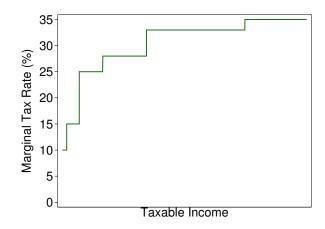
		Welfare	

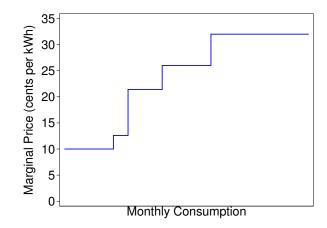
Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing


Koichiro Ito

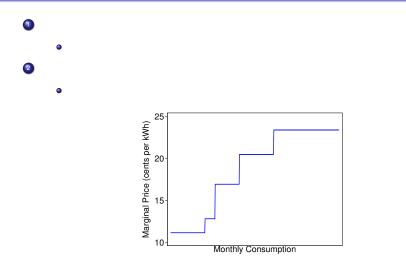
SIEPR Postdoctoral Fellow, Stanford University Assistant Professor, Boston University School of Management (July 2013-) Faculty Research Fellow, NBER (Email: koichiro.ito@stanford.edu)

Introduction	Research Design		Welfare	Conclusion
Nonlinear pricing	is widely used in many	/ important econom	nic policies	

• Example 1: Income taxation


Marginal income tax rates (%) in 2010 in the US

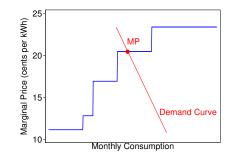
Introduction	Research Design		Welfare	
Nonlinear pricing	is widely used in many	/ important econon	nic policies	


• Example 2: Electricity, cell phone, natural gas, and water pricing

Electricity prices (cents per kWh) in Southern California Edison in 2007

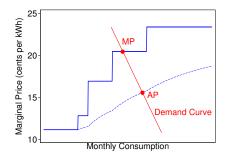
Introduction	Research Design	Welfare	

Research question: How do consumers respond to nonlinear price schedules?



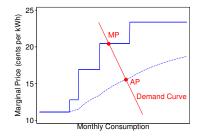
Introduction	Research Design		Welfare	Conclusion
Research questio	n: How do consumers	respond to nonline	ar price schedule	s?

Standard economic theory predicts:


2

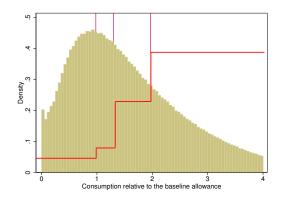
• Consumers respond to Marginal Price

Introduction	Research Design		Welfare	Conclusion
Research ques	tion: How do consu	imers respond to no	onlinear price sch	edules?


- Standard economic theory predicts:
 - Consumers respond to Marginal Price
- 2 Laboratory experiments find:
 - Many individuals respond to Average Price = (Total payment / Quantity)

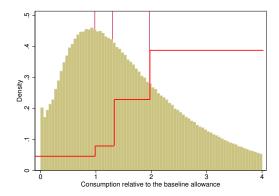
 \Rightarrow Standard theory and laboratory evidence provide different predictions

- It will change welfare implications of nonlinear taxation/pricing
 - "Schmeduling" by Liebman, Zeckhauser (2004)

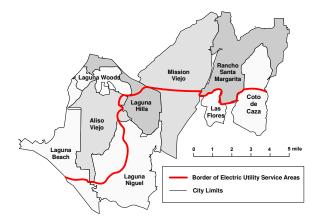


Existing literature analyzes welfare based on "marginal price response"

- Optimal taxation (Mirrlees 1971)
- Electricity pricing (Reiss and White 2005)
- Water pricing (Olmstead, Hanemann, and Stavins 2007)

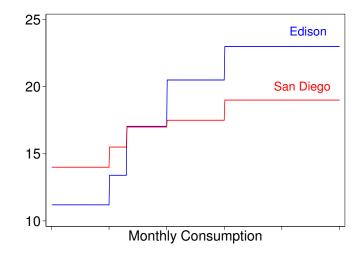

Introduction	Research Design		Welfare	
Why do we care a	bout "Marginal price"	vs. "Average price	e"?	

- The mystery of "no bunching"
 - Bunching should be found if consumers/taxpayers respond to marginal price
 - Many studies find no bunching: Heckman (1982), Saez (1999, 2010)
 - Exception: Chetty, Friedman, Olsen, and Pistaferri (2011)



Introduction	Research Design	Estimation	Welfare	Conclusion
Why do we care a	about "Marginal price"	vs. "Average price"	?	

- "No bunching" implies two possibilities:
 - Elasticity is nearly zero, or
 - Consumers respond to other perception of price rather than marginal price


Edison (Southern California Edison) provides electricity for the north side

San Diego (San Diego Gas & Electric) provides electricity for the south side

Introduction	Research Design	Estimation	Welfare	Conclusion
Households e	experience substantia	llv different nonline	ear pricing	

• Edison and San Diego: Cents per kWh in 2002

Introduction	Research Design		Welfare	Conclusion
Mv research de	sign addresses two	challenges in prev	vious studies	

(1) Lack of clean counterfactual groups

- Comparable individuals usually face exactly the same tax/price schedule
- Difficult to find a clean control group \Rightarrow **Identification problems**
 - Noted by Heckman (1996), Goolsbee (2000)
- This study: Nearly identical households experience different price schedules

Introduction	Research Design		Welfare	Conclusion
My research des	gn addresses two	challenges in pre	vious studies	

(2) Lack of sufficient exogenous price variation

- MP and AP are highly collinear in a typical nonlinear price schedule
- Multicollinearity problem ⇒ Inconclusive results
 - Liebman and Zeckhauser (2004), Borenstein (2009)
- This study: Rich cross-sectional & time-series price variation

Introduction	Research Design	Estimation	Welfare	Conclusion
My estimation	n results provide seve	ral key findings		

- Consumers respond to average price rather than marginal price
- Onsumers respond to lagged price rather than contemporaneous price
- Short-run price elasticity wrt one-month lagged average price: 0.14
- This average price response changes welfare implications in two ways
- It makes nonlinear pricing less successful in energy conservation
- It changes the efficiency costs of nonlinear pricing

Introduction	Research Design		Welfare	
Average price	response has kev im	plications for ener	av and climate ch	ange policy

The cap-and-trade program proposed in 2009:

- 30% of permits will be given to electric utilities for free
- Concern: lowering electricity price may discourage conservation
- Existing proposal: distribute a fixed credit to electricity bills
- Rationale behind: a fixed credit does not change marginal price

However, if consumers respond to average price,

• The fixed credit may also discourage conservation because consumers see it as a price decline in average price (Burtraw 2009)

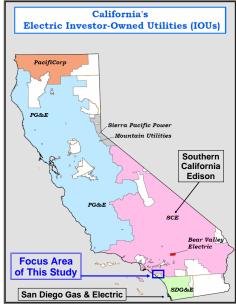
Research Design	Welfare	

I begin with an overview of the research design

Road map

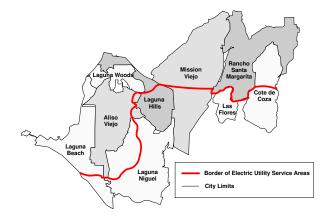
Introduction

Research Design


- Stimation
- Welfare Analysis
- Conclusion

Research Design

Three key components:


- The territory border of two electric utilities lies within city boundaries
- I specifically focus on households within one mile of the utility border
- The two utilities independently change their price schedules

Nearly identical households experience different nonlinear price schedules

	Research Design		Welfare	Conclusion
The territory bord	er lies within city limits	in several cities	in Orange County,	СА

Edison (Southern California Edison) provides electricity for the north side

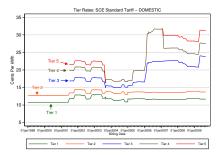
San Diego (San Diego Gas & Electric) provides electricity for the south side

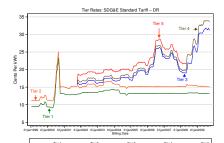
	Research Design	Welfare	Conclusion
Why is the territ	ory border here?		

- It is because of the history of transmission line development
- In 1940's, Edison's and San Diego's transmission lines were connected here
 - Crawford and Society (1991)
 - Myers (1983)
- Most city boundaries in this area were established around 1980's

	Research Design		Welfare	
Data: A panel data	a set of household-leve	el monthly billing re	ecords	

• Main data: Panel data of household-level monthly electricity billing records

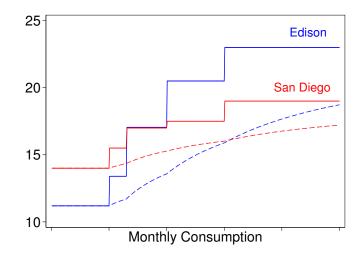

- January 1999 to December 2007 (9 years)
- Customer ID
- Nine-digit ZIP code (e.g. 94720-5180)
- Price schedules
- Billing period (e.g. May15-Jun14)
- Electricity consumption (kWh) during the billing period
 - Additional data: Demographic variables from Census 2000


	SCE		SDC	SDG&E		Difference	
-	Mean	(S.E)	Mean	(S.E)	Mean	(S.E)	
Data from Census 2000							
Income per capita (\$)	40773	(1591)	40832	(1627)	59	(2261)	
Median home value (\$)	391508	(19897)	404887	(19768)	13379	(27849)	
Median rent (\$)	1364	(41)	1385	(62)	21	(74)	
Population density/mile ²	6084	(362)	5423	(360)	-662	(508)	
Household size	2.71	(0.07)	2.81	(0.05)	0.11	(0.09)	
Median age	47.71	(1.23)	45.73	(0.55)	-1.98	(1.35)	
% owner occupied housing	81.86	(1.65)	84.27	(1.93)	2.41	(2.53)	
% male	49.12	(0.41)	48.65	(0.32)	-0.46	(0.52)	
% employment of males	74.90	(2.14)	78.67	(1.13)	3.78	(2.41)	
% employment of females	57.75	(1.83)	58.54	(1.22)	0.79	(2.19)	
% colleage degree	50.31	(1.28)	52.96	(1.22)	2.65	(1.76)	
% high school degree	35.25	(1.11)	32.27	(0.93)	-2.98	(1.44)	
% no high school degree	4.28	(0.29)	4.07	(0.33)	-0.21	(0.44)	
% white	85.53	(0.86)	83.74	(0.94)	-1.79	(1.27)	
% hispanics	9.33	(0.58)	9.70	(0.74)	0.37	(0.93)	
% asian	6.97	(0.61)	8.23	(0.66)	1.26	(0.90)	
% black	1.19	(0.15)	0.86	(0.16)	-0.32	(0.22)	
Electricity Billing Data							
Electricity use (kWh/day)	21.37	(0.07)	22.48	(0.09)	1.11	(0.12)	
ln(Electricity use)	2.89	(0.00)	2.89	(0.01)	0.00	(0.00)	
ln(Electricity use) in 1999	2.86	(0.00)	2.86	(0.01)	0.01	(0.01)	

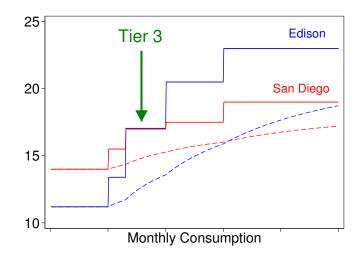
• Household characteristics are nearly identical at the territory border

Research Design	Welfare	

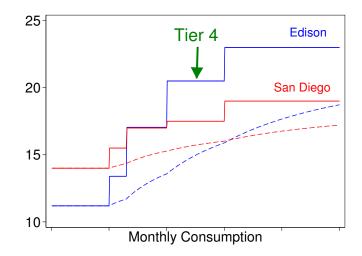

In contrast, households experience substantially different nonlinear pricing


Introduction	Research Design	Estimation	Welfare	Conclusion
In contrast the	w experience substa	ntially different no	nlinear pricing	

• Edison and San Diego: Cents per kWh in 2002



• Marginal price (solid) and average price (dashed): Cents per kWh



• Marginal price (solid) and average price (dashed): Cents per kWh

• Marginal price (solid) and average price (dashed): Cents per kWh

	Research Design	Estimation	Welfare	Conclusion
l first explain	mv identification strat	eav and then pres	ent results	

Road Map

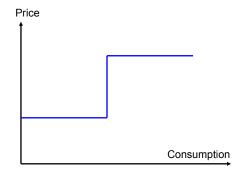
Introduction

Presearch Design

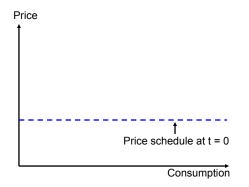
Section 10 Estimation

- Identification strategy
- 2 Results
- Welfare Analysis
- Conclusion

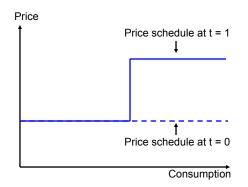
	Research Design	Estimation	Welfare	Conclusion
Equir atopa to	ovoloin my identified	ion stratogy		

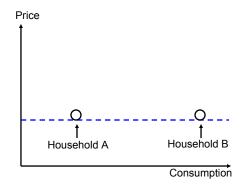

Four steps to explain my identification strategy

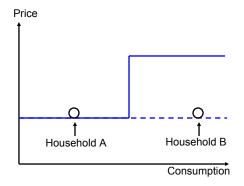
- **9** Price is a function of consumption \Rightarrow OLS estimates will be biased
- Changes in price schedules can be used to estimate demand
- Several studies show that identifying assumptions are violated in a conventional method
- I use a spatial discontinuity to address this challenge


	Research Design	Estimation	Welfare	Conclusion
1) Price is a fu	nction of consumption	$n \Rightarrow OIS$ estimat	es will be biased	

$$\ln x_{it} = \alpha + \beta \ln p_{ut}(x_{it}) + \varepsilon_{it}$$

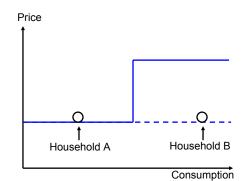

- x_{it} : consumption of household *i* at time *t*
- p_{ut} : price schedule in electric utility u at time t


	Research Design	Estimation	Welfare	Conclusion
2) Changes ir	n price schedules can	be used to estima	ate demand	


Introduction	Research Design	Estimation	Welfare	Conclusion
2) Changes in	price schedules can	be used to estima	ate demand	

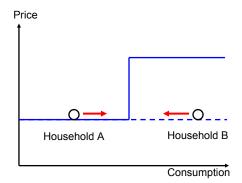
	Research Design	Estimation	Welfare	Conclusion
2) Changes ir	n price schedules can	be used to estima	ate demand	

Introduction	Research Design	Estimation	Welfare	Conclusion	
2) Changes in price schedules can be used to estimate demand					

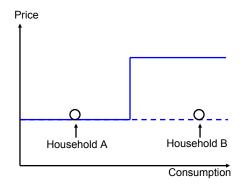

	Research Design	Estimation	Welfare	
2) Changes in pri	ce schedules can be ι	ised to estir	nate demand	

$$\Delta \ln x_{it} = \alpha + \beta \Delta \ln p_t(x_{it}) + \varepsilon_{it}$$

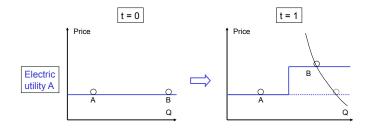
• Previous studies use simulated instruments (policy-induced price changes):


$$\Delta \ln p_t^{PI}(x_{it}) = \ln p_t(x_{it_0}) - \ln p_{t_0}(x_{it_0})$$

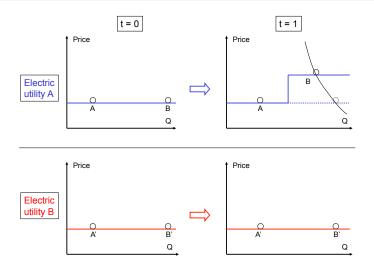
- Typically, the first stage is very strong
- An identification assumption: a parallel trend between A and B



- Reason (1) Mean reversion in consumption
 - Saez, Slemrod, and Giertz (2009)



- Reason (2) Changes in the distribution of consumption
 - Heckman (1996), Goolsbee (2000)


Research Design	Estimation	Welfare	

4) I use a spatial discontinuity in electricity service areas to address this challenge

4) I use a spatial discontinuity in electricity service areas to address this challenge

Parallel trend assumptions: between A and A', and between B and B'

	Research Design	Estimation	Welfare	Conclusion
Instrumental Va	ariable Estimation			

$$\Delta \ln x_{it} = \beta \Delta \ln p_{it} + \gamma_{ct} + \delta_{bt} + f_t(x_{it_m}) + \varepsilon_{it}$$

• IV: Policy-induced price change based on consumption in middle month $(t_m = t - 6)$

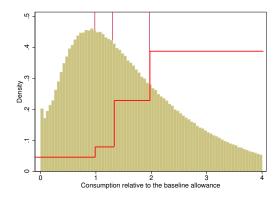
$$\Delta \ln p_t^{PI} = \ln p_t(x_{it_m}) - \ln p_{t_0}(x_{it_m})$$

- γ_{ct} = city-by-time fixed effects
- δ_{bt} = billing-cycle-by-time fixed effects
- $f_t(x_{it_m})$ = nonparametric controls for mean reversion and distributional changes
- Identification assumption:
 - Given the fixed effects and the controls for mean-reversion, the instrument (policy-induced price change) is not correlated with the error term

	Research Design	Estimation	Welfare	Conclusion
Now I present res	sults			

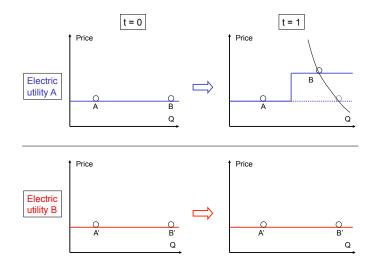
Road Map

Introduction

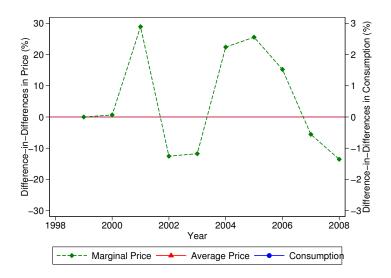

Presearch Design

Section Estimation

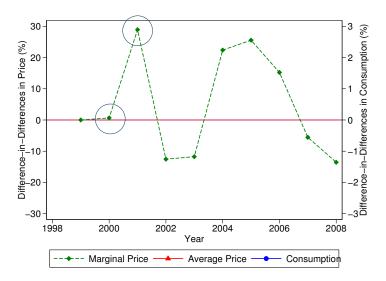
- Identification strategy
- 2 Results
- Welfare Analysis
- Conclusion


	Research Design	Estimation	Welfare	Conclusion
I find no bunching	at any kink points of the	ne nonlinear price	schedules	

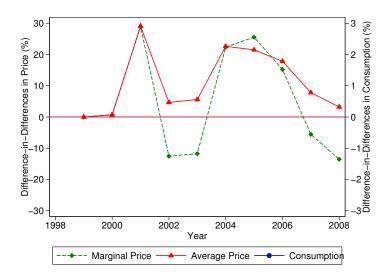
- No bunching implies two possibilities
 - Consumers respond to Marginal Price with nearly zero elasticity
 - Consumers respond to Alternative Price


Research Design	Estimation	Welfare	

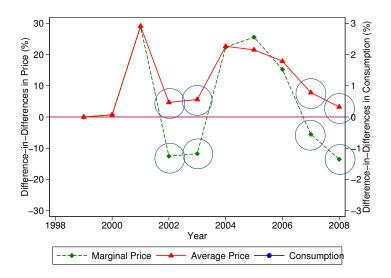
The difference-in-differences analysis


- Relative changes for SDG&E customers relative to SCE customers.
- January billing months

Panel A. Consumers whose previous year's consumption is on tier 4


- Relative changes for SDG&E customers relative to SCE customers.
- January billing months

Panel A. Consumers whose previous year's consumption is on tier 4


- Relative changes for SDG&E customers relative to SCE customers.
- January billing months

Panel A. Consumers whose previous year's consumption is on tier 4

- Relative changes for SDG&E customers relative to SCE customers.
- January billing months

Panel A: Consumers whose previous year's consumption was at tier 4

- Relative changes for SDG&E customers relative to SCE customers.
- January billing months

Panel A: Consumers whose previous year's consumption was at tier 4

	Research Design	Estimation	Welfare	Conclusion
Estimation Result	is			

- Marginal price vs average price
- Contemporaneous price vs lagged prices
- Sected marginal price vs average price
- A more general way of identifying consumers' perceived price

	Research Design	E	stimation	Wel	fare		
Estimation results: Marginal Price v.s. Average Price							
IV Estimates: Marginal Price vs. Average Price							
Δ	$\Delta \ln x_{it} = \beta_1 \Delta \ln M P_{it}$	$+ \beta_2 \Delta \ln A$	$P_{it} + \gamma_{ct} +$	$\delta_{bt} + f_t(x_i)$	$(t_m) + \varepsilon_{it}$		
	(1)	(2)	(3)	(4)	(5)	(6)	
$\Delta \ln(\text{Margin})$	al $Price_t$) -0.034						
	(0.004)						
$\Delta \ln(\text{Averag})$	$e Price_t$)						
$\Delta \ln(\text{Margin})$	al $\operatorname{Price}_{t-1}$)						

 $\Delta ln(Average Price_{t-1})$

• Dependent variable: dln(Electricity consumption)

• Standard errors are clustered at the household level to account for serial correlation

	Research Design	E	stimation	Wel	fare	Conclusion	
Estimation re	sults: Marginal Price	e v.s. Ave	rage Price	;			
IV Estimates	IV Estimates: Marginal Price vs. Average Price						
	$\Delta \ln x_{it} = \beta_1 \Delta \ln M P_{it} - \beta_1 \Delta \ln M P_{it} - \beta_1 \Delta \ln M P_{it}$	$+ \beta_2 \Delta \ln A h$	$P_{it} + \gamma_{ct} +$	$\delta_{bt} + f_t(x_i)$	$(t_m) + \varepsilon_{it}$		
	(1)	(2)	(3)	(4)	(5)	(6)	
$\Delta \ln(\text{Margi})$	nal $Price_t$) -0.034						
	(0.004)						
$\Delta \ln(\operatorname{Averag}$	$ge Price_t)$						
$\Delta \ln(\text{Margin})$	nal $\operatorname{Price}_{t-1}$)						
$\Delta \ln(\text{Averag})$	ge $Price_{t-1}$)						

Dependent variable: dln(Electricity consumption)

• Standard errors are clustered at the household level to account for serial correlation

	Research Design	Estimation	Welfare	
Estimation results	: Marginal Price v.s. A	verage Price		

IV Estimates: Marginal Price vs. Average Price

 $\Delta \ln x_{it} = \beta_1 \Delta \ln M P_{it} + \beta_2 \Delta \ln A P_{it} + \gamma_{ct} + \delta_{bt} + f_t(x_{it_m}) + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)
$\overline{\Delta ln(Marginal \ Price_t)}$	-0.034		0.002			
	(0.004)		(0.011)			
$\Delta ln(Average Price_t)$		-0.051	-0.054			
		(0.005)	(0.015)			
$\Delta \ln(Marginal Price_{t-1})$)					
$\Delta \ln(\text{Average Price}_{t-1})$						

Dependent variable: dln(Electricity consumption)

Standard errors are clustered at the household level to account for serial correlation

Introduction Res	search Design	Estimation	Welfare	
Estimation results: M	larginal Price v.s. Av	erage Price		

IV Estimates: Marginal Price vs. Average Price

 $\Delta \ln x_{it} = \beta_1 \Delta \ln M P_{it} + \beta_2 \Delta \ln A P_{it} + \gamma_{ct} + \delta_{bt} + f_t(x_{it_m}) + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta ln(Marginal \ Price_t)$	-0.034		0.002			
	(0.004)		(0.011)			
$\Delta \ln(Average Price_t)$		-0.051	-0.054			
		(0.005)	(0.015)			
$\Delta \ln(Marginal Price_{t-1})$)			-0.050		
				(0.004)		
$\Delta \ln(\text{Average Price}_{t-1})$					-0.074	
					(0.005)	

Dependent variable: dln(Electricity consumption)

• Standard errors are clustered at the household level to account for serial correlation

	Research Design	Estimation	Welfare	Conclusion
Estimation results	: Marginal Price v.s. A	verage Price		

IV Estimates: Marginal Price vs. Average Price

 $\Delta \ln x_{it} = \beta_1 \Delta \ln M P_{it} + \beta_2 \Delta \ln A P_{it} + \gamma_{ct} + \delta_{bt} + f_t(x_{it_m}) + \varepsilon_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \ln(Marginal Price_t)$	-0.034		0.002			
	(0.004)		(0.011)			
$\Delta ln(Average \ Price_t)$		-0.051	-0.054			
		(0.005)	(0.015)			
$\Delta \ln(Marginal Price_{t-1})$)			-0.050		0.006
				(0.004)		(0.011)
$\Delta \ln(\text{Average Price}_{t-1})$					-0.074	-0.082
					(0.005)	(0.015)

Dependent variable: dln(Electricity consumption)

• Standard errors are clustered at the household level to account for serial correlation

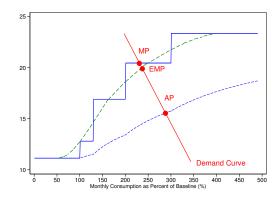
	Research Design	Estimation	Welfare	Conclusion
Estimation Result	ts			

- Marginal price vs average price
- Contemporaneous price vs lagged prices
- Expected marginal price vs average price
- A more general way of identifying consumers' perceived price

	Research Design	Estimation	Welfare	
Estimation results	: Contemporaneous A	verage Price v.s. L	agged Average P	rices

IV Estimates: Average Price vs. Lagged Average Price

	Lagged	Me	edium-Long	Run Repon	ses
	Responses	1 month	2 month	$3 \mathrm{month}$	4 month
	(1)	(2)	(3)	(4)	(5)
$\Delta \ln(Average Price_t)$	0.001				
	(0.002)				
$\Delta \ln(Average Price_{t-1})$	-0.049				
	(0.006)				
$\Delta \ln(\text{Average Price}_{t-2})$	-0.026				
	(0.007)				
$\Delta \ln(\text{Average Price}_{t-3})$	-0.011				
	(0.006)				
$\Delta \ln(\text{Average of Lag})$		-0.071	-0.082	-0.087	-0.088
Average Prices)		(0.005)	(0.005)	(0.006)	(0.006)


- Dependent variable: dln(Electricity consumption)
- Standard errors are clustered at the household level to account for serial correlation

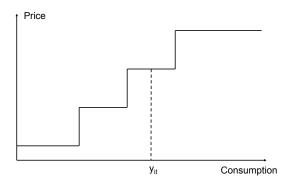
	Research Design	Estimation	Welfare	Conclusion
Estimation Result	S			

- Marginal price vs average price:
- Ontemporaneous price vs lagged prices
- Expected marginal price vs average price
- A more general way of identifying consumers' perceived price

- I provide evidence that consumers respond to average rather than marginal
- However, it does not exclude other possibilities
 - e.g. Consumers may respond to Expected Marginal Price (Saez 1999)

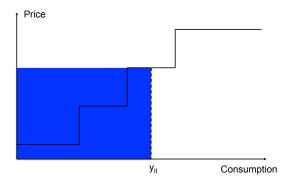
Introduction	Research Design	Estimation	Welfare	Conclusion
Estimation results	· Expected Mar	ninal Price vs Avera	ae Price	

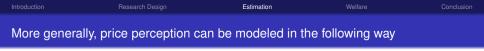
IV Estimates: Expected Marginal Price vs. Average Price

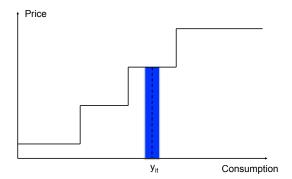

	(1)	(2)	(3)	(4)
$\Delta \ln(\text{Expected Marginal Price}_t)$	-0.036	0.004		
	(0.004)	(0.012)		
$\Delta \ln(\text{Average Price}_{t})$		-0.056		
		(0.015)		
$\Delta \ln(\text{Expected Marginal Price}_{t-1})$			-0.053	0.009
			(0.004)	(0.012)
$\Delta \ln(\text{Average Price}_{t-1})$				-0.086
				(0.015)

	Research Design	Estimation	Welfare	Conclusion
Estimation Result	S			

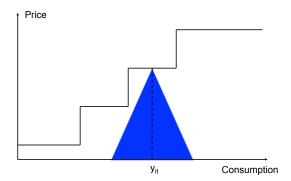
- Marginal price vs average price:
- Contemporaneous price vs lagged prices
- Sected marginal price vs average price
- A more general way of identifying consumers' perceived price


	Research Design	Estimation	Welfare	Conclusion
More generally, p	rice perception can be	modeled in the foll	owing way	

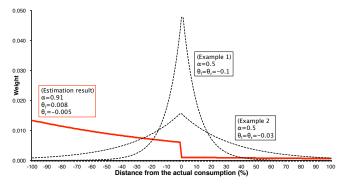

- Consider consumer i with consumption y_{it}
- Consider that the consumer's perceived price can be modeled as a weighted average of possible marginal prices for this consumer
- Consumer *i* constructs her perceived price based on her weight distribution


	Research Design	Estimation	Welfare	
More generally, p	rice perception can be	modeled in	the following way	

• Perceived price = AP when the weight distribution is uniform[0, y_{it}]



• Perceived price = MP when the weight distribution is truncated locally around y_{it}


• Perceived price = Expected MP when the weight distribution is symmetric and surrounded broadly around y_{it}

Research Design	Estimation	Welfare	

I model and estimate the weight destribution to recover consumers' perceived price

$$w_{k}(\alpha, \boldsymbol{\theta}) = \begin{cases} \alpha \cdot \frac{exp(-k \cdot \theta_{l})}{\sum exp(-k \cdot \theta_{l})} & \text{for } k \leq 0\\ (1 - \alpha) \cdot \frac{exp(k \cdot \theta_{r})}{\sum exp(k \cdot \theta_{r})} & \text{for } k > 0. \end{cases}$$
(1)

Research Design	Estimation	Welfare	

Joint estimation of price elasticity and price perception weighting parameters

$$\Delta \ln x_{it} = \beta \sum_{k=-100}^{100} w_k(\alpha, \theta) \cdot \Delta \ln p_{k,it} + f_t(x_{it_m}) + \gamma_{ct} + \delta_{bt} + u_{it}.$$
 (2)

		Price Variable	
-	Current month	One-month lag	Four-month average
	(1)	(2)	(3)
Weighting parameter α	0.911	0.896	0.883
	(0.082)	(0.083)	(0.087)
Slope parameter θ_l	0.008	0.013	0.015
	(0.013)	(0.014)	(0.014)
Slope parameter θ_r	-0.005	-0.009	0.001
	(0.015)	(0.015)	(0.017)
Elasticity parameter β	-0.059	-0.086	-0.094
	(0.005)	(0.006)	(0.006)
p-value for H_0 : $\alpha = 0.5$	0.00	0.00	0.00
p-value for $H_0: \alpha = 1$	0.28	0.21	0.18

Does the sub-optimal response change welfare implications of nonlinear pricing?

Road Map

- Introduction
- Research Design
- Estimation


Welfare Analysis

- The effects on energy conservation
- 2 The effects on efficiency costs of nonlinear pricing

Conclusion

	Research Design		Welfare	
Welfare implication	on 1: The effects on e	nergy conservation		

- Many electric utilities introduce nonlinear pricing to reduce GHG emissions
- "Flat rate tariff" vs "Nonlinear tariff" for energy conservation

Results: Compared to a flat rate design, the existing five-tier nonlinear pricing

- Reduces total consumption if consumers respond to Marginal Price
- Slightly increases total consumption if consumers respond to Average Price

	Flat rate tariff	Five-tier Tariff	
		MP response	AP response
Consumption (Gwh)	20,471	19,993	20,526
%Change from Flat Rate Tariff		-2.33%	0.27%
Standard Errors by Delta Method		(0.05%)	(0.02%)

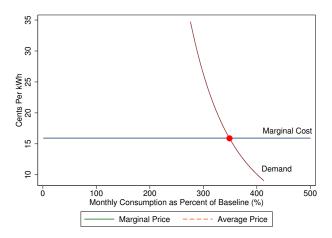
Results: Compared to a flat rate design, the existing five-tier nonlinear pricing

- Reduces total consumption if consumers respond to Marginal Price
- Slightly increases total consumption if consumers respond to Average Price

	Flat rate tariff	Five-tier Tariff	
		MP response	AP response
Consumption (Gwh)	20,471	19,993	20,526
%Change from Flat Rate Tariff		-2.33%	0.27%
Standard Errors by Delta Method		(0.05%)	(0.02%)

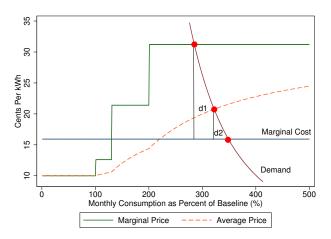
Road Map

- Introduction
- Research Design
- Estimation


Welfare Analysis

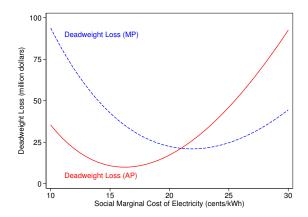
- The effects on total consumption
- The effects on efficiency costs of nonlinear pricing

Conclusion


	Research Design		Welfare	Conclusion
Welfare implicatio	n 2: The effect on the	efficiency costs of I	nonlinear pricing	

- Suppose that the MC of electricity:
 - Does not depend on the level of an individual household's monthly consumption
 - Minimum efficiency cost if P = MC

	Research Design		Welfare	
Welfare implication	n 2: The effect on the	efficiency costs of I	nonlinear pricing	


- Suppose that the MC of electricity:
 - Does not depend on the level of an individual household's monthly consumption
 - Nonlinear pricing creates efficiency costs

	Research Design		Welfare	Conclusion
The sub-optimal	response reduces the	DWL if the so	cial MC	

Results: Average price response \rightarrow

- **③** Reduces the DWL when the social MC of electricity \leq 21 kWh
- Increases the DWL when the social MC of electricity > 21 kWh

	Research Design	Welfare	Conclusion
Summary			

Road Map

Introduction

- Research Design
- Oata
- Estimation
- Welfare Analysis

Conclusion

	Research Design	Welfare	Conclusion
Summary			

This paper examines how consumers respond to nonlinear pricing:

• Exploit price variation across the territory border of two electric utilities

Key findings:

- Consumers respond to average price rather than marginal price
- Onsumers respond to lagged price rather than contemporaneous price
- This average price response changes welfare implications in two ways
 - It makes nonlinear pricing less successful in energy conservation
 - It changes the efficiency costs of nonlinear pricing


Discussion and Future Research

Why do consumers respond to average price?

Information costs are probably larger than the utility gain

Can information provision change consumer behavior?

- Chetty and Saez (2009): Teaching tax codes
- Similar research on residential electricity can help us to understand how to effectively inform consumers about economic incentives

- Consumers receive clear price information from their in-home-display
- We find clear responses to dynamic electricity prices in our experiment

Introduction	Research Design	Estimation	Welfare	Conclusion
Thank you				

• Thank you for your attention!