality improvements. We begin by developing a random utility

model in which consumers purchase air purifiers to reduce indoor air pollution. A key advantage

of analyzing air purifier markets is that one of the product attributes—high-e�ciency particulate

arrestance (HEPA)—informs both consumers and econometricians of the purifier’s e↵ectiveness to

reduce indoor particulate matter. The extent to which consumers value this attribute, along with
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the price elasticity of demand, reveals their WTP for indoor air quality improvement.

We apply this framework to scanner data on market transactions in air purifier markets in

Chinese cities. At the retail store level, we observe product-level information on monthly sales,

monthly average price, and detailed product attributes. The product attributes include the infor-

mation on each purifier’s e↵ectiveness to reduce indoor air pollution. Our data cover January 2006

through December 2014. The dataset provides comprehensive transaction records of 690 air purifier

products for some of the most polluted cities in the world. To our knowledge, this paper is the first

study to exploit these transaction data in the Chinese air purifier markets to examine consumers’

WTP for air quality. We also collect pollution data from air pollution monitors and micro data on

demographics from the Chinese census to compile a dataset that consists of air purifier sales and

prices, air pollution, and demographic characteristics.

The primary challenge for our empirical analysis is that two variables in the demand estima-

tion—pollution and price—are likely to be endogenous. To address the endogeneity of air pollution,

we use a spatial regression discontinuity (RD) design, which exploits discontinuous variation in air

pollution created by a policy-induced natural experiment at the Huai River boundary. The so-called

Huai River heating policy provided city-wide coal-based heating for cities north of the river, which

generated substantially higher pollution levels in the northern cities (Almond et al., 2009; Chen

et al., 2013). The advantage of this spatial RD approach is twofold. First, it allows us to exploit

plausibly exogenous policy-induced variation in air pollution. Second, the policy-induced variation

in air pollution has existed since the 1950s. This natural experiment provides long-run variation in

air pollution, which enables us to examine how households respond to long-lasting, not transitory,

variation in pollution.

To address the endogeneity of prices, we combine two approaches. First, we observe data from

many markets (cities) in China, and therefore we are able to include both product fixed e↵ects and

city fixed e↵ects. These fixed e↵ects absorb product-level unobserved demand factors and city-level

demand shocks. The remaining potential concern is product-city level unobserved factors that are

correlated with prices by product and city. We construct an instrumental variable, which measures

the distance from each product’s manufacturing plant (or its port if the product is imported) to

each market, with the aim of capturing variation in transportation cost, which is a supply-side cost

shifter.
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We begin by presenting visual and statistical evidence that the level of air pollution (PM
10

) is

discontinuously higher in cities north of the Huai River by 24 µg/m3 during our sample period.

Based on theoretical prediction from our demand model, this discontinuity in air pollution implies

that if households value air quality, the log market share of HEPA purifiers—purifiers that can

reduce indoor particulate matter—relative to other purifiers should be discontinuously higher in

cities north of the river boundary. We show visual and statistical evidence that this theoretical

prediction is consistent with the data. To estimate marginal WTP for air quality, we use standard

logit estimation and random-coe�cient logit estimation that allows heterogeneity in preference

parameters for pollution and price. We find that marginal WTP for removing 1 ug/m3 of PM
10

per year is $1.34, and WTP for removing the amount of PM
10

generated by the Huai River policy

is $32.7 per year. Our estimates are robust to using a range of di↵erent bandwidths and local

linear and quadratic estimation. We find that substantial heterogeneity is explained by household

income—higher-income households have significantly higher marginal WTP for clean air compared

to lower-income households.

Our study provides three primary contributions to the literature. First, we develop a framework

to estimate heterogeneity in WTP for environmental quality from defensive investment based on

market transaction data on di↵erentiated products. Earlier studies on avoidance behavior examine

whether individuals take avoidance behavior in response to pollution exposure.1 A key question in

the recent literature is whether researchers can obtain monetized WTP for environmental quality

from defensive behavior. For this question, theoretical work in environmental economics provides a

useful insight—defensive investment on market products can be used to learn about the preference

for environmental quality (Braden, Kolstad, Field, and Azqueta Oyarzun, 1991). However, few ex-

isting studies attempt to develop a framework to connect this economic theory with market data.2

Our idea is that this connection can be made by extending a random utility framework that is com-

1Earlier studies on avoidance behavior against pollution find that people do engage in defensive investment against
pollution. For evidence in the US, see Neidell (2009); Zivin and Neidell (2009); Zivin et al. (2011). For evidence in
China, see Mu and Zhang (2014); Zheng et al. (2015). For evidence in other developing countries, see Madajewicz
et al. (2007); Jalan and Somanathan (2008). A key question in the recent literature is whether researchers can
estimate WTP for improvements in environmental quality from observing defensive investment in markets.

2There are two recent papers that are most relevant to our study in the sense that our approach and the approaches
taken by the following papers are broadly categorized by the household production approach. Kremer et al. (2011)
uses a randomized control trial (RCT) in Kenya to estimate the WTP for water quality. Deschenes et al. (2012) use
medical expenditure data in the United Sates to learn about the cost of air pollution and the benefit of air quality
regulation.
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monly used for market share data analysis in industrial organization. Our model allows consumers

to purchase di↵erentiated products in order to improve their environmental quality. The model

also allows heterogeneous preferences for environmental quality and price elasticity. An attractive

feature of this approach is that the conventional random-coe�cients logit estimation (Berry et al.,

1995; Nevo, 2000) can be applied to investigate heterogeneity in WTP for environmental quality.

We believe that our framework can be useful for many other settings because market transaction

data are increasingly available for a variety of products in many countries, including developing

countries, through store-based and household-based scanner data.3

The second contribution is that we provide among the first revealed preference estimates of

WTP for clean air in developing countries. As emphasized by Greenstone and Jack (2013), WTP

for environmental quality is a key parameter for policy design, but well-identified estimates of this

parameter are barely available for air quality, and more generally, quite scarce for any environmental

quality in developing countries. An important exception is a seminal study by Kremer et al. (2011),

which estimate WTP for water quality in Kenya by a randomized experiment. While experimental

approaches provide many advantages, it is generally challenging to create long-run variation in

pollution for a broad set of population in an experimental setting. Our quasi-experimental design

provides variation in air pollution that lasted for a long time and a↵ected heterogeneous households

in many cities. This research design allows us to examine household responses to prolonged severe

air pollution for a heterogeneous set of households. For this reason, we believe that our quasi-

experimental approach is complementary to experimental approaches.4

Finally, our findings provide important policy implications for ongoing discussions in energy

and environmental regulation in developing countries. Developing country governments recently

proposed a variety of interventions to address air pollution problems. For example, Chinese Premier

Li Keqiang declared “War Against Pollution” to reduce emissions of PM
10

and PM
2.5

and has

proposed various reforms in energy and environmental policies (Zhu, 2014). China has also made

3There are a few more related studies. Berry et al. (2012); Miller and Mobarak (2013) use randomized controlled
trials to estimate WTP for water filters and cook stoves per se instead of WTP for improvements in environmental
quality. Consumer behavior in housing markets is usually not considered to be “avoidance behavior”, but Chay and
Greenstone (2005) is related to our study in the sense that they provide a quasi-experimental approach to estimate
WTP for clean air.

4In addition to our study, Freeman et al. (2017) and Barwick et al. (2018) are recent studies that use quasi-
experimental research design to estimate WTP for clean air in China, although the focus of these papers is not
long-run variation in air pollution.
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a commitment to address global climate change, as featured by the New York Times in April 2016

(Davenport, 2016). For example, policies include reforming the Huai River heating policy, the

launch of a national cap-and-trade program on carbon emissions in 2017, and shifting coal-based

power generation to cleaner generation such as natural gas and renewables. Because these policies

are not costless, a key question is whether the benefit of a policy exceeds its cost, and therefore,

enhances social welfare. In the policy implication section, we show how our estimates on the WTP

for clean air can be used to examine the welfare implications of energy and environmental policies.

2 Air pollution, Air Purifiers, and the Huai River Policy in China

In this section, we provide background information on air purifier markets in China and the Huai

River policy, which are key to our empirical analysis.

2.1 Air Purifiers

A key advantage of analyzing air purifier markets is that one of the product attributes—high-

e�ciency particulate arrestance (HEPA)—informs both consumers and econometricians about the

purifier’s e↵ectiveness to reduce indoor particulate matter. According to the US Department of

Energy, a HEPA air purifier removes at least 99.97% of particles of 0.3 micrometer or larger in

diameter (DOE, 2005). It is even more e↵ective for larger particles such as PM
2.5

(particles with

a diameter 2.5 micrometers or less) and PM
10

(particles with a diameter between 2.5 and 10

micrometers). Recent clinical studies find that the use of HEPA purifiers in various settings provides

improvements in health, including reduced asthma symptoms and asthma-related health visits

among children, lower marker levels of inflammation and heart disease, and reduced incidences of

invasive aspergillosis among adults (Abdul Salam et al., 2010; Allen et al., 2011; Lanphear et al.,

2011).

Consistent with the US Department of Energy standards, air purifier manufacturers and retail

stores in China explicitly advertise that a HEPA purifier can remove more than 99% of particles

that are larger than 0.3 micrometers. In contrast, non-HEPA purifiers are not e↵ective in reducing

small particles such as PM
2.5

and PM
10

. Yet, non-HEPA purifiers provide consumers utility gains

through attributes other than HEPA because these attributes are e↵ective in removing other indoor
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pollutants. For example, many purifiers have a function called “activated carbon,” which absorbs

volatile organic compounds (VOCs)—one of the common indoor pollution due to house renovation,

remodeling materials, and new furnitures. Another example attribute is“catalytic converter,”which

is e↵ective in removing formaldehyde as well as VOCs. Both of HEPA and non-HEPA purifiers

generally come with these functions, and HEPA purifies provide an extra attribute that is specifically

designed to reduce particulate matter.5

2.2 The Huai River Policy and its Recent Reform

In 1958, the Chinese government decided to provide a centralized heating system. Because of

budget constraints, the government provided city-wide centralized heating to northern cities only

(Almond et al., 2009). Northern and southern China are divided by a line formed by the Huai River

and Qinling Mountains as shown in Figure 1. The government used this line because the average

January temperature is roughly 0° Celsius along the line, and the line is not a border for other

administrative purposes (Chen et al., 2013). Cities to the north of the river boundary have received

centralized heating in every winter. In contrast, cities in the south have not had a centralized

heating supply from the government.

The centralized heating supply in the north relies on coal-fired heating systems. Two-thirds

of heat is generated by heat-only hot water boilers for one or several buildings in an apartment

complex, and the remaining one-third is generated by combined heat and power generators for the

larger areas of each city. This system is inflexible and energy ine�cient. Consumers have no means

to control their heat supply and, until recently, there has been no measurement of heat consumption

at the consumer level. The incomplete combustion of coal in the heat generation process leads to

the release of air pollutants, particularly particulate matter. Because most heat is generated by

boilers within an apartment complex, the pollution from coal-based heating remains largely local.

Almond et al. (2009) find that the Huai River policy led to higher total suspended particulate (TSP)

levels in the north. Ebenstein et al. (2017) further find that the higher pollution levels created by

the policy led to a loss of 3 years of life expectancy in the north.

The heating supply in the north has been consistent since the 1950s while the payment system

5One of the air purifier attributes, “Air ionizer,” is sometimes claimed to have some ability in reducing small
particles, but the e↵ectiveness is usually quite limited. For example, a study by Health Canada finds that a residential
ionizer only removes 4% of indoor PM2.5 (Wallace, 2008).
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under the policy underwent an important reform in 2003. Prior to 2003, free heating was provided

to residents in the north, and employers or local governments were responsible for the payment of

household heating bills (WorldBank, 2005). The payment system was designed under the centrally

planned economy under which the public sector employment dominated the labor market. However,

during China’s transition to a market economy, heating billing became a practical problem. The

size of the private sector has increased dramatically since the 1990s, and employers in the private

sector have not been required to pay heating bills. Additionally, many public sector employees have

moved out of public housing and have purchased homes in the private market, which complicated

the payment of heating bills by public sector employers.

In July 2003, the Chinese government issued a heating reform. The reform changed the payment

system from free provision to flat-rate billing (WorldBank, 2005). Individual households became

responsible for the payment of their own heating bills each season, which is a fixed charge per square

meter of floor area for the entire season ,regardless of actual heating usage. Whether a heating

subsidy is provided by employers varies by sector. In the public sector, former in-kind transfers

were changed to a transparent payment for heating added to the wage. In contrast, private sector

employers were not explicitly required to provide a heating subsidy to their employees. In the

2005 census, 21% of the labor force was in the urban public sector in the 80 cities in our sample,

suggesting that only a small percentage of employees receive a heating subsidy following the reform.

Our analysis focuses on the period from 2006 to 2014, after the 2003 reform on heating billing.

We summarize the comparison of winter heating between the north and the south. First, winter

heating is provided in the same way after the reform. The centralized city-wide heating supply

in the north remains the same, where households have little option other than the centralized

coal-based heating that generates higher pollution levels. In the south, households choose their

own methods of staying warm in winter, including using the heating function of air conditioners,

space heaters, heated blankets, etc. Second, heating costs in the north have changed since the 2003

reform. Northern households no longer enjoy free heating and instead have to pay a substantial

proportion of their heating bills from the centralized heating while households in the south continue

to pay for the heating methods of their choice. We collected heating costs in 20 cities just north

and just south to the Huai River boundary and find that household heating costs in the north are
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comparable to, or could even be higher than, those in the south.6

3 Data and Descriptive Statistics

We compile a dataset from five data sources—air purifier market data, air pollution data, manufac-

turing/importing location data for each product, city-by-year demographic information from the

city statistical yearbooks, and individual-level demographic variables from the 2005 Chinese census

micro data. In this section, we describe each data source and provide descriptive statistics.

3.1 Air Purifier Data

We use air purifier sales transaction data collected by a marketing firm in China from January

2006 through December 2014 for 80 cities. The company collected transaction-level scanner data

from each major retail store in these cities. We are provided with monthly sales and monthly

average price for each product by store, along with information on product attributes. The data

we analyze are in-store transactions and primarily from individual purchases.7 The dataset covers

in-store transactions in major department stores and electrical appliance stores, which account for

over 80% of all in-store sales. During the period 2006 to 2014, in-store sales consisted of 72% of

overall purifier sales (including in-store and online sales).

Because our dataset does not cover 100% of purifiers sales, we take two approaches to defining

sales volume for our estimation. In the first approach, we simply ignore transactions outside our

dataset. Although this procedure provides transparency and conservative estimates, it underesti-

mates each product’s sales volume. In the second approach, we adjust sales volume proportionally

to address this limitation. Specifically, we multiply the sales volume of each product by 1.73

6For example, in Xi’an, a city just north to the Huai River, the price of heating per square meter per winter is $3.9.
For an apartment of 100 square meters, the household pays $390. The average subsidy in public sector is $177 per
employee, and the number of public employees per household is 0.32 according to the 2005 population census. The
average amount of subsidy per household is $57. Therefore, an average household’s out-of-pocket payment is $333. In
southern cities, space heaters and heated blankets are the most common choices that could cost $150 to 200 including
the purchasing of these devices and the electricity bill in winter for a similar size home. If a household chooses a
more expensive option, air conditioning, the electricity bill for three months in winter could be approximately $240
to 280 and the entire cost depends on the price of the air conditioners, which varies to a large extent.

7The raw scanner data include both individual and corporate purchases in retail stores, and the data indicate
whether an o�cial invoice is issued for each transaction. In China, for a government or corporate purchase to get
reimbursed, an o�cial invoice issued by the Chinese Tax Bureau (but provided by the seller), called Fapiao, is
required. The invoice is addressed to the government o�ce or the corporate. To generate the data for our analysis,
the marketing company first include individual purchases without o�cial invoices in the raw transaction-level data,
and then generate monthly sales and prices data by store and product.
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(=1/(0.8·0.72)). Because either approach has advantages and disadvantages, we report empirical

results with both approaches—the latter as main results and the former in the appendix. As we

describe in Section 4, the two approaches produce exactly the same results for standard logit esti-

mation because the proportional multipliers will be fully absorbed by city fixed e↵ects. While this

is not the case for random-coe�cient logit estimation due to its nonlinearity, we show that results

for random-coe�cient estimation are also very similar between the two approaches because city

fixed e↵ects absorb most of the di↵erential variation.

There are 690 products sold by 45 manufacturers, including domestic and foreign companies.

The raw sales and price data are at the product-city-store-year-month level. In our empirical anal-

ysis, the exogenous variation in pollution comes from city-level variation. Therefore, we aggregate

the transaction data to the product-city level. A unique feature of the dataset is that we observe

detailed attributes for each product. The key attribute for our study is a High E�ciency Particu-

late Arrestance (HEPA) filter, which allows us to quantify the amount of particulate matter that a

product can remove.

3.2 Air Pollution Data

For air pollution data, we use city-level annual average PM
10

from 2006 to 2014, which was col-

lected by Ebenstein et al. (2017). The raw data come from two publications in Chinese, China’s

Environmental Yearbooks and China’s Environmental Quality Annual Reports. Ebenstein et al.

(2017) verified the two datasets against each other, and further verified with electronic copies of

the data provided by the Chinese Ministry of Environmental Protection.

3.3 Demographic Data

We compile demographic data from two sources. First, we obtain city-year measures on population,

urban population, and GDP per capita from City Statistical Yearbooks in 2006-2014. Second,

we obtain individual-level micro data from the 2005 census. For each city, the dataset includes

demographic variables for a random sample of individuals. We use household-level income data

to create the empirical distribution of household annual income for each city, which we use in our

empirical analysis. We also aggregate the census microdata to calculate a rich set of city-level socio-

economic measures including average years of schooling, illiterate rate, high school completion rate,
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college completion rate, average household income per capita, home size (in square meter), and

measures of housing quality.

3.4 GIS Data and Map

In Figure 1, we present the city centroids of the 80 cities that we use for our analysis. We obtain

the latitudes and longitudes of the city centroids from the Census data and plot them onto the

map of China using ArcGIS. We also show the location of the Huai River/Qinling Mountains line,

which divides China into North and South.8

For our empirical analysis, we make two distance variables based on the city and river locations.

The first variable is the distances between cities and the Huai River. For each city, we use ArcGIS

to measure the shortest distance from the city centroids to the nearest point on the river. This

distance ranges from 18 miles to 1044 miles, and the median distance is 303 miles. The second

distance variable is the road distances from city centroids to the factory or importing port locations

of air purifiers. Figure A.1 in the online appendix shows the locations of manufacturing plants of

domestically produced products and ports of imported products. We use GIS and Google Maps to

measure the shortest road distances from city centroids to these locations.

3.5 Summary Statistics and Testing for Balance in Observables

Table 1 shows the summary statistics of the purifier data. In Panel A, we report product-level

summary statistics for all products in column 1, HEPA purifiers in column 2, and non-HEPA

purifiers in column 3. In column 4, we calculate the di↵erence in the means between HEPA purifiers

and non-HEPA purifiers and the standard errors for the di↵erences by clustering at the manufacturer

level in column 4. Despite substantial heterogeneity across products, the di↵erence in the means

between HEPA and non-HEPA purifiers is statistically insignificant for many purifier attributes,

such as humidifying function, the distance to the factory or the port, and the frequency of filter

replacement. We observe statistically significant di↵erences between the two purifier types for three

variables: the price of purifiers, the price of replacement filters, and room coverage, although the

di↵erence in room coverage is only marginally significant. On average, HEPA purifiers are $139

8The original source of the Huai River/Qinling Mountains line is from the Harvard Map Collection at Lamont
Library. This is the same source used in previous studies on the Huai River such as Almond et al. (2009).
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more expensive, $21 more expensive in replacing a filter, and covers 8.4 more square meters.

In Panel B, we show the number of purifier sales relative to the number of households as

percentage. For overall purifier sales, this statistic is higher for higher-income cities such as Beijing

and Shanghai, implying that economic growth levels are likely to a↵ect overall purifier sales. For

our estimation, what matters is the relative sales share of HEPA purifiers to non-HEPA purifiers,

as we will explain in Section 4. This statistic is presented in the last column. The ratio of HEPA

purifier sales relative to non-HEPA purifier sales is approximately 1.2 in the south of the Huai River

and 2.0 in the north of the Huai River. This statistics provides descriptive evidence that consumers

in the north of the Huai River are more likely to buy purifiers with HEPA than consumers in the

south of the river. We provide more formal regression discontinuity analysis for this evidence in

Section 5.9

Table 2 shows summary statistics of city-level observables. Columns 1 and 2 report the sample

mean and standard deviation for the north and the south of the Huai River. Column 3 reports

the raw di↵erence between these sample means. Note that this statistic shows a simple di↵erence

between all cities in the north and the south, which is not necessary a discontinuous di↵erence

at the Huai River. In column 4, we investigate whether there is such a discontinuous di↵erence.

We use local linear regression—our main RD specification in the empirical analysis—to obtain RD

estimates for the observables and report the standard errors in the brackets.

In Panel A, we consider a wide range of socio-economic variables that are relevant for our

analysis, including population, urban population, illiterate rate, high school completion rate, college

completion rate, per capita household income, home size (square meter). Column 3 suggests that

there are statistically significant di↵erences in the sample means for several measures between the

north and the south. However, the RD estimates in column 4 indicate that the di↵erences are not

statistically significant at the river boundary.

9A potential approach to measuring the implied abatement cost of indoor air pollution is to calculate the air purifier
price per a reduction in PM10. For example, if we consider the average price of HEPA purifiers with replacement
filters for five years, the total average price is $846, which implies an annualized price of $169.10 If we consider a
households who faces the average level of PM10 in our sample period (92 ug/m3), then the implied average price per
a reduction in PM10 is $1.83. However, this number may not properly reflect the implied abatement cost of indoor
air pollution for two reasons. First, a HEPA purifier provides a positive utility gain not only from a reduction in
PM10 but also from other attributes (or amenities) of the purifier. Then, this simple calculation is likely to overstate
the implied abatement cost of indoor air pollution. Second, this calculation implicitly assumes that air purifiers
prices are exogenous to demand. If sellers set prices in response to demand factors, prices reflect this endogenous
relationship. This is why we need more formal demand estimation as we describe in Section 4, in which these two
issues are addressed by the inclusion of product fixed e↵ects and instrumental variables.
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In addition, we also collect a number of other city-level measures to examine potential concerns

regarding our identification strategy. The first concern is that the Huai River heating policy may

have made demand for well insulated homes lower in the northern cities. We test two measures of

housing quality reported in the 2005 Census data: the fraction of residency built after 1985 when

China implemented the first regulation on insulation e�ciency of home construction materials, and

the fraction of building materials that include reinforced concrete (relatively less insulated).

The second concern is that if the Huai River policy produced worse air quality for the northern

cities, it could possibly generate more within-city residential sorting for households in the north.

Using the 2005 Census data, we measure the fraction of individuals who have moved from another

neighborhood in the same city in the past five years by city. Note that another related concern is

residential sorting across cities. However, as we explain in section 5.5, such sorting is unlikely to

a↵ect our analysis because of a strict immigration policy enforced by the Chinese government.

The third concern is that the Huai River heating policy may have made households spend more

time indoors in the north, which would make the value of indoor air quality higher in the north.

While we do not directly observe how much time individuals spend indoors, we can test if people

in the north are less likely to choose a job that involves substantial outdoor activities. Using the

2005 Census data, we define a binary variable that is one if the occupation involves more outdoor

activities (e.g. agriculture, construction, and transportation) and 0 otherwise.We test whether these

measures di↵er between the north and the south. Neither the di↵erences in the sample means in

column 3 nor the RD estimates in column 4 show statistically significant di↵erences.

4 Demand for Air Purifiers

Our goal is to obtain a revealed preference estimate of WTP for clean air by analyzing demand

for air purifiers. Because air purifiers are di↵erentiated products with multiple attributes, we

start with a random utility model for di↵erentiated products.11 When a consumer purchases an

air purifier, the consumer considers utility from the product attributes and disutility from the

price. For our objective, an advantage of analyzing air purifier markets is that one of the product

characteristics—high-e�ciency particulate arrestance (HEPA)—informs consumers and researchers

11For more detailed discussion on randomm utility models for di↵erentiated products and their estimation, see Berry
(1994); Berry et al. (1995); Goldberg (1995); Nevo (2001); Kremer et al. (2011); Knittel and Metaxoglou (2013).

13



of the purifier’s e↵ectiveness to reduce indoor particulate matter. The intuition behind our approach

is that the extent to which consumers value this characteristic, along with the price elasticity of

demand, provides useful information on their WTP for indoor air quality improvements.

Consider that consumer i in city c has ambient air pollution x
c

(particulate matter). The

consumer can purchase air purifier j at price p
jc

to reduce indoor air pollution by x
jc

= x
c

· e
j

.

We denote purifier j’s e↵ectiveness to reduce indoor particulate matters by e
j

2 [0, 1]. We observe

markets for c = 1, ..., C cities with i = 1, ..., I
c

consumers. The conditional indirect utility of

consumer i from purchasing air purifier j at city c is:

u
ijc

= �
i

x
jc

+ ↵
i

p
jc

+ ⌘
j

+ �
c

+ ⇠
jc

+ ✏
ijc

, (1)

where x
jc

is the improvement in indoor air quality conditional on the purchase of product j, p
jc

is the

price of product j in market c, ⌘
j

is product fixed e↵ects that capture utility gains from unobserved

and observed product characteristics, �
c

is city fixed e↵ects, ⇠
jc

is a product-city specific demand

shock, and ✏
ijc

is a mean-zero stochastic term. �
i

indicates the marginal utility for clean air, and

↵
i

indicates the marginal disutility of price. The functional form for the utility function assumes

that each variable, including the error term, enter the utility function linearly.

Air purifiers usually run for five years and require filter replacement several times within five

years. We assume that consumer i considers utility gains from purifier j for five years and p
jc

as a sum of upfront and running costs.12 This approach abstracts from a potentially interesting

dynamic decision, where consumers may consider the dynamics of product entries. Unfortunately,

it is not possible to examine such a dynamic decision in the context of our empirical setting. While

we have monthly sales and price data, the exogenous variation in pollution comes from purely

cross-sectional variation as opposed to time-series variation. Therefore, our empirical approach

focuses on cross-sectional variation in pollution and purchasing behavior, which has to abstract

from potential dynamic discrete choices.13

12This approach also implicitly assumes that consumers respond to the monetary value of an upfront cost and
running costs in the same way when they purchase air purifiers. For example, if consumers are myopic, they can
be more responsive to an upfront cost than running costs. While we cannot rule out this possibility, recent studies
show empirically that consumers are not myopic concerning the running costs of durable goods (Busse et al., 2013).
When calculating the total cost of a purifier, we do not consider future discount rates in its running cost. However,
including discount rates changes the total cost only by a small amount and, therefore, we find that it does not have
a significant e↵ect on our empirical findings.

13For example, consumers may respond to inter-temporal price variation. By aggreagting the panel data to cross-
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We assume that the error term ✏
ijc

is distributed as a Type I extreme-value function. We

then consider both a standard logit model and a random-coe�cient logit model. A standard logit

model assumes that the preference parameters do not vary by i. The attractive feature of this

approach is that the random utility model in equation (1) leads to a linear equation. The linear

equation can be estimated by linear GMM estimation with instrumental variables for pollution

and price. A random-coe�cient logit model allows the preference parameters to vary by household

i through observable and unobservable factors. This feature comes at a cost—random-coe�cient

logit estimation involves nonlinear GMM estimation for a highly nonlinear objective function. In

this paper, we use both approaches to estimate WTP for clean air.

4.1 A Logit Model

We begin with a standard logit model. Suppose that �
i

= � and ↵
i

= ↵ for all consumer i and that

the error term ✏
ijc

is distributed as a Type I extreme-value function. Consumer i purchases purifier

j if u
ijc

> u
ikc

for 8k 6= j. Then, the market share for product j in city c can be characterized by14

s
jc

=
exp(�x

jc

+ ↵p
jc

+ ⌘
j

+ �
c

+ ⇠
jc

)
P

J

k=0

exp(�x
kc

+ ↵p
kc

+ ⌘
k

+ �
c

+ ⇠
kc

)
. (2)

The outside option (j = 0) is not to buy an air purifier.

Empirically, we construct the market shares for product j (s
jc

) and the outside option (s
0c

) as

follows. We assume that the number of households in city c (I
c

) are potential buyers, and that

each household purchases one or zero air purifier in five years. We use q
jc

to denote the total sales

volume for product j in city c during our sample period of nine years. We then define the market

share for product j by s
jc

= (q
jc

/I
c

) · (5/9). The adjustment term (5/9) comes from the fact that

the total sales volume is based on nine years of data and a household uses air purifiers for five

years. We define the market share of the outside option by s
0c

= 1�
JP

j=1

s
jc

. Note that both of

the adjustment term (5/9) and the outside option (s
0c

) do not vary within city c. Therefore, as

we will show below, these two terms are fully absorbed by city fixed e↵ects in the standard logit

estimation, and thus do not a↵ect our estimates. We also show in the online appendix that this

sectional data, we abstract from this potential inter-temporal responses, which induces attenuation bias for the price
elasticity.

14See Berry (1994) for the proof and more detailed discussions.
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adjustment term does not substantially a↵ect our random-coe�cient logit estimation results in our

context.

We assume that the reduction in indoor air pollution is zero when consumers do not purchase

an air purifier (i.e. x
0c

= 0). That is, if consumers do not buy an air purifier, they are exposed

to indoor pollution that is equal to ambient air pollution. Importantly, this assumption does not

a↵ect our standard logit estimation because city fixed e↵ects absorb x
0c

. In random-coe�cient

logit estimation, city fixed e↵ects absorb substantial variation in x
0c

but does not completely do so

because the model is nonlinear. By making this assumption, we are likely to underestimate WTP

for clean air. This is because in reality x
c0

(the improvement in indoor air quality when consumers

do not buy air purifiers) is likely to be positive if consumers engage in other indoor avoidance

behavior. This is one of the reasons why we interpret our WTP estimates as a lower bound. We

explain this issue in detail in Section 4.3.

Because ln s
0c

= � ln
⇣P

J

k=0

exp(�x
kc

+ ↵p
kc

+ ⌘
k

+ �
c

+ ⇠
kc

)
⌘
, the di↵erence between the log

market share for product j and the log market share for the outside options is lns
jc

� lns
0c

=

�x
jc

+↵p
jc

+ ⌘
j

+�
c

+ ⇠
jc

., as shown by Berry (1994). Since ln s
0c

is absorbed by city fixed e↵ects,

this equation is simplified to:

lns
jc

= �x
jc

+ ↵p
jc

+ ⌘
j

+ �
c

+ ⇠
jc

, (3)

where � is the marginal utility for improvement in air quality, and ↵ is the marginal disutility for

price. The marginal willingness to pay (MWTP) for one unit of indoor air pollution reduction can

be obtained by ��/↵.

An advantage of studying air purifier markets is that e
j

(purifier j’s e↵ectiveness to reduce

indoor particulate matters) is well-known for consumers. As we explained in Section 2.1, if a

purifier has a HEPA filter, it can reduce 99% of indoor particulate matter. On the other hand, if a

purifier does not have HEPA, it does not reduce indoor particulate matter. In advertisements and

product descriptions of air purifier products in the Chinese market, consumers are well-informed of

the di↵erence between HEPA purifiers and non-HEPA purifiers. Therefore, we define the pollution

reduction by x
jc

= x
c

·H
j

, where x
c

is ambient pollution and H
j

is an indicator variable for HEPA

purifiers. Then, x
jc

equals x
c

if H
j

= 1 and equals zero if H
j

= 0. That is, conditional on the
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purchase of a HEPA purifier, consumers can reduce indoor air pollution by x
c

. Otherwise, the

reduction in indoor air pollution is zero. Note that non-HEPA purifiers do not provide reductions

in particulate matter but provide other utility gains, including reductions in VOCs and odors.

These utility gains are captured by the product fixed e↵ects ⌘
j

. Using x
jc

= x
c

·H
j

, our random

utility model results in an estimation equation:

lns
jc

= �x
c

H
j

+ ↵p
jc

+ ⌘
j

+ �
c

+ ⇠
jc

. (4)

Source of identifying variation: It is worth clarifying the source of the identification vari-

ation in this equation. The product fixed e↵ects (⌘
j

) absorb all observed and unobserved product

characteristics, and the city fixed e↵ects (�
c

) absorb all city-level demand shocks. Even with these

fixed e↵ects, we can still identify � because ambient air pollution (x
c

) varies by city and x
c

H
j

has

city-by-product variation. We can also identify ↵ because we have city-by-product variation in p
jc

.

A key empirical question is whether there is exogenous variation in these two variables (x
c

and

p
jc

.). In our empirical strategy section (Section 5.1), we explain our instrumental variable strategy

to exploit plausibly exogenous variation in these variables.

4.2 A Random-coe�cients Logit Model

To relax some assumptions of the standard logit estimation, we also use random-coe�cient es-

timation that allows heterogeneity in the preference parameters. Because general discussions on

random-coe�cient estimation are well documented in the literature (Berry et al., 1995; Nevo, 2001;

Knittel and Metaxoglou, 2013), we provide a brief description focusing on key issues for our em-

pirical analysis.

We begin with the same random utility model described in equation (1) but relax the assump-

tions on �
i

and ↵
i

by allowing the two parameters to vary by consumer i through observable and

unobservable factors. We model the two parameters by �
i

= �
0

+�
1

y
i

+u
i

and ↵ = ↵
0

+↵
1

y
i

+ e
i

,

where y
i

is household i’s income from the census micro data, and u
i

and e
i

are log-normally dis-

tributed unobserved heterogeneity. That is, each of these two parameters depends on the mean

coe�cient, household-level income, and a random unobserved heterogeneity. Denote the part of the

utility function that does not depend on i (the mean utility level) by �
jc

= �
0

x
jc

+↵
0

p
jc

+⌘
j

+�
c

+⇠
jc
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and the part that depends on i by µ
jci

= (�
1

y
i

+ u
i

)x
jc

+ (↵
1

y
i

+ e
i

)p
jc

. Then, the market share

for product j in city c can be evaluated using Monte Carlo integration assuming a number n
c

of

individuals for city c by:15

s
jc

=
1

n
c

ncX

i=1

s
jci

=
1

n
c

ncX

i=1

exp(�
jc

+ µ
jci

)
P

J

k=0

exp(�
kc

+ µ
jki

)
. (5)

The important di↵erence between equations (2) and (5) is that equation (5) now includes elements

that vary by i. Therefore, the market share and �
jc

have to be calculated numerically by the fixed

point iterations: �h+1

.c

= �h
.c

+ lnS
.c

� ln s
.c

for h = 0, ..., H in which s
.c

is the predicted market

share by equation (5) and S
.c

is the observed market share from the data. Once � is obtained, ⇠
jc

can be written by ⇠
jc

= �
jc

� (�
0

x
jc

+ ↵
0

p
jc

+ ⌘
j

+ �
c

) ⌘ !
jc

.

The idea behind the estimation is that if there is a set of instrumental variables that are

uncorrelated with !
jc

, we can estimate the parameters by nonlinear GMM using the moment

conditions of the instruments and !
jc

. Denote the vector of the parameters by ✓ and a set of

instruments by Zjc. Then, the GMM estimate is

✓̂ = argmin !
jc

(✓)0(Z
jc

)��1(Z 0
jc

)!
jc

(✓), (6)

in which ��1 is the optimal weight matrix for the GMM estimation. The GMM objective function

is nonlinear in parameters. Therefore, it has to be evaluated numerically by nonlinear search

algorithms. In the empirical strategy section below, we describe details about the estimation.

4.3 Interpretation of the Parameter Estimates

For several reasons, our estimate of ��/↵ is likely to provide a lower bound estimate of MWTP for

air quality. First, households in China may have limited information on the level of air pollution as

well as the negative health e↵ects of air pollution. As discussed in Greenstone and Jack (2013), the

presence of such imperfect information is likely to make revealed preference estimates of MWTP

lower than the theoretical level of MWTP that would be observed when households have access to

full information. In section 5.4, we provide some empirical evidence on this point.

15See Nevo (2001) for a more detailed explanation for how to derive this equation.
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Second, our approach assumes that indoor air pollution levels in the absence of air purifiers

are equal to ambient pollution levels. Recent engineering studies show that, on average, indoor

pollution levels are lower than outdoor pollution levels in China.16 One approach we could take is

to rely on engineering estimates of the indoor-outdoor air pollution ratio, which would make our

MWTP estimates larger. However, because we want to report a conservative estimate, we keep the

assumption that indoor air pollution levels are equal to outdoor pollution levels.

Third, our model assumes that the reduction in indoor air pollution is zero if households do

not purchase a HEPA purifier, but there can be other avoidance methods that households can

take to reduce indoor air pollution. For example, an individual can wear a mask, although it is

uncommon for Chinese households to wear a mask inside their homes, and most masks do not

provide a reduction in air pollution as comprehensively as air purifiers. Likewise, households can

improve building insulation to reduce incoming flow of air pollution. Such unobserved avoidance

behavior lowers the baseline indoor pollution level that would be obtained without buying an air

purifier. That is, the reduction in indoor air pollution can be larger than zero even if households do

not buy a purifier. This is another reason why our MWTP estimate is likely to be underestimated.

Fourth, our model and empirical analysis incorporate running cost incurred by filter replacement

but ignores electricity cost. According to information from air purifier manufacturers, the electricity

running costs of HEPA purifiers are slightly higher than other air purifiers. This is another reason

why our MWTP estimate is likely to be underestimated.

5 Empirical Analysis and Results

We use the estimating equations derived from the random utility model in the previous section

to estimate the preference parameters for pollution (�) and price (↵), which allow us to measure

WTP for clean air. We begin by describing empirical challenges in estimating these parameters

and how we address them. We then present graphical analysis of raw data, estimation results for

the standard logit model, and those for the random-coe�cient logit model.

16A study from Tsinghua University finds that, in Beijing, on average, the indoor concentration of PM2.5 is 67%
of the outdoor concentration of PM2.5. See The People’s Daily, April 23, 2015 (Zhang, 2015).
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5.1 Empirical Strategy

The primary challenge for our empirical analysis is that two variables in the demand estimation—

air pollution and air purifier prices—are likely to be endogenous in non-experimental data. Air

pollution is generated by observed and unobserved economic factors, and therefore, can be cor-

related with omitted variables in the demand equation. For this reason, it is generally hard to

claim exogeneity for typical cross-sectional variation in air pollution. To address this problem, we

exploit the RD design at the Huai River in section 2.2. This approach provides us a useful research

environment for two reasons. First, it allows us to exploit plausibly exogenous variation in air pol-

lution created by the natural experiment—the Huai river heating policy. Second, the discontinuous

di↵erence in air pollution created by the policy has existed since the 1950s. Therefore, the natural

experiment provides long-run variation in air pollution, which allows us to study how households

respond to long-lasting variation in air pollution as opposed to transitory pollution shocks.

Another empirical challenge is that air purifier prices are also unlikely to be determined exoge-

nously. For example, suppose that some demand factors are observable to firms but unobservable

to econometricians. If firms have the ability to set prices because of imperfect competition, we

expect that they set prices in response to the unobserved demand factors, which creates correla-

tion between the price and the error term in the demand estimation. We address this problem by

combining two approaches. First, we use data from many markets (cities) in China, which allows

us to include both product fixed e↵ects and city fixed e↵ects (Nevo, 2000, 2001). These fixed

e↵ects absorb product-level and city-level unobserved demand factors. The remaining concern is

product-city specific unobserved demand factors that are correlated with city-product specific price

variation. To address this issue, we construct instrumental variables that capture transportation

cost between a product’s manufacturing location and its market (city). These instruments pro-

vide variation at the city-by-product level because manufacturing locations are di↵erent between

products. We provide a detailed description of these instruments below.

First Stage on Air Pollution: We estimate the first stage on air pollution using a RD design

created by the Huai river heating policy. Consider that x
c

is air pollution (PM
10

) in city c and d
c

is

the distance between city c and the Huai River. We use positive values of d
c

for distances north of
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the Huai River and negative values for distances south of the river. Accordingly, a dummy variable

for the north of the river can be denoted by N
c

= 1 {d
c

> 0}.

We use the RD design to estimate a discontinuous change in air pollution (x
c

) at the river border

(d
c

= 0) by controlling for the running variable (d
c

). The recent literature suggests that a local

linear regression based on data near the RD cuto↵ is likely to produce the most robust estimates

(Imbens and Lemieux, 2008; Gelman and Imbens, 2014). Therefore, we use local linear regression

as a main specification and also report results with quadratic controls for d
c

. We use the algorithm

developed by Imbens and Kalyanaraman (2012) to compute the optimal bandwidth but also report

results with di↵erent choices of bandwidth to examine the robustness of our results. We also follow

Imbens and Kalyanaraman (2012) and Calonico et al. (2014) to use a triangular kernel weight to

assign more weights on observations near the Huai River, although we find such weighting does not

change our results substantially.

Our baseline specification for the first stage on air pollution is the following local linear regres-

sion:

x
c

= �N
c

+ �
1

d
c

+ �
2

d
c

N
c

+ ⌫
l

+ ✏
c

, (7)

where x
c

is PM
10

(ug/m3) in city c, N
c

is the dummy variable for the north, d
c

is the distance

between city c and the Huai River, and ✏
c

is the error term. The coe�cient of interest, �, measures a

discontinuous change in x
c

at the Huai River border. A potential concern for spatial RD design like

ours is that the spatial border is long from the west to the east of China, and therefore, unobserved

factors in the west-east dimension could confound the RD estimate. To address this concern, we

include longitude-quartile fixed e↵ects (⌫
l

), which flexibly controls for systematic di↵erences in the

west-east dimension.17

One way to investigate the validity of our RD designs is to test whether there are systematic

di↵erences in observable variables at the RD cuto↵. In Section 3.5, we do not find a statistically

significant discontinuity for a wide range of socio-economic measures at the river boundary. Nev-

ertheless, we examine the robustness of our results by including city demographics as additional

covariates.
17We make the longitude-quartile fixed e↵ects by simply dividing our cities into quartiles based on the longitudes

of the city centroids. We also use longitude fixed e↵ects based on the number of groups that is larger than four and
find that our results do not change substantially.
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Reduced-form of the RD Design: Suppose that our first stage on PM
10

provides evidence of

a discontinuous increase in PM
10

at the Huai river boundary. Then, our demand model predicts that

the log market share for HEPA purifiers relative to the log market share for other purifiers should

be higher in cities north of the river if households value clean air. Our reduced-form estimation

examines whether there is a discontinuous change in the market share for HEPA purifiers at the

river boundary. We use our city-product level data to estimate a reduced-form equation,

lns
jc

= ⇢N
c

H
j

+ ↵p
jc

+ ( 
1

d
c

+  
2

d
c

N
c

+ ⌫
l

)H
j

+ ⌘
j

+ �
c

+ ✏
jc

, (8)

where s
jc

and p
jc

are the market share and price of product j in city c, ⌘
j

is product fixed e↵ects

and �
c

is city fixed e↵ects. Because we include city fixed e↵ects, the log market share for outside

options (ln s
0c

) and a dummy variable for northern cities (N
c

) are absorbed by �
c

.

We allow the control function for the running variable ( 
1

d
c

+ 
2

d
c

N
c

) and the longitude quartile

fixed e↵ects (⌫
l

) to di↵er between HEPA and non-HEPA purifiers by including ( 
1

d
c

+ 
2

d
c

N
c

)H
j

.

Note that even without including these control variables, city-level and product-level unobserved

factors are already absorbed by city fixed e↵ects and product fixed e↵ects. These HEPA-specific

control variables allow us to further capture HEPA-specific potential confounding factors that may

exist in the north-south dimension and west-east dimension.

Second Stage of the RD Design: We estimate the marginal willingness to pay (MWTP)

for clean air by running the following second stage regression:

lns
jc

= �x
c

H
j

+ ↵p
jc

+ ('
1

d
c

+ '
2

d
c

N
c

+ ⌫
l

)H
j

+ ⌘
j

+ �
c

+ ✏
jc

, (9)

by using N
c

H
j

as the instrument for x
c

H
j

. The identification assumption is that the instruments

are uncorrelated with the error term given the control variables and fixed e↵ects. The parameter

of interest is ��/↵, which provides the MWTP for one unit of PM
10

(ug/m3).

Instruments for Air Purifier Price: In addition to the endogeneity of air pollution, we
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need to address a potential endogeneity of prices in equations (8) and (9). Before we explain our

instruments, it is useful to describe the sources of endogeneity that are controlled by the product

fixed e↵ects and city fixed e↵ects, and those that are not fully controlled by these fixed e↵ects.

In the demand estimation of di↵erentiated products, a major omitted variable concern is unob-

served product quality. A product with unobserved high quality is likely to have a high price and

be preferred by consumers. Therefore, unobserved product quality can create correlation between

prices and the error term. An advantage of our research design is that we have many markets

(cities) so that we can include product fixed e↵ects in the same way as Nevo (2000, 2001). Another

omitted variable concern is city-level unobservable economic factors that a↵ect demand. If firms

set higher prices in cities with higher economic development, this also creates correlation between

prices and the error term. We include city fixed e↵ects to control for this concern.

Thus, the remaining concern is unobserved demand factors at the product-by-city level that are

correlated with product-by-city specific price variation. For an unobserved reason, suppose that

there is higher demand for a particular product than others in a city, and also this phenomena is

specific to this city—otherwise product fixed e↵ects absorb this factor. In addition, suppose that

firms know this unobserved demand factors and are able to set a higher price for this product

only in this city. In this case, our product fixed e↵ect and city fixed e↵ect cannot control for this

endogeneity.

To address this concern, we need an instrument that varies at the product-by-city level. Any

instrument that has only city-level or product-level variation would be absorbed by product and city

fixed e↵ects. An ideal instrument is a supply-side cost shifter that does not directly a↵ect demand.

Our idea is that transportation cost from a product’s manufacturing location to its market (city)

has product-by-city variation and can be considered as a supply-side cost shifter conditional on

control variables in our estimation.

To make this instrument, we collect data on product-level factory locations (or port locations

for imported products). We then use GIS to measure the shortest road distance from each product’s

factory location (or port location) to each city. Because ground transportation is a primary shipping

method for air purifiers in China, the road distance captures key variation in transportation cost.

In the first stage regression, we estimate the relationship between air purifier prices and the linear,

quadratic, and cubic terms of the road distance. In addition, we also include the road distance

23



variable interacted with manufacturer dummy variables to allow the price-distance relationship to

be di↵erent among manufacturers.

The identification assumption is that the instrument (the road distance from a product’s factory

or port to each market) is uncorrelated with product-by-city unobserved demand factors. Note that

either city-level or product-level unobserved factors does not confound the instrument becauseof

product and city fixed e↵ects. For example, consider a concern that the distance from a city to a

port can be correlated with city-level income because many coastal cities in China are high-income

cities. This is not an issue in our estimation because this correlation is absorbed by city fixed e↵ects.

Thus, a threat to identification has to be unobservables that have product-by-city level variation.

In section 5.5, we discuss potential threats to identification and provide several robustness checks.

5.2 Graphical Analysis of the RD Design

Before we proceed to formal regression analysis, we provide graphical analysis of the spatial RD

design in Figure 2. Figure 2a presents graphical analysis for the first-stage of the RD design. The

scatter plot shows the local means of PM
10

during 2006-2014 with a bin size of 50 miles. The

horizontal axis is the running variable of the RD design (d
c

), which is the distance between cities

and the Huai River. The vertical line at d
c

= 0 indicates the location of the Huai River. The

northern cities are presented to be on the right hand side of the river line, and the southern cities

are presented to be on the left hand side. We also include two sets of regression fitted lines. The

solid line is the regression fit with a linear control for the running variable and its interaction with

the dummy variable for the northern cities. The dashed line is the regression fit with a linear and

quadratic controls for the running variable.

Consistent with findings in previous studies such as Almond et al. (2009), Chen et al. (2013),

and Ebenstein et al. (2017) the figure shows that there is a discontinuous increase in PM
10

just

north of the Huai River. This evidence suggests that the coal-based heating policy generated higher

pollution levels in cities north of the river boundary.

Figure 2b shows graphical analysis for the reduced-form of the RD design. Recall that the

reduce-form equation (8) is lns
jc
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discontinuously changes at the Huai River boundary. To provide visual evidence, we calculate the

sample analog of E[lns
jc

|H
j

= 1] � E[lns
jc

|H
j

= 0] at the city level (the di↵erence between the

average log market share of HEPA purifiers in city c and the average log market share of non-HEPA

purifiers in city c) and plot the local means and regression fits in Figure 2b.

The figure indicates that there is a sharp increase in the log market share of HEPA purifiers

relative to the log market share of non-HEPA purifiers at the river boundary. Visually, the dis-

continuous jump is approximately 0.4 in log points, which is consistent with the reduced-form

regression results we will present in the next section. Additionally, the figure shows no strong

trend in the outcome variable over the running variable. The relatively flat relationship between

the outcome variable and the running variable suggests that the choice of functional form for the

running variable is unlikely to have a substantial impact on the RD estimates.18

5.3 Estimation Results of the Standard Logit Model

Panel A of Table 3 shows the first stage estimation results for PM
10

. The first two columns are

results without demographic controls and longitude-quartile fixed e↵ects, and the last two columns

are results with these controls. We report our estimates from local linear regression and local

quadratic regression. The estimates are robust to the choice of control function for the running

variable and the inclusion of demographic controls and longitude-quartile fixed e↵ects. For example,

column 3 suggests that there is a discontinuous change in PM
10

at the Huai River by 24.38 ug/m3.

The magnitude is consistent with the visual evidence from Figure 3a. Note that the mean PM
10

is

92 ug/m3 for cities just south of the Huai River. Thus, the RD estimate implies approximately a

26.5 percent increase in PM
10

.

In Panel B of Table 3, we report the first stage estimation result for air purifier prices. We

include product fixed e↵ects in all columns. The estimates imply that the distance to factory/port

and prices are positively correlated. For example, the result in columns 1 implies that the predicted

e↵ect of the road distance of 500 miles on price is $46.46. This is approximately a 10% increase

18We show this figure in terms of the log market shares to be consistent with the reduced-form regression equation
(8). Another form of outcome variable, which is not equivalent to the outcome variable in our regression analysis but
can be also informative, is the non-log version of the outcome variable, which is simply the fraction of HEPA purifier
sales relative to all purifier sales at the city level. We include this figure (Figure A.2) in the appendix. The figure
implies that the HEPA sales fraction is approximately 60% in the south of the Huai River and over 70% in the north
of the river, with a discontinuous increase at the river boundary.
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in price for the average purifier price $454.5. For each column, we report this calculation and

associated standard errors. Note that the 10th, 25th, 50th, 75th, and 90th percentiles of the road

distance are 211 miles, 502 miles, 801 miles, 1048 miles, and 1318 miles in our dataset. Thus, this

result suggests that considerable amount of variation in prices is explained by the road distance

from manufacturing locations/importing ports to markets. In columns 3 and 4, we include city

fixed e↵ects to control for potentially confounding factors at the city level. For example, firms

possibly set higher prices for cities with higher average income. The results in these columns imply

that the relationship between distance and price is robust to the inclusion of city fixed e↵ects.

Table 4 shows the reduced-form and second-stage results of the RD design.19 We include

product fixed e↵ects and city fixed e↵ects. Because we have more instruments than regressors

(an over-identified case), the two-step GMM estimation with the optimal weight matrix provides a

more e�cient estimator than the two-stage least squares (Cameron and Trivedi, 2005). We use the

orthogonality conditions of the instruments to implement the two-step linear GMM estimation and

cluster the standard errors at the city level. Consistent with Figure 2b, the reduced-form results

provide evidence that there is an economically and statistically significant discontinuous increase

in the log market share of HEPA purifiers relative to the log market share of non-HEPA purifiers.

In Panel B of Table 4, we report the second-stage results. As we described in section 5, ��/↵

provides MWTP for 1 ug/m3 reduction in PM
10

for five years, and therefore, �(�/↵)/5 provides

MWTP per year. We provide both of these estimates in the table. The results for the local linear

regression indicate that the MWTP per year is $1.34 per household.

In Table 5, we test the robustness of the results to the selection of bandwidth and control

functions for the running variable. We use a range of bandwidths that are narrower than the

optimal bandwidth (400 miles) to examine how our RD estimate changes if we use cities further

closer to the Huai River. We report the results using local linear regression in Panel A and local

quadratic regression in Panel B. The results are robust to the bandwidth choice. In the online

appendix, we also report this robustness check for the first stage estimation results.

19Note that the reduced-form result presented here is the reduced-form of the RD design after we control for
another endogenous variable (price) with its instruments. The purpose of this approach is to examine the reduced-
form relationship between the outcome variable (log market share) and the variation created by the RD design
(HEPA·North) by controlling for the e↵ect of another endogenous variable (price) in a way that is consistent with the
model described in section 5. Because this is di↵erent from a conventional presentation of “reduced-form” estimation
results, we use terminology “the reduced-form of the RD design” to make this point explicit.
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5.4 Results Before and After Widespread Media Coverage in 2013

As we discussed in Section 4, our MWTP estimate should be interpreted as MWTP given the

information that was available to Chinese households in the sample period. For example, if house-

holds had limited information about air pollution because of imperfect information disclosed by the

government as well as limited media coverage, our MWTP estimate can be lower than a MWTP

estimate that would be obtained with perfect information.

With non-experimental data, it is generally challenging to shed light on this point because the

information acquisition process itself is unlikely to be exogenous to a preference for clean air. A

potential empirical strategy is to use a plausibly exogenous information shock and examine whether

the MWTP estimate di↵ers before and after the information shock. In our context, we consider

that widespread media coverage on air pollution after January 2013—due to a sudden information

disclosure by the US Embassy in Beijing in January 2013—can be used as an information shock to

explore the question.

In the beginning of 2013, there was a remarkable change in Chinese press coverage of air pollu-

tion. Prior to 2013, Chinese media rarely discussed air pollution and its associated health impacts.

On January 12th 2013, the US Embassy in Beijing posted an air quality index (AQI) of 755, beyond

the scale’s maximum of 500, and deemed air quality “Crazy Bad” [New York Times. January 2013].

Immediate reactions and concerns among Chinese citizens prompted widespread reporting of air

pollution in state newspapers.20 In Appendix Figure A.4, we show that there were on average 158

headlines per year that mentioned air pollution in all Chinese newspapers from 2006 to 2012, and

that this number increased dramatically to 1327 in 2013 and 1549 in 2014. Similarly, the number

of newspaper headlines mentioning smog jumped from 12 per year during 2006-2012 to over 1000

per year in 2013 and 2014.

This sudden change in media coverage provides a useful research environment to examine the

relationship between information and MWTP estimates. For this analysis, we divide our data to

create two cross-sectional datasets: one that includes data from 2006 to 2012 and one that includes

data from 2013 to 2014. What we want to test is whether the preference for air quality (� in

our model) changed in response to the change in media coverage in 2013. To test this prediction,

20All Chinese newspapers are completely or primarily owned by the state (Qin, Stromberg, and Wu, 2018).

27



we pool the two datasets and estimate the coe�cient for the interaction term between x
c

H
j

and

Post2013, which is an indicator variable for years after 2013. We interact Post2013 with all of the

control variables, such as city fixed e↵ects, product fixed e↵ects, and the running variables for the

RD design.

Table 6 shows the results. The baseline result in column 1 implies that the preference for

air quality (�) is larger in the post-2013 period than the pre-2013 period, and the di↵erence is

statistically significant. The estimated per-year MWTP is $0.53 in the pre-2013 period and $1.44 in

the post-2013 period. A potential concern in this regression is that time-series variation in factors

unrelated to media coverage may confound the estimate of the interaction term. For example,

economic growth during the sample period could have made households wealthier in the post-2013

period. While it is challenging to completely address this issue, we can include additional controls

to mitigate this concern. In column 2, we control for the interaction term between x
c

H
j

and annual

salary data.21 In column 3, we also include the interaction term between p
jc

and annual salary to

control for the possibility that the price elasticity can be a↵ected by a change in economic growth.

Between the columns, the estimates change only slightly, indicating that the results are robust to

these controls.

These results suggest that the widespread media coverage in 2013 likely played a role in chang-

ing the MWTP estimates. First, this finding provides empirical evidence for the description in

Greenstone and Jack (2013) that MWTP for environmental quality can be distorted by market fail-

ures—including imperfect information available to households in developing countries—and there-

fore estimated MWTP may be di↵erent from the theoretical MWTP with no market failures. Our

empirical evidence suggests that the imperfect information on air pollution before 2013 was likely

to create a downward bias for the revealed MWTP estimate, relative to MWTP in the presence of

more accessible information. Second, note that the information available to households in the post-

2013 period may not be “full information” compared to information available to households in other

countries such as United States. For this reason, we want to emphasize that our MWTP estimate

should be interpreted as a MWTP estimate given the set of information available to households in

our sample period. For instance, if households in our sample period, even after 2013, have limited

21While the household income data from the 2005 census do not provide panel variation, the annual salary data
from the Yearbook give us panel variation.
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access to full information on air pollution, our MWTP estimate should be considered as a lower

bound estimate of the theoretical MWTP under truly full information.

5.5 Potential Threats to Identification

Our estimation relies on the identification assumptions of the RD strategy for air pollution and

those of the IV strategy for air purifier price. In section 3.5, we test for balance in observables

at the Huai River, which provides empirical support for the RD strategy. However, the balance

in observables is not a su�cient condition to validate the RD strategy, and we are also concerned

about potential confounding factors that are relevant to the instrument for price. In this section,

we investigate several potentail threats to identification.

The first potential concern is the sorting of households due to air pollution—households in the

north may migrate to the south to seek cleaner air. This sorting, if it exists, could confound our

estimates. In our case, however, sorting is unlikely to significantly a↵ect our estimates because

of strict migration policies enforced by the Chinese government. Internal migration in China is

strictly constrained by the Hukou system. The hukou, obtained at one’s city of birth, is crucial for

obtaining local social benefits and education opportunities, which makes migration a more costly

decision than migration in countries without restrictions on mobility. The government started to

relax the Hukou system by allowing a few types of migraiotn since the late 1990s, but the migration

rate is still low. We look into migration in the micro-data of the two population census after the

relaxation, the 2000 census and the 2005 census. Indeed, in the 2000 census micro-data, only 0.5

percent of the population in the city of origin within 100 miles north of the Huai river had migrated

to the south. In the 2005 census micro-data, 1 percent of the population in the city of origin within

100 miles north of the Huai river had migrated to the south. Therefore, in our case, migration is

unlikely to have a significant impact on our estimation.

Second, if there are other policies that use the Huai River boundary, there can be di↵erential

impacts of such policies on households to the north and south of the river boundary. However, as

described in Chen et al. (2013), this line was used to divide the country for heating policy because

the average January temperature is roughly 0° Celsius along the line and has not been used for

administrative purposes.

Third, we are concerned that the Huai River policy may a↵ect purifier purchases for reasons

29



unrelated to air pollution. For example, if we consider the heating supply to the north a public

welfare entitlement with subsidized heating costs for northern households, northern households

might have a higher income because of the heating subsidy. We cannot fully rule out this possibility,

but our empirical strategy mitigates this concern for two reasons. First, our estimation includes

city fixed e↵ects. Therefore, if the subsidy for heating increases household wealth, which may

increase demand for purifiers overall (i.e., both HEPA and non-HEPA purifiers), it does not bias

our results. Second, as we discussed in Section 2.2, the heat reform in 2003 changed the payment

system from free provision to flat-rate billing. Of critical importance is that northern households

must pay a substantial proportion of the total heating bill since 2003. Therefore, in our analysis

during the period 2006 to 2014, the heating subsidy has a minimal e↵ect on households, although

we cannot fully exclude the possibility that the subsidy before 2003 may have had long-run e↵ects

on households after 2006.

Fourth, the instrumental variable strategy for air purifier price relies on the identification as-

sumption that the instrument—the road distance from a product’s manufacturing location to its

market (city)—is uncorrelated with product-by-city specific unobserved demand factors. Because

the product and city fixed e↵ects absorb large part of unobservables, it is hard to find a plausible

example that produces systematic correlation between the instrument and error term. However, for

example, suppose that there is a firm that has some knowledge about unobserved demand factors for

a product in a city, and the firm is able to locate this product’s manufacturing location in response

to these unobserved factors. In this case, the identification assumption would be violated.22

To examine this concern, we investigate an alternative instrument in Appendix Table A.2. In

the theory of di↵erentiated products markets, a firm sets a lower (higher) price for its product when

its competitors have lower (higher) marginal costs. This implies that the price of a product can

be a↵ected by the transportation costs of other firms that compete in the same market because

of the mechanism through the imperfect competition of di↵erentiated products. We construct an

alternative instrument based on this theoretical prediction. For each product in a market, we

calculate the average transportation cost (the average of the road distances from manufacturing

22Note that even this example may not be a realistic concern because manufacturers in China usually locate their
factories not necessarily by considering a particular product. Most manufactures produce all of their products,
including air purifier products and non-purifier products such as other electric appliances, in the same factory.
Therefore, the location choice of their factories depend on many factors, not necessarily demand for a particular air
purifier product.
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locations) of other firms. This instrument is not based on each product’s own transportation cost

so that it is unlikely to be correlated with product-by-city specific unobserved demand factors for

that product. The results in Appendix Table A.2 imply that we have a strong enough first stage

relationship with this instrument although it is weaker compared to the first stage relationship with

our main instrument and that the MWTP estimates are not statistically di↵erent from our main

estimates.

5.6 Estimation Results of the Random-Coe�cient Logit Model

The advantage of the standard logit estimation in the previous section is that it can be estimated

by a linear two-stage least squares or a linear GMM method, and therefore, it does not involve

nonlinear estimation. On the other hand, a key assumption in the standard logit model is that

the preference parameters are homogeneous across individuals. We implicitly assume that the

preference for clean air (�) and the sensitivity for price (↵) are homogeneous across households

and, hence, the MWTP for clean air (��/↵) is also homogeneous. In this section, we relax this

assumption and estimate heterogeneity in � and ↵ as we described in section 4.2.

Random-coe�cient demand estimation requires nonlinear GMM estimation based on numerical

optimization with a set of starting values and stopping rules for termination. Recent studies show

caution regarding such numerical optimization and provide guidelines in assessing robustness of

estimation results. For example, Knittel and Metaxoglou (2013) suggest examining 1) conservative

tolerance levels for nonlinear searches, 2) di↵erent sets of nonlinear search algorithms, and 3) many

starting values, to analyze whether the estimated local optimum is indeed the global optimum of

the GMM objective function.

We estimate our model with six nonlinear search algorithms (Conjugate gradient, SOLVOPT,

quasi-Newton 1, and quasi-Newton 2, Simplex and Generalized pattern search), a hundred sets of

starting values, and conservative tolerance levels for nonlinear searches. In total, we obtain 600

estimation results to test the robustness of our results. For starting values for nonlinear parameters,

we generate random draws from a standard normal distribution. We set the tolerance level for the

nested fixed-point iterations to 1E�14, and the tolerance level for changes in the parameter vector

and objective function to 1E�04.

Five of the six search algorithms produce the same minimum value of the objective function.
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Only one of the algorithms—the conjugate gradient algorithm—does not reach that minimum value

in our estimation. For the other five algorithms, we find that 81 to 97 of a hundred sets of the

starting values reach the same minimum value of the objective function. This result implies that it

is important to test multiple search algorithms and starting values to ensure that the local minimum

in a particular set of estimation is indeed likely to be the global minimum. The fact that the five

nonlinear search algorithms reach the same minimum objective function value provides us strong

evidence that the local minimum is likely to be the global minimum of the GMM objective function.

Table 7 shows the estimation results of the random coe�cient model described in equation (6).

We provide results with two sets of controls for the running variable of the regression discontinuity

design. Column 1 uses a linear control for the latitude and its interaction with the indicator variable

for cities in the north side of the Huai River. Column 2 uses linear and quadratic controls for the

latitude. As with the results for the standard logit model in Table 4, the two sets of controls provide

nearly identical results.

Table 7 provides several key findings for heterogeneity in preference parameters. First, the

median and mean MWTP for a reduction of PM
10

(ug/m3) for one year are $1.19 and $1.34, which

are not far from the MWTP estimate obtained by the standard logit model presented in Table 4.

These estimates imply that annual WTP for removing the amount of PM
10

(ug/m3) created by

Huai River heating policy (24.38 ug/m3 based on Table 3) is $32.7 for the average households in

our sample. Second, the positive and statistically significant coe�cient �̂
1

implies that there is

a positive relationship between the preference for clean air (�) and household income (y
i

). Note

that household income in this estimation is in 10,000 USD. Therefore, the coe�cient (�̂
1

=0.0924)

implies that an increase in household income by $10,000 is associated with an increase in � by

0.0924. Third, the positive and statistically significant coe�cient ↵̂
1

implies that higher-income

households are less price-elastic than lower-income households. Fourth, the statistically significant

estimate for �
�

suggests the existence of unobserved heterogeneity in the preference for air quality.23

23Note that the analysis of heterogeneity on observables in general—including our analysis in this section—estimate
how heterogeneity is associated with observables, which does not necessarily mean a causal relationship between
heterogeneity and observables because observables are not randomly assigned. Based on our census data, we find
that other observables such as education do not provide a statistically significant relationship with heterogeneity
once we control for heterogeneity with household income. While this result provides support that household income
is an important factor for heterogeneity, it does not necessarily imply a causal relationship between heterogeneity
in the preference parameters and household income, because there can be unobservables that are correlated with
both income and heterogeneity. For example, home installation is an unobservable factor in our data, and it can be
correlated with both income and heterogeneity.
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We use two figures to visually describe the estimation results. Figure 3 shows the distribution of

MWTP based on the estimates in column 1 of Table 7. Recall that we have household-level income

data for a random sample of households in each city from the 2005 census data. We calculate

the household-level MWTP by mwtp
i

= �(�̂
0

+ �̂
1

y
i

+ û
i

)/(↵̂
0

+ ↵̂
1

y
i

+ ê
i

). The figure suggests

that there is wide dispersion of MWTP per year, and the majority of the distribution is in the

range between $0.49 (10th percentile) and 2.92 (90th percentile). We also show MWTP at several

percentiles of the distribution in the bottom of Table 7.

In Figure 4, we show the relationship between MWTP and household-level income. In the

income distribution, there is a long right tail with a very small fraction of households with an

income over $10,000. We, therefore, drop those with an income over $10,000 from the figure to

better visualize the majority of the distribution. We present the fitted line of the MWTP estimate

over income levels with 95% confidence intervals. It indicates that the average MWTP given income

is increasing in income, suggesting that higher-income households are willing to pay more for an

improvement in air quality.

Overall, the results of the random-coe�cient model provide several key implications, under

the assumptions required for the nonlinear GMM estimation. For the median and mean levels of

MWTP, the estimates from the standard logit estimation are not far from those obtained by the

random-coe�cient estimation in our context. However, the random-coe�cient estimation highlights

substantial heterogeneity in MWTP and the positive relationship between MWTP and household

income.

6 Policy Implications

Our findings provide important policy implications for ongoing discussion in energy and environ-

mental regulation in developing countries. Developing country governments recently proposed and

implemented a variety of interventions to mitigate air pollution problems. For example, the Chi-

nese Premier Li Keqiang declared “War Against Pollution” to reduce emission of PM
10

and PM
2.5

(Zhu, 2014) and proposed various reforms in energy and environmental policies. A key question

is whether implementing such policies enhance welfare. Below, we use a few example policies to

illustrate how one can use our WTP estimates to provide cost-benefit analysis for environmental
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policies.

6.1 Measuring Policy-Relevant MWTP for Clean Air

In the previous sections, we showed our estimation results in terms of household-level MWTP for a

reduction in PM
10

(ug/m3) per year. When it comes to policy discussions, policymakers often need

to know an aggregate measure of MWTP, such as city-wide or nation-wide MWTP. These measures

inform about how much households are willing to pay to obtain a certain levels of improvement in

air quality, which can be used to compare against a cost measure of a policy.

Note that our estimation strategy has advantages and disadvantages in providing these mea-

sures. An advantage is that the random-coe�cient estimation incorporates heterogeneity in MWTP.

Because we have household-level income data for all cities from the census, we can calculate pre-

dicted MWTP for each city by incorporating heterogeneity in the distributions of household income.

An important disadvantage is that our estimation is based on the RD design at the Huai River.

Therefore, unless we make additional assumptions, our estimates should be interpreted as the lo-

cal average treatment e↵ect (LATE) for cities near the river boundary. To make a prediction for

other cities, we need to assume that the coe�cients estimated by our random-coe�cient estimation

can be applied to out-of-sample prediction or cities away from the Huai River. Because this is an

untestable assumption, we want to emphasize that the policy-relevant MWTP measures provided

below should be interpreted with this assumption in mind.

In Panel A of Table 8, we use the results from the random-coe�cient estimation to predict two

policy-relevant measures of MWTP. The first measures are household-level average MWTP and ag-

gregate MWTP for seven Northern cities (Tianjin, Chengde, Tangshan, Dalian, Urumqi, Wuzhong,

Datong) near the Huai River. As we discuss in the next subsection, the Chinese government re-

cently implemented a heating reform in these cities to mitigate the air pollution problem. The

aggregate MWTP in the seven cities is $10.13 million per annual reduction of 1 ug/m3 of PM
10

,

which we use to provide a cost-benefit analysis of this policy in the next section.

The second measures are household-level average MWTP and aggregate MWTP for all house-

holds in China. The nationwide aggregate MWTP is $0.45 billion per annual reduction of 1 ug/m3

of PM
10

. This measure is useful when policymakers consider a nationwide environmental policy

to mitigate air pollution. However, we need to assume that the parameter estimates from the
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random-coe�cient estimation are valid estimates for households who are quite away from the Huai

River. As we mentioned above, therefore, this estimate should be interpreted with caution.

6.2 Cost-Benefit Analysis of Environmental Policies

6.2.1 Heating Policy Reform in Northern China

We first consider a policy that was recently implemented in China. In 2005, the Chinese government

and the World Bank initiated a pilot reform to improve the Huai River heating policy in seven

northern cities (Tianjin, Chengde, Tangshan, Dalian, Urumqi, Wuzhong, Datong). The primary

goal of the reform is to save energy usage and reduce air pollution by introducing household metering

and consumption-based billing under which consumers pay for actual heating consumption and can

control how much heating they consume.24 Ten years after the start of the pilot reform, there is

still ongoing debate—whether such a reform would improve welfare, and similar reforms should be

implemented in other cities. The main challenge is that the cost of installing individual meters

and adopting consumption-based billing is not small, while the benefit of the reform has not been

systematically examined.25

The abatement cost information is available by WorldBank (2014)—this 8-year project cost $18

million for the seven cities is $18 million, suggesting that the abatement cost per year was $2.25

million. The world bank report also estimates that the project generated a reduction in annual

coal consumption by 2.6 million tons, from a baseline level of 13.9 million tons, suggesting a 18.7%

reduction in coal usage. To learn how much reduction in PM
10

was associated with this change

in coal usage, we need to know the relationship between coal usage and ambient PM
10

. This

relationship depends on many factors, and therefore, it is generally challenging to estimate.

We consider three approaches to estimate the coal-ambient PM
10

relationship. Our first idea

is to exploit the Huai River RD design. As we discussed in the previous sections, the discrete

24As we describe in Section 2.2, the 2003 reform in all northern cities replaced a free heating provision with flat-rate
billing. Households pay a fixed charge per square meter for heating for the entire winter, which does not depend on
the actual amount of usage. The flat-rate billing provides no incentives for households to respond to market-based
energy costs.

25According to the People’s Daily on October 23 2009 (People’sDaily, 2009), the Vice Minister of the Ministry
of Housing and Urban-Rural Development summarized three obstacles to the implementation of the heat reform:
1) many new construction projects refuse to install household meters because they are expensive, 2) it is costly
to remodel old buildings to accommodate the installation of household meters, and 3) it is costly to build a new
consumption-based billing system.
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di↵erence in PM
10

at the Huai River is primarily due to the higher coal usage in the north of the

Huai Rirver. Then, the reduced form regression of coal usage on the dummy variable for northern

cities with control variables for the running variable can provide a discontinues di↵erence in coal

usage between the south and north of the river, from which we can estimate the elasticity of ambient

PM
10

with respect to coal usage. A potential limitation of this RD approach is that it provides the

coal-PM
10

relationship for cities near the Huai River. However, for this particular policy question,

this is unlikely to be an issue because we want to evaluate the policy that is relevant to the cities

near the river. In Appendix Figure A.5, we use province-level coal usage data from China Energy

Statistical Yearbook 2006-2014 to estimate this RD design. We find that the RD estimate (and the

standard error) for the north dummy variable is 78.19 (38.70). The estimation result suggests that

provinces just south to the river consume around 170 million tons of coal per year, and this number

jumps to around 250 million tons just north to the river.26 By combining this finding with the RD

estimate for the discrete increase in PM
10

(Figure 2a), the implied elasticity of ambient PM
10

with

respect to coal usage is 0.53.

The second approach is to run fixed-e↵ect panel regression of ambient PM
10

on coal usage by

using province-year panel data. Di↵erent from the RD approach, this approach can use variation

in all provinces.27 In Appendix Table A.5, column 1 includes province fixed e↵ects and year fixed

e↵ects, and column 2 includes natural gas usage as an additional control variable. Both columns

suggest that 1% increase in coal consumption is associated with about 0.4% increase in ambient

PM
10

, which indicates that the implied elasticity of ambient PM
10

with respect to coal usage is 0.4.

The third approach is to rely on existing evidence from the science literature. The most relevant

study is Health E↵ects Institute (2016), which uses engineering models to estimate how much of

ambient PM
10

in China is due to coal usage. The study finds that the coal usage accounts for 54%

of ambient PM
10

in China. Therefore, based on this engineering approach, the implied elasticity of

ambient PM
10

with respect to coal usage is 0.54.

Although it is quite di�cult to provide an accurate measure of the elasticity of ambient PM
10

with respect to coal usage, the three approaches provided similar estimates. For our analysis

26The coal consumption data are available by province and year from China Energy Statistical Yearbook. We
measure the shortest distance from each province’s center point to the river boundary. The optimal bandwidth is 500
miles. A dot represents a province’s average annual coal consumption in 2006-2014.

27We generate province-level average PM10 from the city-level PM10 data. Because PM10 data are not reported in
all cities until 2013, our analysis here uses data in 2013-2015.
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below, we use the implied elasticity from the RD approach (0.53). However, our result does not

substantially change if we use the other two estimates. With this elasticity, the 18.7% reduction

in coal usage—due to the heating reform—is associated with a 9.9% reduction in ambient PM
10

,

which implies 11.91 ug/m3 reduction in PM
10

for the seven cities. We then multiply this number

with the aggregate MWTP in the seven cities to obtain the total WTP for this policy, which is

$120.63 million.

Finally, we use this number as a benefit of the policy to compare the cost to calculate the benefit-

cost ratio of the policy. Note that our MWTP estimate is likely to be a lower bound estimate for

the reasons we described in section 4.3. Therefore, the benefit-cost ratio is also likely to be a lower

bound estimate. Our result suggests that the heat reform policy is likely to be a welfare-improving

environmental policy, even with our lower bound estimate of the policy’s benefit. 28

6.2.2 A counterfactual policy on the replacement of coal power plants

With a set of additional assumptions, our MWTP estimate can be also used to evaluate coun-

terfactual policies. In this section, we examine an example environmental policy that is actively

being debated in China in recent years. Chinese electricity generation has heavily relied on coal.

For example, in 2015, 72% of electricity is generated by coal (EIA, 2015). Coal power plants are

one of the dirtiest emission sources. According to Massetti et al. (2016), coal power plants emit

five times more PM
10

than natural gas power plants per MWh of electricity production. For this

reason, policymakers in China are debating whether some of the existing coal power plants should

be replaced by cleaner sources such as natural gas or wind.

We consider a counterfactual policy in which 10% of the existing coal power plants’ electricity

production is replaced by natural gas power plants or wind farms. In this calculation, we rely the

emission inventory data that is developed by Ma et al. (2017). Because it is generally challenging

to construct accurate emission inventory data in China, we want to emphasize that our calculation

below should be interpreted as a back-of-envelope calculation. The emission inventory estimate in

28Our cost-benefit analysis here focuses on the benefit-cost ratio of the policy to examine whether the policy is
welfare-enhancing. Another important discussion is how the cost of the policy should be allocated across households.
Our MWTP estimate suggests that it can be justified to ask higher-income households to bear higher costs than lower-
income households from the e�ciency perspective, although such a cost-sharing scheme can be politically di�cult to
be implemented in practice.
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Ma et al. (2017) imply that 6% of PM
10

in China is emitted from coal power plants.29 Therefore, if

10% of the existing coal power plants’ production is replaced by wind power, it would result in 0.6%

reduction in PM
10

. Assuming that 0.6% reduction in PM
10

implies 0.6% reduction in the average

PM
10

concentration, this implies a reduction in PM
10

concentration by 0.56 ug/m3 for the average

nationwide level of PM
10

concentration in our data (93 ug/m3). We consider that the replaced

power plants can operate for 30 years. Based on these assumption, the willingness to pay for this

replacement policy is $7.67 billion (= 0.56 ·0.45 ·30). According to (EIA, 2015), the total electricity

generation from coal power plants in China is 4.28 billion MWh. This implies that MWTP per

MWh is $17.9 (= 7.67/(0.1 · 4.28)).

Similarly, we can calculate MWTP per MWh for natural gas power plants. Based on the

emission factors in Massetti et al. (2016), natural gas power plants produce 80.4% less PM
10

per

MWh relative to coal power plants. That is, the 10% replacement policy with natural gas would

result in a reduction in PM
10

concentration by 0.49%, which implies 0.46 ug/m3 for the average

nationwide level of PM
10

concentration in our data (93 ug/m3). With the same procedure presented

in the previous paragraph, MWTP per MWh is estimated to be $14.6 for the replacement policy

with natural gas power plants.

These two numbers imply that the cost di↵erence between coal power plants and wind power

plants (natural gas power plants) has to be less than $17.9/MWh ($14.6/MWh) to justify the

cost-benefit of these replacement policies. The question is whether this is a reasonable number

given the current generation technology. It is di�cult to obtain reliable cost comparison between

generation technologies in China because studies on the levelized cost of electricity (LCOE) provide

quite di↵erent results, depending on the assumptions behind the calculation (see Borenstein (2012)

for more discussions). Some studies find that at least in the United States, the LCOE of combined-

cycle natural gas plants have become quite competitive to the LCOE of coal-based power plants

because of inexpensive natural gas price in recent years. China has potentially inexpensive sources

of natural gas reserves, but given the current technology and infrastructures, most studies find that

at least for now, the LCOE of coal-based power plants is substantially lower than that of natural

gas power plants, most likely much more than 14.6/MWh. Similarly, even though the cost of wind

29Note that this is about the emissions from coal-fired power plants instead of overall coal usage. Substantial part
of PM10 is due to coal, but coal-fired power plants are responsible for 6% of PM10 according to Ma et al. (2017).
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generation has been declining, most studies find that the di↵erence in the LCOE between coal and

wind is much larger than $17.9/MWh in China. Therefore, WTP for a reduction in PM
10

per se is

unlikely to justify the cost-benefit of these policies at least for now.

There are two important notes on this calculation. First, this calculation does not include

other benefits of cleaner power plants, including reductions in other pollutants such as NO
x

and

SO
x

. Second, the technological progress on natural gas and wind power plants may be going to

reduce the cost advantage of coal power plants substantially in the near future. Therefore, this

counterfactual policy could become relatively more cost-e↵ective in the near future when the cost

di↵erence between coal-based electricity and alternatives shrinks further.

6.3 Avoidance Behavior and Implied VSL in Developing Countries

Finally, we investigate whether the MWTP estimate found in this paper is higher or lower than

those estimated from other avoidance behavior in developing countries. A challenge in answering

this question is that MWTP is not directly comparable across studies when it is estimated from

di↵erent avoidance behavior. For example, Kremer et al. (2011) estimate MWTP for clean water

based on avoidance behavior on water pollution in Kenya. This MWTP is not directly comparable

to our MWTP because the harmfulness of water pollution in Kenya is not necessarily comparable

to that of air pollution in China. To make such comparison possible, one can calculate the implied

value of statistical life (VSL) based on the expected risk/damage of pollution and MWTP to avoid

such pollution.

Before we show the comparison of the implied VSL estimates, we want to emphasize two caveats

required for this approach. First, this exercise requires the strong assumption that individual’s

belief about the expected health damage of air pollution is equivalent to the information we use

below. For example, individuals may have a biased belief if they are not fully informed about the

relationship between air pollution and health outcomes. Second, the implied VSL based on MWTP

for air quality is likely to be an upper bound estimate of the VSL. This is because MWTP for air

quality could include not only health benefits but also other non-health amenities associated with

air purification.

In our case, under the assumption that households are aware of the relationship between PM
10

and its health damage, we can calculate the implied VSL by the following procedure. The finding by
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Ebenstein et al. (2017) implies that a life-time increase in PM
10

by 1 ug/m3 reduces life expectancy

by 0.064 years. Our MWTP estimate implies that households who has the average life expectancy

in China (76 years) are willing to pay $101.84 (= 1.34 · 76) to avoid a life-time increase in PM
10

by 1 ug/m3. Therefore, the implied one-year VSL is $1591 (= 101.84/0.064). This is equivalent to

19% of average annual income.

We compare this estimate with the implied VSL estimates in other countries. Kremer et al.

(2011) find that the implied one-year VSL is $24, which is roughly 5% of household income in Kenya.

Leon and Miguel (2017) examine avoidance behavior on risky transportation in Sierra Leone and

find that the implied one-year VSL is $13,500 for Africans (about 22% of annual income) and

$23,232 for non-Africans (about 23% of annual income).

We show this comparison in Panel C in Table 9. Although the implied VSL estimates are

di↵erent among the studies, the average household income is also di↵erent in these countries. We

investigate if the di↵erence in income can partly explain the di↵erence in the VSL estimates. In

the last column, we show the arc income elasticities of the implied VSL, obtained from comparing

each study to the study in the row above. We find that all of the implied income elasticities are

close to one, and the constant income elasticity of one can consistently explain the di↵erence in the

implied VSL estimates between these studies.30

7 Conclusion and Directions for Further Research

In this paper, we provide among the first revealed preference estimate of willingness to pay (WTP)

for clean air in developing countries. We examine the demand for home-use air purifiers, a main

defensive investment for reducing indoor air pollution, which provides valuable information for

estimating a lower bound of WTP for air quality improvement. Our empirical strategy leverages the

Huai River heating policy, which created discontinuous quasi-experimental and long-run variation

in air pollution between the north and south of the river. Using a spatial regression discontinuity

design, we find that households are willing to pay $1.34 per year to remove 1 µg/m3 of PM
10

and

$32.7 per year to eliminate policy-induced air pollution created by the Huai River heating policy.

We find that substantial heterogeneity in WTP is explained by household income and exposures to

30We thank Kelsey Jack for providing this comment in her discussion of our paper.
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media coverage on air pollution.

We want to describe several key empirical issues that were not fully addressed in our study and

potential directions for further research. First, one of the limitations of our dataset is that we do

not observe individual-level transaction. For this reason, we need to assume that a household can

purchases at most one air purifier and uses it for five years on average—the average usage period

of air purifiers according to manufacturers—with the frequency of air filter replacements that is

described in product descriptions. For example, some households may purchase more than one air

purifier to clean their homes. Some may use their air purifiers for shorter or longer than five years.

With individual-level transaction data, these questions can be investigated.

Second, our dataset also does not provide information about indoor avoidance behavior besides

air purifier purchases. For example, households may be able to mitigate indoor air pollution by

installing better building materials or by closing windows in polluted days. Likewise, they can po-

tentially wear masks inside although this is not a common practice in China. While these avoidance

methods do not provide as comprehensive reductions in indoor air pollution as air purifiers, they

could be relatively less expensive options. Therefore, investing such avoidance behavior is also an

important research topic.

Finally, there needs to be more research on how market failures a↵ect revealed preference es-

timates of MWTP for environmental quality as emphasized by (Greenstone and Jack, 2013). In

Section 5.4, we provide empirical evidence on how information available to households can be asso-

ciated with MWTP estimates. However, there can be more market failures in developing countries

that could make MWTP estimates deviate from the theoretical level of MWTP. Understanding this

point is key to interpret MWTP estimates and design policies that address relevant market failures.
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Figure 1: Huai River Boundary and City Locations

Note: The line in the middle of the map shows the Huai River-Qinling boundary.
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Figure 2: Regression Discontinuity Design at the Huai River Boundary

(a) First stage: PM10 (ug/m3)
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(b) Reduced-form: E[ln(market share)|HEPA]-E[ln(market share)|Non-HEPA]
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Note: The scatter plot in Figure 2a shows the local means of PM10 during 2006-2014 with a bin size of 50
miles. The horizontal axis is the distance to the Huai River—positive values are north and negative values
are south of the river. The solid line is the regression fit with a linear control for the running variable and
its interaction with the dummy variable for the northern cities. The dashed line is the regression fit with
linear and quadratic controls for the running variable. The scatter plot in Figure 2b shows the local means
of E[ln(market shares)|HEPA]�E[ln(market shares)|Non-HEPA] along with two regression fitted lines.
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Figure 3: Distribution of Marginal WTP for Clean Air
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Note: This histogram is based on the random-coe�cient logit estimation results in column 1 of Table 7 and
household-level annual income from the 2005 census micro data.

48



Figure 4: Marginal WTP for Clean Air and Household Income
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Note: This figure shows the relationship between the estimated marginal willingness to pay for clean air and
household-level income.
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Table 1: Summary Statistics of Air Purifier Data

Panel A: Air purifier attributes

All purifiers HEPA Non-HEPA Di↵erence
purifiers purifiers in means

Price of a purifier ($) 454.52 509.64 369.81 139.84***
(383.81) (404.24) (333.45) [52.14]

Humidifing (0 or 1) 0.164 0.177 0.143 0.034
(0.370) (0.382) (0.351) [0.070]

Room coverage (square meter) 41.85 44.97 36.50 8.47*
(23.65) (24.93) (20.27) [4.42]

Distance to factory or port (in 100 miles) 7.48 7.32 7.72 -0.39
(2.87) (2.69) (3.12) [0.45]

Price of a replacement filter ($) 46.38 56.39 34.92 21.47*
(52.21) (65.68) (25.91) [10.70]

Frequency of filter replacement (in months) 9.03 10.08 7.92 2.17
(5.93) (6.55) (4.97) [1.37]

Panel B: Number of purifier sales/number of households (%)

All purifiers HEPA Non-HEPA HEPA/
purifiers purifiers Non-HEPA

(%) (%) (%) (Ratio)

Beijing (North) 17.82 12.10 5.72 2.12
Xi‘an (North) 6.20 4.38 1.82 2.41
All Northern Cities 4.70 3.16 1.54 2.06
Shanghai (South) 8.89 5.08 3.81 1.33
Shenzhen (South) 8.35 4.39 3.96 1.11
All Southern Cities 3.47 1.94 1.53 1.27

Note: The dataset includes 690 air purifier products from 45 manufactures. 418 products are HEPA purifiers
and 272 are non-HEPA purifiers. In Panel A, standard deviations are reported in parentheses, and standard
errors clustered at the manufacture level are reported in brackets. * significant at 10% level; ** significant
at 5% level; *** significant at 1% level.

50



Table 2: Summary Statistics of Observables for the North and South of the Huai River

(1) (2) (3) (4)
Di↵erences RD Estimates

North South in Means (local linear)

Population (1,000,000) 2.398 2.720 -0.323 -0.388
(2.266) (3.189) [0.625] [1.411]

Urban population (1,000,000) 1.773 1.974 -0.200 -1.092
(1.770) (2.436) [0.480] [1.151]

Years of schooling 9.30 8.64 0.667*** -0.101
(0.88) (1.12) [0.227] [0.671]

Fraction illiterate 0.052 0.069 -0.016** 0.003
(0.022) (0.033) (0.006) (0.018)

Fraction completed high school 0.338 0.286 0.051** 0.018
(0.107) (0.112) [0.025] [0.074]

Fraction completed college 0.052 0.048 0.004 -0.019
(0.033) (0.031) [0.007] [0.021]

Per capita household income 527.52 698.10 -170.58** -134.54
(USD in 2005) (152.79) (388.20) [67.27] [107.41]

House size (square meter) 75.24 92.04 -16.80*** -12.25
(13.32) (17.52) [3.51] [9.34]

Residence built after 1985 0.691 0.718 -0.027 -0.040
(0.083) (0.075) [0.018] [0.027]

Fraction building materials include 0.668 0.729 -0.061 0.010
reinforced concrete (less insulated) (0.187) (0.147) [0.037] [0.107]

Fraction moved within city 0.074 0.065 0.009 -0.002
(0.030) (0.022) [0.006] [0.010]

Fraction occupation involved with 0.218 0.208 0.011 0.032
outdoor activities (0.106) (0.099) [0.023] [0.074]

Note: In columns (1)-(2), standard deviations are reported in parentheses. In columns (3)-(4), standard
errors are reported in brackets. * significant at 10% level; ** significant at 5% level; *** significant at 1%
level.

51



Table 3: First Stage Estimation for PM
10

and Air Purifier Price

(a) First stage estimation for PM10

Dependent variable: PM
10

in ug/m3

(1) (2) (3) (4)

North 24.54⇤⇤⇤ 24.55⇤⇤⇤ 24.38⇤⇤⇤ 24.19⇤⇤⇤

(6.97) (6.98) (8.71) (8.86)

Observations 49 49 49 49
R2 0.36 0.36 0.56 0.57
Control function for running variable Linear*North Quadratic Linear*North Quadratic
Demographic controls Y Y
Longitude quartile FE Y Y

(b) First stage estimation for air purifier price

Dependent variable: Price ($)

(1) (2) (3) (4)

Distance to factory in 100 miles 18.43⇤⇤⇤ 18.39⇤⇤⇤ 12.70⇤⇤ 12.67⇤⇤

(4.97) (4.98) (4.94) (4.93)

(Distance to factory in 100 miles)2 -2.32⇤⇤⇤ -2.33⇤⇤⇤ -1.49⇤ -1.49⇤

(0.72) (0.72) (0.77) (0.77)

(Distance to factory in 100 miles)3 0.10⇤⇤⇤ 0.10⇤⇤⇤ 0.06 0.06
(0.03) (0.03) (0.04) (0.04)

Observations 7,359 7,359 7,359 7,359
R2 0.96 0.96 0.96 0.96
Control function for running variable Linear*North Quadratic Linear*North Quadratic
Product FE Y Y Y Y
City FE Y Y
Longitude quartile FE*HEPA Y Y Y Y

Predicted e↵ect of 500 miles on price 46.46⇤⇤⇤ 46.30⇤⇤⇤ 33.22⇤⇤⇤ 33.16⇤⇤⇤

(12.07) (12.15) (11.43) (11.42)
Predicted e↵ect as % of mean price 10.2% 10.2% 7.3% 7.3%

Note: Observations in Panel A are at the city level, and observations in Panel B are at the product-by-city
level. Demographic controls include population and GDP per capita from City Statistical Yearbook (2006-
2014), and average years of schooling and the percentage of population that have completed college from
the 2005 census microdata. The distance variable in Panel B measures each product’s distances between
the manufacturing factory/importing port to markets. We also include the interaction of the linear distance
variable with manufacturer dummy variables to allow a flexible functional form for the relationship between
prices and distance. * significant at 10% level; ** significant at 5% level; *** significant at 1% level.

52



Table 4: Standard Logit: Reduced Form and Second Stage Estimation Results

Panel A: Reduced form of the RD design

Dependent variable: ln(market share)

(1) (2)

North*HEPA (⇢) 0.4275⇤⇤⇤ 0.4216⇤⇤⇤

(0.0329) (0.0320)

Price (↵) -0.0052⇤⇤⇤ -0.0052⇤⇤⇤

(0.0001) (0.0001)

Observations 7,359 7,359
First-stage F-Stat 870.29 1115.94
Control function for running variable Linear*North Quadratic

Panel B: Second stage of the RD design

Dependent variable: ln(market share)

(1) (2)

PM10*HEPA (�) 0.0299⇤⇤⇤ 0.0302⇤⇤⇤

(0.0030) (0.0032)

Price (↵) -0.0048⇤⇤⇤ -0.0048⇤⇤⇤

(0.0001) (0.0001)

Observations 7,359 7,359
First-stage F-Stat 285.16 292.01
Control function for running variable Linear*North Quadratic

MWTP for 5 years (-�/↵) 6.2077⇤⇤⇤ 6.3100⇤⇤⇤

(0.6649) (0.7130)
MWTP per year 1.2415⇤⇤⇤ 1.2620⇤⇤⇤

(0.1330) (0.1426)

Note: Panel A shows results for the reduced-form estimation in equation (8). All regressions include product
fixed e↵ects, city fixed e↵ects, and longitude quartile fixed e↵ects interacted with HEPA. Price is instrumented
with the distance variables discussed in the text. Panel B shows results for the second-stage estimation
in equation (9). PM10*HEPA and Price are instrumented with North*HEPA and the distance variables
discussed in the text. We use the two-step linear GMM estimation with the optimal weight matrix. Standard
errors are clustered at the city level. * significant at 10% level; ** significant at 5% level; *** significant at
1% level. We also report the Kleibergen-Paap rk Wald F-statistic. The Stock-Yogo weak identification test
critical value for one endogenous variable (10% maximal IV size) is 16.38, and for two endogenous variables
(10% maximal IV size) it is 7.03.
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Table 5: Robustness Checks

Panel A: Control function for the running variable: Linear*North

Dependent variable: ln(market share)

(1) 250 miles (2) 300 miles (3) 350 miles (4) 400 miles

PM10*HEPA (�) 0.0296⇤⇤⇤ 0.0322⇤⇤⇤ 0.0268⇤⇤⇤ 0.0299⇤⇤⇤

(0.0029) (0.0047) (0.0010) (0.0030)

Price (↵) -0.0036⇤⇤⇤ -0.0038⇤⇤⇤ -0.0042⇤⇤⇤ -0.0048⇤⇤⇤

(0.0002) (0.0002) (0.0001) (0.0001)

Observations 5,619 5,878 7,107 7,359
First-stage F-Stat 1921.77 526.20 1348.93 285.16

MWTP for 5 years (-�/↵) 8.2840⇤⇤⇤ 8.4562⇤⇤⇤ 6.3748⇤⇤⇤ 6.2077⇤⇤⇤

(1.0665) (1.4798) (0.2764) (0.6649)
MWTP per year 1.6568⇤⇤⇤ 1.6912⇤⇤⇤ 1.2750⇤⇤⇤ 1.2415⇤⇤⇤

(0.2133) (0.2960) (0.0553) (0.1330)

Panel B: Control function for the running variable: Quadratic

Dependent variable: ln(market share)

(1) 250 miles (2) 300 miles (3) 350 miles (4) 400 miles

PM10*HEPA (�) 0.0298⇤⇤⇤ 0.0327⇤⇤⇤ 0.0265⇤⇤⇤ 0.0302⇤⇤⇤

(0.0028) (0.0046) (0.0010) (0.0032)

Price (↵) -0.0035⇤⇤⇤ -0.0037⇤⇤⇤ -0.0042⇤⇤⇤ -0.0048⇤⇤⇤

(0.0002) (0.0002) (0.0001) (0.0001)

Observations 5,619 5,878 7,107 7,359
First-stage F-Stat 2122.08 467.03 1399.44 292.01

MWTP for 5 years (-�/↵) 8.4464⇤⇤⇤ 8.7436⇤⇤⇤ 6.3470⇤⇤⇤ 6.3100⇤⇤⇤

(1.0758) (1.5087) (0.3034) (0.7130)
MWTP per year 1.6893⇤⇤⇤ 1.7487⇤⇤⇤ 1.2694⇤⇤⇤ 1.2620⇤⇤⇤

(0.2152) (0.3017) (0.0607) (0.1426)

Note: This table shows results for the second-stage estimation in equation (9) with alternative choices of
bandwidth and control functions for the running variable. All regressions include product fixed e↵ects, city
fixed e↵ects, and longitude quartile fixed e↵ects interacted with HEPA. See notes in Table 4. Standard
errors are clustered at the city level. * significant at 10% level; ** significant at 5% level; *** significant at
1% level. We also report the Kleibergen-Paap rk Wald F-statistic. The Stock-Yogo weak identification test
critical value for two endogenous variables (10% maximal IV size) is 7.03.
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Table 6: Before and After the Expansion of Media Coverage on Pollution in 2013

Dependent variable: ln(market share)

(1) (2) (3)

PM10*HEPA 0.0192⇤⇤⇤ 0.0174⇤⇤⇤ 0.0193⇤⇤⇤

(0.0018) (0.0027) (0.0025)

PM10*HEPA*Post-2013 0.0329⇤⇤⇤ 0.0307⇤⇤⇤ 0.0280⇤⇤⇤

(0.0076) (0.0079) (0.0090)

Price -0.0072⇤⇤⇤ -0.0072⇤⇤⇤ -0.0064⇤⇤⇤

(0.0001) (0.0002) (0.0002)

Observations 10,780 10,780 10,780
First-stage F-Stat 113.39 112.01 189.15
Control function for running variable Linear*North Linear*North Linear*North
Product FE*Post-2013 Y Y Y
City FE*Post-2013 Y Y Y
Longitude quartile FE*HEPA*Post-2013 Y Y Y
Salary*HEPA Y Y
Salary*Price Y

MWTP per year before 2013 0.5313⇤⇤⇤ 0.4867⇤⇤⇤ 0.6001⇤⇤⇤

(0.0595) (0.0874) (0.0918)

MWTP per year after 2013 1.4438⇤⇤⇤ 1.3458⇤⇤⇤ 1.4707⇤⇤⇤

(0.1475) (0.1376) (0.2009)

Di↵erence in MWTP per year 0.9124⇤⇤⇤ 0.8591⇤⇤⇤ 0.8706⇤⇤⇤

(0.1961) (0.2040) (0.2647)

Note: This table shows results for the second-stage estimation in equation (9) but allows the preference for
air quality (�) to be di↵erent before and after 2013. Observations are at the product-city-pre(post) 2013
level. Standard errors are clustered at the city level. * significant at 10% level; ** significant at 5% level;
*** significant at 1% level. We also report the Kleibergen-Paap rk Wald F-statistic. The Stock-Yogo weak
identification test critical value for one endogenous variable (10% maximal IV size) is 16.38, and for two
endogenous variables (10% maximal IV size) it is 7.03.
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Table 7: Random-Coe�cient Logit Estimation Results

Dependent variable: ln(market share)

(1) (2)

PM10 · HEPA

Mean coe�cient (�
0

) 0.0459⇤⇤⇤ 0.0498⇤⇤⇤

(0.0084) (0.0092)

Interaction household income (�
1

) 0.0924⇤⇤⇤ 0.0891⇤⇤⇤

(0.0224) (0.0253)

Standard deviation (�
�

) 0.0323⇤⇤⇤ 0.0570⇤⇤⇤

(0.0117) (0.0119)

Price

Mean coe�cient (↵
0

) -0.0069⇤⇤⇤ -0.0071⇤⇤⇤

(0.0007) (0.0007)

Interaction with household income (↵
1

) 0.0028⇤⇤ 0.0028⇤⇤

(0.0011) (0.0011)

Standard deviation (�
↵

) 0.0006 0.0005
(0.0007) (0.0007)

Observations 7,359 7,359
Control function for running variable Linear*North Quadratic
GMM objective function value 375.05 378.93
MWTP per year: 5th percentile 0.38 0.07
MWTP per year: 10th percentile 0.49 0.20
MWTP per year: 25th percentile 0.75 0.53
MWTP per year: 50th percentile 1.19 1.10
MWTP per year: mean 1.34 1.41
MWTP per year: 75th percentile 1.90 2.04
MWTP per year: 90th percentile 2.92 3.45
MWTP per year: 95th percentile 3.86 4.69

Note: This table shows the results of the random-coe�cient logit estimation in equation (6). All regressions
include product fixed e↵ects, city fixed e↵ects, and longitude quartile fixed e↵ects interacted with HEPA.
Column 1 uses a linear control for the running variable interacted with the North dummy variable, and
column 2 uses a quadratic control for the running variable. Asymptotically robust standard errors are given
in parentheses, which are corrected for the error due to the simulation process by taking account that the
simulation draws are the same for all of the observations in a market. The household-level income data
(in 2005 USD) come from the 2005 Chinese census. The distribution of the marginal willingness to pay for

clean air is obtained by mwtp
i

= �(�̂
0

+ �̂
1
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i
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)/(↵̂
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+ ↵̂
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i

) using the estimated coe�cients,
household-level income, and random draws from standard normal distributions.
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Table 8: Policy Implications

Panel A: Policy-relevant MWTP measures ($ per 1 ug/m3 annual reduction in PM10)

Household-level ($) Aggregate ($)

In-sample estimate (from Table 7) 1.34
Seven northern cities 1.62 10.13 million
Nationwide 1.26 0.45 billion

Panel B: Cost-benefit analysis: Heating reform in seven northern cities

Abatement cost (million $) 2.25
Estimated PM10 reduction (ug/m3) 11.91
Total WTP (million $) 105.07
Benefit-cot ratio 46.70

Panel C: Cost-benefit analysis: Replacement of coal power plants by wind or natural gas

Wind Natural gas

Estimated PM10 reduction (ug/m3) 0.56 0.46
Total WTP (billion $) 0.26 0.21
MWTP for replacing coal-based electricity ($/MWh) 17.9 14.5

Note: This table shows policy-relevant MWTP measures and the cost-benefit analysis of two policies dis-
cussed in Section 6.

Table 9: Comparison of Implied Value of Statistical Life

Income
Implied VSL Income VSL as % elasticity

Study Country (USD/year) (USD/year) of income of VSL

Kremer et al (2011) Kenya 24 480 5%
Ito and Zhang (2018) China 1591 8332 19% 1.09
Leon and Miguel (2017) Sierra Leone (Africans) 13500 62360 22% 1.03
Leon and Miguel (2017) (Non-Africans) 23232 99000 23% 1.03

Note: This table compares the implied value of statistical life between studies.
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Online Appendices Not For Publication

A Additional Figures

Figure A.1: Huai River Boundary, City Locations, and Factory/Port Locations

Note: The line in the middle of the map is the Huai River-Qinling boundary. Each dot represents one city.
Each triangle represents a factory location or a port location.
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Figure A.2: Fraction of HEPA purifier sales
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Note: This figure shows the fraction of HEPA purifier sales volumes relative to all purifier sales volumes in
2006-2014 with a bin size of 50 miles.
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Figure A.3: Change in purifier price predicted by distance to factory
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Note: This figure shows the first stage relationship between air purifier prices and distances between markets
and manufacturing factories/importing ports presented in Table 3b.
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Figure A.4: Chinese newspaper headlines mentioning air pollution and smog
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Note: Each dot represents the annual number of newspaper headlines mentioning “air pollution” (including
air pollution and ambient air pollution in Chinese) from all 631 newspapers in China. Each triangle represents
the annual number of headlines mentioning “smog”. The data are from the China Core Newspapers Full-text
Database that collects all newspapers published in China.
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Figure A.5: Annual coal consumption by province
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Note: Each dot represents a province. Data on province-level annual consumption of coal are from China
Energy Statistical Yearbook 2006-2014.
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B Additional Tables

Table A.1: Robustness checks of PM10 first stage

PM10

(1) 250 miles (2) 300 miles (3) 350 miles (4) 400 miles
Panel A: Linear*North

North 31.02⇤⇤ 24.60⇤⇤ 27.70⇤⇤⇤ 24.38⇤⇤⇤

(11.99) (11.61) (9.22) (8.71)

Observations 37 40 47 49
R2 0.62 0.60 0.60 0.56

Panel B: Quadratic

North 31.11⇤⇤ 24.69⇤⇤ 27.73⇤⇤⇤ 24.19⇤⇤⇤

(12.24) (11.92) (9.35) (8.86)

Observations 37 40 47 49
R2 0.62 0.59 0.60 0.57
Demographic controls Y Y Y Y
Longitude quartile FE Y Y Y Y

Note: Each observation represents a city. * significant at 10% level; ** significant at 5% level; *** significant
at 1% level.

63



Table A.2: Robustness check of Price IV

ln(market share)

(1) (2)

PM10*HEPA (�) 0.0243⇤⇤⇤ 0.0242⇤⇤⇤

(0.0011) (0.0011)

Price (↵) -0.0040⇤⇤⇤ -0.0041⇤⇤⇤

(0.0003) (0.0003)
MWTP for 5 years (-�/↵) 6.0045⇤⇤⇤ 5.9242⇤⇤⇤

(0.5870) (0.5693)
MWTP per year 1.2009⇤⇤⇤ 1.1848⇤⇤⇤

(0.1174) (0.1139)

Observations 7,358 7,358
First-Stage F-Stat 84.92 93.38
Functional form Linear*North Quadratic

Note: This table shows results for the second-stage estimation in equation (9) with alternative instruments
for price that is described in section 5.5. All regressions include product fixed e↵ects, city fixed e↵ects, and
longitude quartile fixed e↵ects interacted with HEPA. See notes in Table 4. Standard errors are clustered
at the city level. * significant at 10% level; ** significant at 5% level; *** significant at 1% level. We also
report the Kleibergen-Paap rk Wald F-statistic. The Stock-Yogo weak identification test critical value for
two endogenous variables (10% maximal IV size) is 7.03.
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Table A.3: MWTP by room coverage

ln(market share)

(1) (2)

PM10*HEPA 0.0287⇤⇤⇤ 0.0291⇤⇤⇤

(0.0029) (0.0031)

PM10*HEPA*Room coverage 0.0027⇤⇤⇤ 0.0027⇤⇤⇤

(in 10 square meters) (0.0002) (0.0002)

Price -0.0043⇤⇤⇤ -0.0043⇤⇤⇤

(0.0001) (0.0001)

Observations 7,359 7,359
First-Stage F-Stat 297.80 301.03
Functional form Linear*North Quadratic

Note: All regressions include product fixed e↵ects, city fixed e↵ects, and longitude quartile fixed e↵ects
interacted with HEPA. See notes in Table 4. Each observation represents a product-city. Standard errors in
parentheses are clustered at the city level. * significant at 10% level; ** significant at 5% level; *** significant
at 1% level.
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Table A.4: Balance check of purifier supply, price and distance to factory

(1) (2) (3)
Product available=1 Purifier Price Distance to factory

North*HEPA 0.023 -6.970 0.088
(0.024) (7.379) (0.196)

Observations 31,017 7,359 7,359
R2 0.66 0.96 0.72
Functional form Linear*North Linear*North Linear*North

Note: All regressions include product fixed e↵ects, city fixed e↵ects, and longitude quartile fixed e↵ects
interacted with HEPA. See notes in Table 4. Standard errors in parentheses are clustered at the city level.
* significant at 10% level; ** significant at 5% level; *** significant at 1% level.
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Table A.5: Coal consumption and PM10 by province and year

PM10

(1) (2)

ln(Coal consumption) 0.39⇤⇤⇤ 0.36⇤⇤

(0.13) (0.13)

ln(Natural gas consumption) -0.07
(0.13)

Observations 90 90
R2 0.96 0.96
Province FE Y Y
Year FE Y Y

Note: The coal usage data by province and year are from China Energy Statistical Yearbook. The sample
includes 30 provinces from 2013 to 2015. * significant at 10% level; ** significant at 5% level; *** significant
at 1% level.
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Table A.6: Random-Coe�cient Logit Estimation Results with an Alternative Definition of Market
Share

(1) (2)

PM10 · HEPA

Mean coe�cient (�
0

) 0.0481⇤⇤⇤ 0.0518⇤⇤⇤

(0.0088) (0.0095)

Interaction household income (�
1

) 0.0888⇤⇤⇤ 0.0866⇤⇤⇤

(0.0219) (0.0247)

Standard deviation (�
�

) 0.0271⇤⇤⇤ 0.0275⇤⇤⇤

(0.0127) (0.0133)

Price

Mean coe�cient (↵
0

) -0.0068⇤⇤⇤ -0.0070⇤⇤⇤

(0.0007) (0.0007)

Interaction with household income (↵
1

) 0.0027⇤⇤ 0.0028⇤⇤

(0.0012) (0.0012)

Standard deviation (�
↵

) 0.0006 0.0006
(0.0007) (0.0007)

Observations 7,359 7,359
Control function for f(latitude) Linear*North Quadratic
GMM objective function value 376.19 379.75
MWTP per year: 5th percentile 0.54 0.64
MWTP per year: 10th percentile 0.64 0.74
MWTP per year: 25th percentile 0.88 0.97
MWTP per year: 50th percentile 1.29 1.36
MWTP per year: mean 1.41 1.48
MWTP per year: 75th percentile 1.93 1.98
MWTP per year: 90th percentile 2.86 2.88
MWTP per year: 95th percentile 3.72 3.70

Note: This table shows the results of the random-coe�cient logit estimation in equation (6) with an alterna-
tive definition of market share. In this approach, we calculate the market share of each product by ignoring
sales outside our dataset. Column 1 uses a linear control for the latitude interacted with the North dummy
variable, and column 2 uses a quadratic control for the latitude. Asymptotically robust standard errors are
given in parentheses, which are corrected for the error due to the simulation process by taking account that
the simulation draws are the same for all of the observations in a market. The household-level income data
(in 2005 USD) come from the 2005 Chinese census. The distribution of the marginal willingness to pay for

clean air is obtained by mwtp
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household-level income, and random draws from standard normal distributions.

68


	Introduction
	Air pollution, Air Purifiers, and the Huai River Policy in China
	Air Purifiers
	The Huai River Policy and its Recent Reform 

	Data and Descriptive Statistics
	Air Purifier Data
	Air Pollution Data
	Demographic Data
	GIS Data and Map 
	Summary Statistics and Testing for Balance in Observables 

	Demand for Air Purifiers 
	A Logit Model 
	A Random-coefficients Logit Model 
	Interpretation of the Parameter Estimates 

	Empirical Analysis and Results
	Empirical Strategy 
	Graphical Analysis of the RD Design 
	Estimation Results of the Standard Logit Model 
	Results Before and After Widespread Media Coverage in 2013
	Potential Threats to Identification  
	Estimation Results of the Random-Coefficient Logit Model  

	Policy Implications
	Measuring Policy-Relevant MWTP for Clean Air 
	Cost-Benefit Analysis of Environmental Policies 
	Heating Policy Reform in Northern China
	A counterfactual policy on the replacement of coal power plants

	Avoidance Behavior and Implied VSL in Developing Countries

	Conclusion and Directions for Further Research
	Additional Figures
	Additional Tables

