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Ökonometrie

University I

International

discussions a

set. I am gr

research was

and by the R
�Departme

Tel.: +4930

E-mail ad

URL: htt
www.elsevier.com/locate/econbase
What are the effects of monetary policy
on output? Results from an agnostic

identification procedure$

Harald Uhliga,b,c,d,�

aDepartment of Economics, Humboldt University, Spandauer Str. 1, 10178 Berlin, Germany
bTilburg University, 5000 LE Tilburg, The Netherlands

cBundesbank, 100117 Berlin, Germany
dCEPR, London EC1V 7RR, UK

Received 22 February 2001; received in revised form 13 May 2004; accepted 17 May 2004
Abstract

This paper proposes to estimate the effects of monetary policy shocks by a new agnostic

method, imposing sign restrictions on the impulse responses of prices, nonborrowed reserves

and the federal funds rate in response to a monetary policy shock. No restrictions are imposed

on the response of real GDP to answer the key question in the title. I find that
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‘‘contractionary’’ monetary policy shocks have no clear effect on real GDP, even though

prices move only gradually in response to a monetary policy shock. Neutrality of monetary

policy shocks is not inconsistent with the data.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

What are the effects of monetary policy on output? This key question has been the
focus of a substantial body of the literature. And the answer seems easy. The
‘‘Volcker recessions’’ at the beginning of the 1980s have shown just how deep a
recession a sudden tightening of monetary policy can produce. Alternatively, look at
Fig. 1, which juxtaposes movements in the federal funds rate from 1965 to 1996 with
growth rates in real GDP, flipped upside-down for easier comparison. In particular,
for the first half of that sample, it is striking, how rises in the federal funds rate are
followed by falls in output (visible as rises in the dotted line, due to the upside-down
flipping). The case is closed.
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Fig. 1. This figure contrasts movements in the federal funds rate, shown as a thick, solid line with the scale

on the left, with real annual GDP growth rates, transformed by multiplying with �1 and adding 5, shown

as a thinner, dotted line. The transformation of GDP growth has been done to aid the visual comparison,

i.e., peaks in the figure are actually particularly low values for the growth rate. ‘‘Eyeball econometrics’’

suggests a strong cause-and-effect from federal funds rate movements to real GDP: whenever interest rates

rise, growth rates fall (i.e. the dotted line rises) shortly afterwards. This is particularly visible for

1968–1983. It seems easy to conclude from this picture, that the question about the effects of monetary

policy on output is answered clearly: contractionary monetary policy leads to contractions in real GDP.
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Or is it? Eyeball econometrics such as Fig. 1 or case studies like the Volcker
recessions can be deceptive: many things are going on simultaneously in the
economy, and one may want to be careful to consider just a single cause-and-effect
story. If the answer really is so obvious, it should emerge equally clearly from an
analysis of multiple time series, which allows for additional channels of interaction
and other explanations, at least in principle. Thus, many researchers have followed
the lead of Sims (1972, 1980, 1986) and proceeded to analyze the key question in the
title with the aid of vector autoregressions. Rapid progress has been made in the last
10 years. Bernanke and Blinder (1992) shifted the focus on the federal funds rate.
The ‘price puzzle’, raised by Sims (1992), and other anomalies, led to the inclusions
of e.g. nonborrowed reserves, total reserves as well as a commodity price index in
VAR studies, see e.g. Eichenbaum (1992), Strongin (1995), Christiano and
Eichenbaum (1992a, b), Leeper and Gordon (1992), Gordon and Leeper (1994),
Christiano et al. (1996, 1997, 1999) and Kim (1999). Recently, Bernanke and Mihov
(1998a, b) have reconciled a number of these approaches in a unifying framework,
and Leeper et al. (1996) have summarized the current state of the literature, while
adding new directions on their own. Additional excellent surveys are in Canova
(1995), Christiano et al. (1999) and Bagliano and Favero (1998). There seems to be a
growing agreement that this literature has reached a healthy state, and has provided
a list of facts, which now theorists ought to explain, see e.g. Christiano et al. (1996,
1997, 1999) or Leeper and Sims (1994).

The key step in applying VAR methodology to the question at hand is in
identifying the monetary policy shock. While this is usually done by appealing to
certain informational orderings about the arrival of shocks, there also is a more
informal side to the identification search: researchers like the results to look
‘‘reasonable’’. According to conventional wisdom, monetary contractions should
raise the federal funds rate, lower prices and reduce real output. If a particular
identification scheme does not accomplish this, then the observed responses are
called a puzzle, while successful identification needs to deliver results matching the
conventional wisdom. The ‘‘facts’’ that are obtained this way are thus necessarily
influenced by a priori theorizing. There is a danger that the literature just gets out
what has been stuck in, albeit more polished and with numbers attached. Without
being explicit about this a priori theorizing, it is hard to distinguish between
assumptions and conclusions.

This circularity is well recognized in the literature, has already been clearly pointed
out by Cochrane (1994), and has been dealt with in a variety of ways. Leeper et al.
(1996) explicitly appeal to the reasonableness of impulse responses as an ‘‘informal’’
identification criterion. Gali (1992) directly asks whether the ‘‘IS-LM model fit[s] the
postwar U.S. data’’ rather than indirectly presuming that this is the only model
worth fitting. Cochrane (1994) and Rotemberg (1994) argue that economic theory is
crucially important for identifying monetary policy shocks: a VAR analysis of these
shocks only has a chance to be convincing, if the results look plausible to begin with.
Christiano et al. (1999) propose to throw out all impulse responses inconsistent with
some given set of theories, some of which are at odds with the conventional wisdom.
Joint estimation of a theoretical model and a VAR is done in e.g. Altig et al. (2002).
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Priors for a VAR from an explicitly formulated theory are constructed in Del Negro
and Schorfheide (2003). In sum, the answer to the key question—here, the impact of
monetary policy shocks on GDP—is often already substantially narrowed down by a
priori theorizing, be it implicit or explicit.

What is therefore desirable as a complement to the existing literature is some way
to make the a priori theorizing explicit (and use as little of it as possible), while at the
same time leaving the question of interest open. This paper proposes to push this
idea all the way, and to identify the effects of monetary policy shocks by directly
imposing sign restrictions on the impulse responses. More specifically, I will assume
that a ‘‘contractionary’’ monetary policy shock does not lead to increases in prices,
increase in nonborrowed reserves, or decreases in the federal funds rate for a certain
period following a shock. While theories with different implications can fairly easily
be constructed, these assumptions may enjoy broad support and in any case are
usually tacitly assumed in most of the VAR literature. In the approach here, they are
brought out into the open and can therefore be subject to debate. Crucially, I impose
no restrictions on the response of real GDP. Thus, the central question in the title is
left agnostically open by design of the identification procedure: the data will decide. I
call the procedure ‘‘agnostic’’ for this reason. One can think about the procedure as
identifying all shocks which are consistent with these fairly weak a priori restrictions,
and that the literature (insofar it delivers impulse responses also obeying the sign
restrictions) uses further a priori identifying restrictions to only select a subset of
these shocks.

This will not be a free lunch, nor should one expect it to be. When imposing the
sign restrictions, one needs to take a stand on for how long these restrictions ought
to hold after a shock. Furthermore, one needs to take a stand on whether a strong
response in the opposite direction is more desirable than a weak one. I will try out a
variety of choices and look at the answers.

Section 2 introduces the method with most of the technicalities postponed to
Appendices A and B. Section 3 shows some results, based on the data set provided
by Bernanke and Mihov (1998a, b), extended until the end of 2003. Section 4
concludes.

My approach is asymmetric in that I am agnostic about the response of output but
not of some other variables. This is intentional: the response of output is the focus of
this investigation. Nonetheless, it is interesting to also report findings about the other
variables, keeping in mind that they are tainted by a priori sign restrictions. I find the
following:
1.
 ‘‘Contractionary’’ monetary policy shocks have an ambiguous effect on real
GDP. With 2

3
probability, a typical shock will move real GDP by up to �0:2

percent, consistent with the conventional view, but also consistent with e.g.
monetary neutrality. Indeed, the usual label ‘‘contractionary’’ may thus be
misleading, if output is moved up. Monetary policy shocks account for
probably less than 25% of the variance for the 1-year or more ahead forecast
revision of real output, and may easily account for less than 2% at any
given horizon.
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2.
 The GDP price deflator falls only slowly following a contractionary monetary
policy shock. The commodity price index falls more quickly.
3.
 I also find, that monetary policy shocks account for only a small fraction of the
forecast error variance in the federal funds rate, except at horizons shorter than
half a year, as well as for prices.

While these observations confirm some of the results found in the empirical VAR
literature so far, there are also some potentially important differences in particular
with respect to my key question: ‘‘contractionary’’ monetary policy shocks do not
necessarily seem to have contractionary effects on real GDP. Our conclusion from
these results: one should feel less comfortable with the conventional view and the
current consensus of the VAR literature than has been the case so far.

The new method introduced here complements the work by Blanchard and Quah
(1989), Lippi and Reichlin (1994a, b) and in particular by Dwyer (1997), Faust
(1998), Gambetti (1999), Canova and Pina (1999) and Canova and de Nicolo (2002):
these authors also impose restrictions on the impulse responses to particular shocks.
Like Faust, Dwyer and Canova–de Nicolo, my aim is to make explicit restrictions
which are often used implicitly. But there are also important differences. I do not
impose a particular shape of the impulse response as in Lippi and Reichlin (1994a) or
Dwyer (1997) or impose a zero impulse response at infinity as in Blanchard and
Quah (1989). Instead, I am content with restrictions on the sign at a few periods
following the shock, making for substantial differences between their approach and
ours. The intention here is to be minimalistic and to impose not (much) more than
the sign restrictions themselves, as they can be reasonably agreed upon across many
economists. Faust (1998) also only imposes sign restrictions to restrict monetary
policy shocks. His focus is a different one. Faust examines the fragility of the
consensus conclusion, that monetary shocks account for only a small fraction of
GDP fluctuations, see Cochrane (1994), while this paper aims at estimating that
response. Furthermore, Faust only imposed sign restrictions on impact. In my
discussion (Uhlig, 1998), I have shown how his approach can be extended, when one
wishes to impose the sign restrictions for several periods following the shock. The
method by Canova and de Nicolo (2002) and its application in Canova and Pina
(1999) identifies monetary disturbances by imposing sign restrictions on the cross-
correlations of variables in response to shocks, adding restrictions until the
maximum number of shocks is uniquely identified. The identification here proceeds
differently by using impulse responses rather than cross-correlations, by using other
criteria used to select among orthogonal decompositions satisfying the restrictions,
and by not imposing increasingly stringent restrictions to eliminate candidate
orthogonalizations.

I do not aim at a complete decomposition of the one-step ahead prediction error
into all its components due to underlying structural shocks, but rather concentrate
on identifying only one such shock, namely the shock to monetary policy. Similarly,
Bernanke and Mihov (1998a, b) or Christiano et al. (1999) only identify a single
shock or a subset of shocks. They impose considerably more structure than I do here.
Again, the aim is to be minimalistic, and to use as little a priori reasoning about other
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shocks as possible in order to identify the effects of monetary policy shocks. The
identification of additional shocks can help in principle, as orthogonality between
the shocks provides an additional restriction for identifying the monetary policy
shock, and there may be those who argue that it is even necessary. The method can
fairly easily be extended in this direction; if necessary, see Mountford and Uhlig
(2002) for an example.
2. The method

There is not much disagreement about how to estimate VARs. A VAR is given by

Y t ¼ Bð1ÞY t�1 þ Bð2ÞY t�2 þ � � � þ BðlÞY t�l þ ut; t ¼ 1; . . . ;T , (1)

where Y t is an m � 1 vector of data at date t ¼ 1 � l; . . . ;T ; BðiÞ are coefficient
matrices of size m � m and ut is the one-step ahead prediction error with
variance–covariance matrix S: An intercept and perhaps a time trend is sometimes
added to (1).

The disagreement starts when discussing how to decompose the prediction error ut

into economically meaningful or fundamental innovations. This is necessary because
one is typically interested in examining the impulse responses to such fundamental
innovations, given the estimated VAR. In particular, much of the literature is
interested in examining the impulse responses to a monetary policy innovation.

Suppose that there are a total of m fundamental innovations, which are mutually
independent and normalized to be of variance 1: they can therefore be written as a
vector v of size m � 1 with E½vv0� ¼ Im: Independence of the fundamental innovations
is an appealing assumption adopted in much of the VAR literature: if, instead, the
fundamental innovations were correlated, then this would suggest some remaining,
unexplained causal relationship between them. We therefore also adopt the
independence assumption here. What is needed is to find a matrix A such that
ut ¼ Avt: The jth column of A (or its negative) then represents the immediate impact
on all variables of the jth fundamental innovation, one standard error in size. The
only restriction on A thus far emerges from the covariance structure:

S ¼ E½utu
0
t� ¼ A E½vtv

0
t�A

0 ¼ AA0. (2)

Simple accounting shows that there are mðm � 1Þ=2 degrees of freedom in specifying
A; and hence further restrictions are needed to achieve identification. Usually, these
restrictions come from one of three procedures: from choosing A to be a Cholesky
factor of S and implying a recursive ordering of the variables as in Sims (1986), from
some structural relationships between the fundamental innovations vt;i; i ¼ 1; . . . ;m
and the one-step ahead prediction errors ut;i; i ¼ 1; . . . ;m as in Bernanke (1986),
Blanchard and Watson (1986) or Sims (1986), or from separating transitory from
permanent components as in Blanchard and Quah (1989).

Here, I propose to proceed differently. First, note that I am solely interested in the
response to a monetary policy shock: there is therefore a priori no reason to also
identify the other m � 1 fundamental innovations. Bernanke and Mihov (1998a, b)
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and Christiano et al. (1999) similarly recognize this, and use a block-recursive
ordering, to concentrate the identification exercise on only a limited set of variables
which interact with the policy shock.

I propose to go all the way by only concentrating on finding the innovation
corresponding to the monetary policy shock. This amounts to identifying a single
column a 2 Rm of the matrix A in Eq. (2). It is useful to state a formal definition:

Definition 1. The vector a 2 Rm is called an impulse vector, iff there is some matrix A;
so that AA0 ¼ S and so that a is a column of A:

Proposition A.1 in Appendix A shows, that any impulse vector a can be
characterized as follows. Let ~A ~A

0
¼ S be the Cholesky decomposition of S: Then,

a is an impulse vector if and only if there is an m-dimensional vector a of unit length
so that

a ¼ ~Aa. (3)

Given an impulse vector a; it is easy to calculate the appropriate impulse response
as follows. Let riðkÞ 2 Rm be the vector response at horizon k to the ith shock
in a Cholesky decomposition of S: The impulse response raðkÞ for a is then simply
given by

raðkÞ ¼
Xm

i¼1

airiðkÞ. (4)

Further, find a vector ~ba0 with

ðS� aa0Þ ~b ¼ 0

normalized so that b0a ¼ 1: Then, the real number

v
ðaÞ
t ¼ b0ut (5)

is the scale of the shock at date t in the direction of the impulse vector a; and v
ðaÞ
t a is a

part of ut; which is attributable to that impulse vector. Essentially, b is the
appropriate row of A�1:

Finally, consider the k-step ahead forecast revision Et½Y tþk� � Et�1½Y tþk� due to
the arrival of new data at date t: The fraction fa; j;k of the variance of this forecast
revision for variable j; explained by shocks in the direction of the impulse vector a is
given by

fa;j;k ¼
ðra;jðkÞÞ

2Pm
i¼1ðri;jðkÞÞ

2
,

where the additional index j picks the entry corresponding to variable j: With these
tools, one can perform variance decompositions or counterfactual experiments.

To identify the impulse vector corresponding to monetary policy shocks,
I impose that a contractionary policy shock does not lead to an increase in
prices or in nonborrowed reserves and does not lead to a decrease in the federal
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funds rate. These assumptions seem to be the least controversial implications of a
contractionary monetary policy shock. Furthermore and crucially, these seem to be
distinguishing characteristics of monetary policy shocks compared to other shocks
prominently proposed in the literature. For example, money demand shocks are
meant to be ruled out as a competing explanation by the requirement that
nonborrowed reserves do not rise.

Obviously, this method of identification has its limits. For example, money
demand shocks cannot be ruled out, if one takes the point of view that the federal
reserve will not at least partially accomodate increases in money demand through an
increase in nonborrowed reserves. Furthermore, combinations of other shocks could
potentially look like monetary policy shocks. One way to avoid this problem would
be to identify the other shocks explicitly, at the price of many additional
assumptions. Furthermore, this problem is not new to this approach. For example,
if the true data generating mechanism has more shocks than variables, and if one
uses a conventional Cholesky decomposition to identify a monetary policy shock by
the federal funds rate innovation ordered last, the monetary policy shock thus
identified will actually be a linear combination of several underlying shocks, except
in knife-edge cases. In sum, identification in any econometric exercise rests on
assumptions: I do not claim that the identifying assumptions here are ironclad, but
rather that they are particularly reasonable. Let me state the assumption explicitly.
Choose some horizon KX0:

Assumption A.1. A monetary policy impulse vector is an impulse vector a; so that the
impulse responses1 to a of prices and nonborrowed reserves are not positive and
the impulse responses for the federal funds rate are not negative, all at horizons
k ¼ 0; . . . ;K :

Given some VAR coefficient matrices B ¼ ½B0
1; . . . ;B

0
l �; some error variance–cov-

ariance matrix S; and some horizon K ; let AðB;S;KÞ be the set of all monetary
policy impulse vectors. Because it is obtained from inequality constraints, the set
AðB;S;KÞ will typically either contain many elements or be empty. Therefore, one
typically cannot obtain exact identification at this point, in contrast to more
commonly used exact identification procedures. For that reason, we will eventually
supplement the identification assumption above either by imposing a prior on
AðB;S;KÞ or by minimizing some criterion function f ð�Þ on the unit sphere, which
penalizes violations of the relevant sign restrictions, see B.2.

As a first step, however, it is already informative to simply use the OLS estimate of
the VAR, B ¼ B̂ and S ¼ Ŝ; fix K or try out a few choices for K ; and look at the
entire range of impulse responses, as a 2 AðB̂; Ŝ;KÞ is varied, provided AðB̂; Ŝ;KÞ is
not empty. The set A therefore results in an interval for the impulse responses, which
we wish to calculate. One can think of this exercise as an extreme bounds analysis in
the spirit of Leamer (1983). As usual in the literature, the bounds apply to each
1I will estimate my VAR using levels of the logs of variables, rather than e.g. first differences: therefore,

the restrictions are indeed imposed on the impulse responses and not e.g. on the cumulative impulse

responses.
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response entry ra;jðkÞ rather than to the entire function, i.e. there is probably
not a single a such that the response will be at the bound for all variables j or all
horizons k:

Numerically, this can and will be accomplished in a straightforward manner and
brute force by generating many impulse vectors, calculating their implied impulse
response functions, and checking whether or not the sign restrictions are satisfied. It
is wise to calculate the Cholesky-responses ri once, and then calculate the response
for some given impulse vector by calculating a weighted sum of the ri as in Eq. (4). I
will generate these impulse vectors randomly, because this is easier to implement
than other available alternatives: draw ~a from a standard normal in Rm; flip signs of
entries which violate sign restrictions, multiply with ~A

�1
to calculate the

corresponding ~a and divide by its length to obtain a candidate draw for a: Check
whether a 2 AðB̂; Ŝ;KÞ by checking the sign restrictions on the impulse responses for
all relevant horizons k ¼ 0; . . . ;K : Generate, say, 10 000 candidate draws for a; and
plot the maximum and the minimum of the impulse responses for those a; which
satisfy these restrictions, a 2 AðB̂; Ŝ;KÞ: This is a consistent, although slightly biased
estimate of the bounds. Results can be seen in Fig. 2: we will defer the description
and discussion of these and all other results to Section 3.

In principle, the set AðB;S;KÞ can be characterized analytically. A sign restriction
for some variable j and at some horizon k amounts to a linear inequality on a via
Eq. (4), thereby constraining a to some half space of Rm: The set AðB;S;KÞ is the
intersection of all these half spaces. It is therefore convex, which implies that
the range for variable j at horizon k of impulse responses satisfying the sign
restrictions is intervals. The set AðB;S;KÞ can be characterized by its extreme
points, which in turn can be calculated using linear programming techniques.
In practice, the number of inequality constraints imposed can be considerable:
hence, imposing the inequality restrictions at horizon k ¼ 0 only (or imposing none),
and relying on random trial-and-error for the rest is simpler to implement, and is
done here.

I wish to move beyond estimation to inference in order to deal with the issue of
nonexact identification of the impulse vector a and to deal with the sampling
uncertainty in the OLS estimate of B and S: I propose two related, but different
approaches, based on a Bayesian method. In the ‘‘pure-sign-restriction approach’’,
all impulse vectors satisfying the impulse response sign restrictions are considered
equally likely: a formal statement is below and technical details are in Appendix B.
In the ‘‘penalty-function approach’’, I use an additional criterion to select the best of
all impulse vectors, see Section B.2.

Let ~AðSÞ be the lower triangular Cholesky factor of S: Let Pm be the space of
positive definite m � m matrices and let Sm be the unit sphere in Rm; Sm ¼ fa 2

Rm : kak ¼ 1g: For both approaches, a Normal–Wishart prior is used rather than
one of a variety of other recent suggestions in the literature, see Appendix B and the
discussion at the end there. Using a different prior should not pose additional
difficulties, and I suspect that the conclusions drawn here are reasonably robust to
the choice of the prior. It would be interesting to check that more carefully: that,
however, is beyond the scope of this paper.
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Fig. 2. This figure shows the possible range of impulse response functions when imposing the sign

restrictions for K ¼ 5 at the OLSE point estimate for the VAR.
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Assumption A.2 (for the pure-sign-restriction approach). The parameters ðB;S; aÞ are
drawn jointly from a prior on Rl�m�m �Pm �Sm: The prior is proportional to a
Normal–Wishart in ðB;SÞ; whenever a ¼ ~AðSÞa satisfies a 2 AðB;S;KÞ and zero
elsewhere, i.e. is proportional to a Normal–Wishart density multiplied with an
indicator variable on ~AðSÞa 2 AðB;S;KÞ:

By parameterizing the impulse vector, i.e. by formulating the prior as a product
with an indicator variable in ðB;S; aÞ-space rather than ðB;S; aÞ-space, an
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undesirable scaling problem is avoided, see Section B.1. The flat prior on the
unit sphere for a is appealing for a number of reasons. In particular, the results
will be independent of the chosen decomposition of S: For example, reordering
the variables and choosing a different Cholesky decomposition in order to
parameterize impulse vectors will not yield different results. Again, details are in
Section B.1.

The penalty-function approach, described in Section B.2, exactly identifies a
monetary policy shock by minimizing some penalty function. Both approaches
have their merits. Deciding, which is more appropriate is a matter of taste and
judgement, and depends on the question at hand. The penalty-function approach
delivers impulse response functions with small standard errors as it seeks to
go as far as possible in imposing certain sign restrictions. The penalty-function
approach leaves the reduced-form VAR untouched, while the pure-sign-restriction
is, in effect, simultaneously an estimation of the reduced-form VAR alongside
the impulse vector: VAR parameter draws, which do not permit any impulse vector
to satisfy the imposed sign restrictions, receive zero prior weight, and VAR
parameter draws, which easily permit satisfaction of the sign restrictions, receive
more weight.

The pure-sign-restriction approach is cleaner for my task at hand, since it literally
only imposes the weak prior beliefs of e.g. prices not going up, following a surprise
rise in interest rates. Therefore, I focus on it in the main body of the paper.

Numerically, I implement the pure-sign-restriction approach in the following way.
Make assumption A.2. The posterior is given by the usual Normal–Wishart
posterior for ðB;SÞ; given the assumed Normal–Wishart prior for ðB;SÞ; times
the indicator function on ~AðSÞa 2 AðB;S;KÞ: To draw from this posterior, take a
joint draw from both the posterior for the unrestricted Normal–Wishart posterior
for the VAR parameters ðB;SÞ as well as a uniform distribution over the unit sphere
ainSm: Construct the impulse vector a; see Eq. (3), and calculate the impulse
responses rk;j at horizon k ¼ 0; . . . ;K for the variables j; representing the GDP
deflator, the commodity price index, nonborrowed reserves and the federal funds
rate. If all these impulse responses satisfy the sign restrictions, keep the draw.
Otherwise discard it. Repeat sufficiently often. Calculate statistics, based on the
draws kept.

Certainly, different priors are likely to generate different results. One can read
Faust’s (1998) contribution as searching for a prior that places all mass on the
impulse vectors which explain the largest share of output variation (as well as
studying the robustness with respect to the reduced-form VAR prior): he shows
that up to 86% of the variance of output may be explainable with monetary
policy shocks that way. Faust (1998) imposes far fewer sign restrictions than I do
here, see his list on p. 230: indeed, the contribution of monetary policy shocks
to the explanation of output variance decreases considerably, when imposing the
same sign restrictions as here, as Fig. 6 of my discussion (Uhlig, 1998) shows. The
sensitivity of the results to the choice of the prior may therefore not be too large. In
sum, Faust’s analysis provides a useful complement and robustness check to the
method here.
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3. Results

In this section, I present some results using my method. I have followed the
empirical approach in Bernanke and Mihov (1998a, b), who have used real GDP, the
GDP deflator, a commodity price index, total reserves, nonborrowed reserves and
the federal funds rate for the U.S. at monthly frequencies from January 1965 to
December 1996. To obtain monthly observations for all these series, some
interpolation was required, see Bernanke and Mihov (1998a) and in particular their
NBER 1995 working paper version for details. For the calculations here, I have
recalculated and updated their data set, which now ends in December 2003. For the
commodity price index, I have used the Dow Jones Spot Average (Symbol _DJSD),
commercially available from Global Financial Data, Inc., and calculated monthly
averages of the daily data. I have obtained all other time series from the St. Louis
Fed website, using the series GDPC1, GDPDEF, BOGNONBR, TOTRESNS and
FEDFUNDS. To obtain monthly series, I have used the interpolation method
described in Bernanke et al. (1997) in the version described in Moench and Uhlig
(2004). GDP has been interpolated with Industrial Production (INDPRO) and the
GDP Deflator with CPI (CPIAUCSL) and PPI (PPIFGS). I have fitted a VAR with
12 lags in levels of the logs of the series except for using the federal funds rate
directly. I did not include a constant or a time trend. This may result in a slight
misspecification, but makes for more robust results because of the interdependencies
in the specification of the prior between these terms and the roots in the
autoregressive coefficients, see Uhlig (1994).

Before moving to results permitting inference, examine Fig. 2, showing the range
of impulse response functions, which satisfies the sign restrictions for k ¼ 0; 1; . . . ;K
months after the shock, where K ¼ 5: The VAR coefficients and the variance–cov-
ariance matrix S have been fixed at the MLE point estimate (Fig. 3). To generate this
figure, 10 000 candidate draws for a have been generated. In addition to the bounds,
10 randomly selected impulse responses satisfying the sign restrictions have been
drawn to show how typical responses in these bands might look. Fig. 4 varies the
restriction horizon K : One can already see that the bounds for the response of real
GDP straddle the no-response line at zero, with the whole distribution moving up
with a longer restriction horizon K : This turns out to be a rather typical feature of
most of the Bayesian sampling results as well: we discuss these features in more detail
in Section 3.1.

Fig. 3 shows the histograms of the initial responses of all variables, when drawing
the orthogonalized impulse vectors uniformly from a sphere, as described for the
pure-sign-restriction approach. One can clearly see how the sign restrictions appear
to cut off part of the distribution for the initial response of prices and nonborrowed
reserves. They also show how the uniform draws of the orthogonalized impulse
vectors and restricting the signs of the impulse responses lead to a shaped
distribution for the initial response.

For comparison to these results and the results below, Fig. 5 shows results
obtained from a conventional Cholesky decomposition of S; i.e. imposing lower
triangularity on A: The Cholesky decomposition is popular in the literature because
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Fig. 3. This figure shows the distribution of the impact impulse response (i.e. at horizon 0), when imposing

the sign restrictions for K ¼ 5 at the OLSE point estimate for the VAR.

H. Uhlig / Journal of Monetary Economics 52 (2005) 381–419 393
it is easy to compute. This method requires a choice regarding the ordering of the
variables as well as the choice of the variable, whose innovations are to be
interpreted as monetary policy shocks. Here, I identify the monetary policy shock
with the innovations in the federal funds rate ordered forth, before nonborrowed and
total reserves.
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Fig. 4. Ranges for the impulse response of real GDP to a contractionary monetary policy shock one

standard deviation in size. At the OLSE of the VAR, the collection of impulse responses consistent with

the sign restriction cover the range shown. For the left column, K ¼ 2 and 5 have been used, whereas

K ¼ 11 and 23 have been used in the right column.
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Fig. 5 shows impulse responses for a horizon of up to 5 years after the shock. The
top rows contain the results for real GDP and total reserves, the middle row contains
the results for the GDP price deflator and for nonborrowed reserves and the bottom
row contains the results for the commodity price index and the federal funds rate.
Here as well as in all other plots, I show the median as well as the 16% and the 84%
quantiles for the sample of impulse responses: if the distribution was normal, these
quantiles would correspond to a one standard deviation band. A number of authors
prefer two standard deviation bands, which would correspond to the 2.3% and the
97.7% quantiles. But given that I want to report the same statistics in all the figures
and given that I based inference in the pure-sign-restriction approach on only 100
draws for computational reasons, I felt that I could not report these quantiles
precisely enough. Furthermore, one standard deviation bands are popular in this
literature as well. The results are fairly ‘‘reasonable’’ in that they confirm
conventional undergraduate textbook intuition. The ‘‘reasonableness’’ of Fig. 5 is
not an accident, but is to a good degree the result of the identification search alluded
to in the Introduction, involving both a search over all the possibilities of ordering
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Fig. 5. Impulse responses to a contractionary monetary policy shock one standard deviation in size,

identified as the innovation in the federal funds rate, ordered forth in a Cholesky decomposition before

nonborrowed and total reserves. This conventional identification exercise is provided for comparison. The

three lines are the 16% quantile, the median and the 16% quantile of the posterior distribution. The first

column shows the responses of real GDP, the GDP deflator and the commodity price index. The second

column shows the responses of total reserves, nonborrowed reserves, and the federal funds rate. This

identification mostly generates ‘‘reasonable’’ results, but also the price puzzle: the GDP deflator rises first

before falling.
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variables and identifying a monetary policy shock, as well as a search over the time
series to be included in the VAR in the first place.

One can also see a version of the ‘‘price puzzle’’ pointed out by Sims (1992): the
GDP deflator moves somewhat above zero first before declining below zero after a
monetary policy shock (see also the remarks in Appendix B). Eichenbaum (1992) has
shown how the price puzzle can be mitigated with the inclusion of commodity prices
in the VAR: they are included here, but do not lead to a resolution of the price puzzle
now. Ordering the federal funds rate last helps in mitigating the price puzzle
somewhat, but is less convincing as a conventional identification strategy: the results
are not shown here. It may well be that the additional decade of data since 1992 has
made this route to resolving the price puzzle more difficult. By contrast, the agnostic
identification approach to be employed next avoids the price puzzle by construction.

3.1. Results for the pure-sign-restriction approach

Our benchmark result is contained in Fig. 6, showing the impulse responses from a
pure-sign-restriction approach with K ¼ 5: That is, the responses of the GDP price
deflator, the commodity price index and nonborrowed reserves have been restricted
not to be positive and the federal funds rate not to be negative for the 6 months
k; k ¼ 0; . . . ; 5 following the shock. The results can be described as follows:
1.
 The federal funds rate reacts largely and positively immediately, typically rising by
20 basis points, then reversing course within a year, ultimately dropping by 10
basis points.
2.
 With a 2/3 probability, the impulse response for real GDP is within a �0:2%
interval around zero at any point during the first 5 years following the shock.
3.
 The GDP price deflator reacts very sluggishly, with prices dropping by about
0.1% within a year, and dropping by 0.4% within 5 years. The price puzzle is
avoided by construction.
4.
 The commodity price index reacts swiftly, reaching a plateau of a 1.5% percent
drop after about one year.
5.
 Nonborrowed reserves and total reserves both drop initially, with nonborrowed
reserves dropping by more (around 1%) than total reserves (around 0.6%).

The initial 6-months response for most of these variables look rather conventional
except for real GDP. Indeed, one may conclude from this figure that the reaction of
real GDP can as easily be positive as negative following a ‘‘contractionary’’ shock.
While this is consistent with the textbook view of gradually declining output after a
monetary policy shock, the data does not seem to urge this view upon us. The answer
to the opening question is: the effects of monetary policy shocks on real output are
ambiguous. A one-standard deviation monetary policy shock may leave output
unchanged or may drive output up or down by up to 0.2% in most cases, thus
possibly triggering fairly sizeable movements of unknown sign.

The further course of all the responses looks perhaps less conventional, although
not hard to explain. Here are some suggestions. Commodity prices react more
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Fig. 6. Impulse responses to a contractionary monetary policy shock one standard deviation in size, using

the pure-sign-restriction approach with K ¼ 5: That is, the responses of the GDP price deflator, the

commodity price index and nonborrowed reserves have been restricted not to be positive and the federal

funds rate not to be negative for months k; k ¼ 0; . . . ; 5 after the shock. The error band for the real GDP

impulse response is a �0:2 interval around zero: while consistent with the textbook view of declining

output after a monetary policy shock, it is also consistent with e.g. monetary neutrality.
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quickly than the GDP deflator, since commodities are traded on markets with very
flexible prices. As for reserves and interest rates, note that these impulse responses
contain the endogenous reaction of monetary policy to its own shocks. The federal
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funds rate reverses course and turns negative for perhaps one of the following two
reasons. First, this may reflect that monetary policy shocks really arise as errors of
assessment of the economic situation by the Federal Reserve Bank. The Fed may
typically try to keep the steering wheel steady: should they accidentally make an
error and shock the economy, they will try to reverse course soon afterwards.
Second, this may reflect a reversal from a liquidity effect to a Fisherian effect: with
inflation declining, a decline in the nominal rate may nonetheless indicate a rise in the
real rate. Looking at the responses of reserves, I favor the first view. Obviously, other
reasonable interpretations can be found.

This identification of the monetary policy shock seems appealingly clean to me as
it only makes use of a priori appealing and consensual views about the effects of
monetary policy shocks on prices, reserves and interest rates. There is one degree of
choice here, though: the horizon K for the sign restrictions. How precisely does this
horizon need to be specified, i.e. how sensitive are the results to changes in K? The
answer is provided in Fig. 7, showing the impulse response functions for real GDP,
when imposing a variety of choices for K : The left column shows the results for
a 3-months ðK ¼ 2Þ and a 6-months ðK ¼ 5Þ horizon, while the right column
shows the results for a 12-months ðK ¼ 11Þ and a 24-months ðK ¼ 23Þ horizon.
Essentially, all of these figures show again that the error band for the real GDP
impulse response is a �0:2 range around zero. However, as one moves from shorter
to longer horizons K ; that band seems to move up somewhat, however, and starts to
indicate a significant initial rise rather than fall of real GDP, following a
‘‘contractionary’’ shock. Definitely, a short-lived liquidity effect is better for the
conventional view.

The results are not quite as sharp at the short end as for the Cholesky
decomposition. This is to be expected: the Cholesky decomposition provides an exact
identification, while the pure-sign-restriction approach does not. As the horizon
increases, however, the degree of uncertainty about the response appears to be about
the same. Apparently, the sign restrictions are about as restrictive as or even more
restrictive than the Cholesky identification at horizons exceeding, say, 3 years after
the shock. It is also interesting to note that the error bands in Fig. 6 are typically
remarkably symmetric around the median.

Results for the penalty-function approach are in Section B.3.

3.2. How much variation do monetary policy shocks explain?

Having identified the monetary policy shock, it is then interesting to find out
how much of the variation these shocks explain. What fraction of the variance
of the k-step ahead forecast revision Et½Y tþk� � Et�1½Y tþk� in, say, real GDP,
prices and interest rates, are accounted for by monetary policy shocks? These
questions are answered by Fig. 8 for the benchmark experiment, i.e. using a pure-
sign-restriction approach with a 6-months restriction ðK ¼ 5Þ: The variables are
ordered as in Fig. 6.

According to the median estimates, shown as the middle lines in this figure,
monetary policy shocks account for 5–10% of the variations in real GDP at all
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Fig. 7. Impulse responses of real GDP to a contractionary monetary policy shock one standard deviation

in size, using the pure-sign-restriction approach. For the left column, K ¼ 2 and 5 were used, whereas

K ¼ 11 and 23 have been used in the right column. Essentially, all of these figures show again the error

band for the real GDP impulse response to be a �0:2 interval around zero. As one moves from shorter to

longer horizons K ; that band seems to move up. Overall, the evidence in favor of the conventional view of

a fall in output after a ‘‘contractionary’’ monetary policy shock seems to weak at best.

H. Uhlig / Journal of Monetary Economics 52 (2005) 381–419 399
horizons, for up to 20% of the long-horizon variations in prices and 15% of the
variation in interest rates at the short horizon, falling off after that. Explaining just
two or so percent of the real GDP variations at any horizon is within the 64% error
band: it thus seems fairly likely, that monetary policy has practically no effect on real
GDP. This may either be due to monetary policy shocks having little real effect, or
due to a Federal Reserve Bank keeping a steady hand on the wheel, as argued by
Cochrane (1994), Woodford (1994) or Bernanke (1996).

Among the six series, the largest fraction at the long end is explained for prices,
which is somewhat supportive of the conventional view that in the long run,
monetary policy only has effects on inflation and not on much else. For interest
rates, the largest fraction of variation explained by monetary policy is at the short
horizon, providing further support to the view that monetary policy shocks are
accidental errors by the Federal Reserve Bank, which are quickly reversed. The
remaining variations in prices and interest rates may still be due to monetary policy,
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Fig. 8. These plots show the fraction of the variance of the k-step ahead forecast revision explained by a

monetary shock, using a pure-sign restriction approach with K ¼ 5: The three lines are the 16% quantile,

the median and the 16% quantile of the posterior distribution. According to the median estimates,

monetary policy shocks account for 10% of the variations in real GDP at all horizons, for up to 30% of

the long-horizon variations in prices and for 25% of the variation in interest rates at the short horizon,

falling off after that.
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but then it needs to be due to the endogenous part of monetary policy: by
systematically responding to shocks elsewhere, monetary policy may end up being
responsible for 100% of the movements in prices. Only 30% of these movements can
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directly be ascribed to shocks generated by monetary policy itself. These results are
rather similar to the results found in the empirical VAR literature so far, see the
surveys cited in the Introduction.
0 1 2 3 4 5
0

10

20

30

40

50

60

70
Fraction of variance explained for real GDP        

years

P
er

ce
nt

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Fraction of variance explained for Fed. Funds Rate 

years

P
er

ce
nt

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10
Fraction of variance explained for GDP price defl. 

years

P
er

ce
nt

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16
Fraction of variance explained for Nonborr. Reserv.

years

P
er

ce
nt

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45
Fraction of variance explained for Comm. price ind.

years

P
er

ce
nt

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16
Fraction of variance explained for Total Reserves  

years

P
er

ce
nt

Fig. 9. These plots show the fraction of the variance of the k-step ahead forecast revision explained by a

monetary shock identified via a Cholesky decomposition, see Fig. 5. The error bands are 68% error bands

around the median, i.e. the upper and the lower line are the 84% quantile and the 16% quantile of the

posterior distribution. The dash–dotted line is the estimate at the mean of the posterior, i.e. for the MLE

estimates.



ARTICLE IN PRESS

H. Uhlig / Journal of Monetary Economics 52 (2005) 381–419402
The results for the Cholesky decomposition are shown in Fig. 9 and are strikingly
different in several important aspects. Most importantly, nearly half of all the
variance in the 5-year ahead forecast revision for real GDP is explained as due to
monetary policy shocks. This seems unplausibly large by standards of the
conventional wisdom, as it would ascribe large long-lasting effects to observed
monetary policy shocks. These results differ from other estimates in the literature,
see e.g. Cochrane (1994).

3.3. Inflation and real interest rates

One can analyze the results shown further. For example, one can calculate the
impulse response for inflation rates by calculating rp;aðkÞ ¼ rp;aðkÞ � rp;aðk � 12Þ;
where rp;aðkÞ is the horizon of the GDP deflator at horizon k; given the impulse
vector a; and where we define rp;aðkÞ ¼ 0 for ko0: This in turn allows the calculation
of a response of the real interest rate by subtracting the predictable change in
inflation rates from the response of a 1-year T-bill rate, matching maturities:

rr;aðkÞ ¼ rT-bill;aðkÞ � rp;aðk þ 12Þ.

To calculate this, I added a time series for the T-bill rate at constant maturity to the
VAR specification above, increasing the number of variables from six to seven: the 1-
year T-bill rate rather than the federal funds rate is the appropriate nominal interest
rate from which to calculate annual real rates by subtracting the annual inflation
rate. The data were obtained from the web site of the Federal Reserve Bank of St.
Louis. I used the pure-sign-restriction approach with K ¼ 5 (and no restriction on
the response of the 1-year T-bill rate) to identify the monetary policy shock.
I calculated the implied response for inflation and the real rate. The results are in
Fig. 10. What is perhaps somewhat striking is the fact that real rates are positive for
up to 2 years, and then return to zero. The overshooting to the negative side, which is
visible for both the response of the federal funds rate and the 1-year nominal T-bill
rate, is also present in the response of the real rate.

3.4. What drives the conventional results?

A still skeptical reader might ask why the conventional Cholesky decomposition
shown in Fig. 5 delivers such strikingly different conclusions regarding the response
of output. There are three possible replies to this question. The first is that there is a
pronounced price puzzle in Fig. 5. One can either proceed by accepting it, and
building theories to explain it, see e.g. Altig et al. (2002), or one can suspect that an
important ingredient has so far been left out in my agnostic identification approach.
In particular, I have allowed prices and real GDP to react instantaneously within the
period to monetary policy shocks. How much would it matter to fix a zero response?

Fig. 11 shows the results of fixing the initial GDP deflator response to zero (this
restriction seems less plausible for commodity prices, and furthermore the data
makes it hard to impose it in addition). Clearly, the results for the initial reaction of
real GDP widen the gap to Fig. 5, starting from Fig. 6.



ARTICLE IN PRESS

0 1 2 3 4 5
 -0.2

 -0.15
 -0.1

 -0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

Impulse response for real GDP

years

P
er

ce
nt

0 1 2 3 4 5
 -0.7

 -0.6

 -0.5

 -0.4

 -0.3

 -0.2

 -0.1

0
Impulse response for GDP price defl. 

years

P
er

ce
nt

0 1 2 3 4 5
 -0.3

 -0.2

 -0.1

0

0.1

0.2

0.3

0.4
Impulse response for Fed. Funds Rate 

years

P
er

ce
nt

0 1 2 3 4 5
 -1.4

 -1.2

 -1

 -0.8

 -0.6

 -0.4

 -0.2

0

0.2

0.4
Impulse response for Total Reserves  

years

P
er

ce
nt

0 1 2 3 4 5
 -3.5

 -3

 -2.5

 -2

 -1.5

 -1

 -0.5

0
Impulse response for Comm. price ind.

years

P
er

ce
nt

0 1 2 3 4 5
 -0.2

 -0.1

0

0.1

0.2

0.3

0.4

0.5
Impulse response for 1 Year T Bill   

years

P
er

ce
nt

0 1 2 3 4 5
-1.6

 -1.4
 -1.2

 -1
 -0.8
 -0.6
 -0.4
 -0.2

0
0.2
0.4

Impulse response for Nonborr. Reserv.

years

P
er

ce
nt

0 1 2 3 4 5
 -0.2

 -0.15

 -0.1

 -0.05

0

0.05
Impulse response for Inflation

years

P
er

ce
nt

0 1 2 3 4 5
 -0.2

 -0.1

0

0.1

0.2

0.3

0.4

0.5
Impulse response for Real Rate

years

P
er

ce
nt

Fig. 10. Additional impulse responses for the 1-year treasury bill rate at constant maturity (added to the

VAR), the inflation rate, calculated from the GDP deflator response and the implied real rate. The system

has been estimated using a pure-sign-restriction approach with K ¼ 5: The first column shows the

responses of real GDP, total reserves and nonborrowed reserves. The second column shows the responses

of the GDP deflator, the commodity price index and inflation. The third column shows the responses of

the federal funds rate, the 1-year T-bill rate and the real rate.
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Fig. 12 demonstrates, however, that fixing the initial response of real GDP to zero
makes a substantial difference. Now, there appears to be considerable evidence
that real GDP does indeed fall, following a surprise rise in interest rates. But why
should it be plausible to restrict the initial reaction of real GDP? Investment and
business plans may be likely to be quite sensitive to interest rates or even slight hints
that the Fed might change them. Furthermore, the shocks eliminated in 12 compared
to 6 are shocks which move up interest rates and real GDP, while moving down
prices and nonborrowed reserves: it is hard to view them as the endogenous response
of all other variables to, say, technology shocks or demand shocks. It seems that the
life of the conventional wisdom hangs on the thin thread of a rather spurious
identification restriction. Alternatively, the method here can be used to make
this assumption, avoid the price puzzle and get conventional-looking results,
if so desired.
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Fig. 11. Impulse responses to a contractionary monetary policy shock one standard deviation in size,

using the pure-sign-restriction approach with K ¼ 5; additionally imposing a zero response on impact for

the GDP price deflator.
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4. Conclusions

This paper proposed a new agnostic method to estimate the effects of
monetary policy, imposing sign restrictions on the impulse responses of prices,
nonborrowed reserves and the federal funds rate in response to a monetary
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Fig. 12. Impulse responses to a contractionary monetary policy shock one standard deviation in size,

using the pure-sign-restriction approach with K ¼ 5; additionally imposing a zero response on impact for

real GDP.
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policy shock. No restrictions are imposed on the response of real GDP. It turned
out that
1.
 ‘‘Contractionary’’ monetary policy shocks have an ambiguous effect on real
GDP, moving it up or down by up to �0:2% with a probability of 2/3. Monetary
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policy shocks account for probably less than 25% of the k-step ahead prediction
error variance of real output, and may easily account for less than 3%.
2.
 The GDP price deflator falls only slowly following a contractionary monetary
policy shock. The commodity price index falls more quickly.
3.
 Monetary policy shocks account for only a small fraction of the forecast error
variance in the federal funds rate, except at horizons shorter than half a year.
They account for about one quarter of the variation in prices at longer horizons.

In sum, even though the general price level moves very gradually for a period of
about a year, monetary policy shocks have ambiguous real effects and may actually
be neutral. These observations largely confirm the results found in the empirical
VAR literature so far, except for the ambiguity regarding the effect on output. This
exception is, of course, a rather important difference. ‘‘Contractionary’’ monetary
policy shocks do not necessarily seem to have contractionary effects on real GDP.
One should therefore feel less comfortable with the conventional view and the
current consensus of the VAR literature than has been the case so far. The key
identifying assumption explaining the difference between my results and the results
of, say, a conventional Cholesky decomposition appears to be that I do not restrict
the on-impact response of real GDP to be zero.

The paper agrees with a number of other publications in the literature, that
variations in monetary policy account only for a small fraction of the variation in
any of these variables. Good monetary policy should be predictable policy, and
should not rock the boat. From that perspective, monetary policy in the U.S. during
this time span has been successful indeed.
Appendix A. Characterizing impulse vectors

Let u be the one-step ahead prediction error in a VAR of n variables and let v be
the vector of fundamental innovations, related to u via some matrix A;

u ¼ Av.

Let S be the variance–covariance matrix of u; assumed to be nonsingular, while the
identity matrix is assumed to be the variance–covariance matrix of v: If v ¼ e1; i.e.
the vector with zeros everywhere except for its first entry, equal to unity, then
u ¼ Ae1 equals a1; the first column of A: Hence, the jth column of A describes
the jth impulse vector, i.e. the representation of an innovation in the jth structural
variable as a one-step ahead prediction error. Put differently, the jth column
of A describes the immediate impact on all variables of an innovation in the jth
structural variable. Our aim is to characterize all possible impulse vectors. One can
do so, using the observation that any two decompositions S ¼ AA0 and ~A ~A

0
have to

satisfy that

~A ¼ AQ (6)
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for some orthogonal matrix Q; i.e. QQ0 ¼ I ; see also Faust (1998) and Uhlig (1998). I
find the following proposition useful, which I shall prove directly. I follow the
general convention that all vectors are to be interpreted as columns.

Proposition A.1. Let S be a positive definite matrix. Let xi; i ¼ 1; . . . ;m be the

eigenvectors of S; normalized to form an orthonormal basis of Rm: Let li; i ¼ 1; . . . ;m
be the corresponding eigenvalues. Let a 2 Rm be a vector. Then, the following four

statements are equivalent:
1.
 There are coefficients ai; i ¼ 1; . . . ;m with
Pm

i¼1a
2
i ¼ 1; so that

a ¼
Xm

i¼1

ðai

ffiffiffiffi
li

p
Þxi.
2.
 ~S ¼ S� aa0 is positive semidefinite and singular.

3.
 The vector a is an impulse vector, i.e., there is some matrix A; so that AA0 ¼ S and

so that a is a column of A:

4.
 Let ~A ~A

0
¼ S for some matrix ~A ¼ ½ ~a1; . . . ; ~am�: Then there are coefficients ai; i ¼

1; . . . ;m with
Pm

i¼1a
2
i ¼ 1; so that

a ¼
Xm

i¼1

ai ~ai.
Note that there are m � 1 degrees of freedom in picking an impulse vector, and
that impulse vectors cannot be arbitrarily long: the Cauchy–Schwarz inequality
implies that

kakp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

jlijkxik
2

s
,

for example.

Proof. First, I show that the third statement implies the second statement. To that
end, write A ¼ ½a1 . . . am� in form of its columns, and note that

S ¼ AA0 ¼
Xm

i¼1

aia
0
i.

Assume w.l.o.g., that a is the first column, a ¼ a1: Then, ~S ¼
Pm

i¼2aia
0
i; which is

positive semidefinite and singular, since each of the matrices aia
0
i are of rank 1.

Next, I show that the second statement implies the third. Find the nonzero
eigenvalues ~li; i ¼ 2; . . . ;m and its corresponding eigenvectors ~xi; i ¼ 2; . . . ;m for the
positive semidefinite matrix ~S ¼ S� aa0; noting that ~S must be of rank m � 1; since
S is of rank m. Let

A ¼ a;

ffiffiffiffiffi
~l2

q
~x2;

ffiffiffiffiffi
~l3

q
; ~x3 . . .

ffiffiffiffiffiffi
~lm

q
~xm

� �
.

A simple calculation shows that indeed S ¼ AA0:
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To see that the third statement implies the last, note that A ¼ ~AQ for some matrix
Q with QQ0 ¼ I ; see Eq. (6). The coefficients a can now be found in the first column
of Q: Conversely, given any such vector a of unit length, complement it to an
orthogonal basis to form the matrix Q: Then, let A ¼ ~AQ:

To see the equivalence between the third and the first statement, follow the same
argument, noting that

~A ¼ ½x1 . . . xm�

ffiffiffiffiffi
l1

p
0 . . . 0

0
ffiffiffiffiffi
l2

p
. . . 0

..

. ..
. ..

. ..
.

0 0 . . .
ffiffiffiffiffiffi
lm

p

2
666664

3
777775

is simply a particular decomposition ~A ~A
0
¼ S:

This finishes the proof. &

Given an impulse vector a; one would like to calculate the part of the one-step
ahead prediction error ut which is attributable to shocks proportional to that vector.
If the entire matrix A was available and a was the, say, first column, one would
simply calculate vt ¼ A�1ut and use vt;1 as the scale of the shock attributable to a:
Motivated by this reasoning, define:

Definition A.2. Given an impulse vector a and a one-step ahead prediction error
u 2 Rm; vðaÞ 2 R is called the scale of a shock attributable to a; if there exists a matrix
A with A0A ¼ S; of which a is the jth column for some j; so that vðaÞ ¼ ðA�1uÞj :

It turns out that this ties down the scale uniquely, provided S is not singular.

Proposition A.2. Given an impulse vector a and a one-step ahead prediction error u; the

scale of the shock vðaÞ attributable to a is unique and can be calculated as follows. Let

b 2 Rm solve the two equations

0 ¼ ðS� aa0Þb,

1 ¼ b0a.

The solution b exists and is unique. Then,

vðaÞ ¼ b0u.

Proof. Suppose A was available and assume w.l.o.g., that a is its first column. Thus,
A can be partitioned as A ¼ ½ajA2�: Likewise, partition B ¼ A�1 into

B ¼
b0

B2

" #

as well as v ¼ A�1u into

v ¼
vðaÞ

V 2

" #
.
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Clearly, vðaÞ ¼ b0u: thus, the task is to characterize b: Note first that

S ¼ AA0 ¼ aa0 þ A2A0
2. (7)

Next, note that

Im ¼ BA ¼
b0a b0A2

B2a B2A2

" #
.

Hence, b0a ¼ 1 and b0A2 ¼ 0: The latter equality implies together with Eq. (7)

0 ¼ b0A2A0
2b ¼ b0

ðS� aa0Þb.

Since S� aa0 is symmetric, this is equivalent to ðS� aa0Þb ¼ 0: Note that there is
unique one-dimensional subspace of vectors b satisfying ðS� aa0Þb ¼ 0; since S is
assumed to be regular. Also, because S is regular, a0ba0 for any ba0 which satisfies
this equation. Thus, there is a unique b; which also satisfies b0a ¼ 1: &

With vðaÞ it is now furthermore clear that the part of u which is attributable to the
shock proportional to the impulse vector a is given by vðaÞa:
Appendix B. Estimation and inference

For convenience, I collect here the main tools for estimation and inference, see
also Uhlig (1998). I use a Bayesian approach since it is computationally simple and
since it allows for a conceptually clean way of drawing error bands for statistics of
interest such as impulse responses, see Sims and Zha (1999) for a clear discussion on
this point. Note that draws from the posterior are candidate truths. Thus, if e.g. the
true impulse response for prices should not violate the imposed sign restriction, then
this should also literally be true for any draw from the posterior. Thus, the price
puzzle in Fig. 5 is a violation by candidate truths, and worrisome. With a classical
approach, by contrast, considerations of significance would enter: a violation may be
considered as consistent with the sign restriction if it is insignificant, requiring further
judgement. Put differently, a Bayesian approach is more convenient to implement
and cleaner to justify. The reader who rather wishes to pursue a classical approach
and inference regarding impulse response functions in vector autoregressions is
referred to the work by Mittnik and Zadrozny (1993), Kilian (1998a, b) and
Berkowitz and Kilian (2000).

Using monthly data, I fixed the number of lags at l ¼ 12 as in Bernanke and
Mihov (1998a, b). Stack system (1) as

Y ¼ XBþ u (8)

where X t ¼ ½Y 0
t�1;Y

0
t�2; . . . ;Y

0
t�l �

0; Y ¼ ½Y 1; . . . ;Y T �
0; X ¼ ½X 1; . . . ;X T �

0; u ¼

½u1; . . . ; uT �
0 and B ¼ ½Bð1Þ; . . . ;BðlÞ�

0: To compute the impulse response to an impulse
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vector a; let a ¼ ½a0; 01;mðl�1Þ�
0 as well as

G ¼
B0

Imðl�1Þ 0mðl�1Þ;m

" #

and compute rk;j ¼ ðGkaÞj ; k ¼ 0; 1; 2; . . . to get the response of variable j at horizon
k: The variance of the k-step ahead forecast error due to an impulse vector a is
obtained by simply squaring its impulse responses. Summing again over all aj ; where
aj is the jth column of some matrix A with AA0 ¼ S; delivers the total variance of the
k-step ahead forecast error. I assume that the ut’s are independent and normally
distributed. The MLE for ðB;SÞ is given by

B̂ ¼ ðX0XÞ�1X0Y; Ŝ ¼
1

T
ðY� XB̂Þ0ðY� XB̂Þ. (9)

Our prior and posterior for ðB;SÞ belongs to the Normal–Wishart family, whose
properties are further discussed in Uhlig (1994), extending the standard treatment in
Zellner (1971). A proper Normal–Wishart distribution is parameterized by a mean
coefficient matrix B̄ of size ml � m; a positive definite mean covariance matrix S of
size m � m as well as a positive definite matrix N of size ml � ml and a degrees-of-
freedom real number nX0 to describe the uncertainty about ðB;SÞ around ðB̄;SÞ:
The Normal–Wishart distribution specifies, that S�1 follows a Wishart distribution
WmðS

�1=n; nÞ with E½S�1� ¼ S�1; and that, conditionally on S; the coefficient matrix
in its columnwise vectorized form, vecðBÞ; follows a Normal distribution
NðvecðB̄Þ;S� N�1Þ: To draw from the Wishart distribution WmðS

�1=n; nÞ; an
easily implementable method is to calculate S ¼ ðR � R0Þ

�1; where R is an m � n
matrix with each column an independent draw from a Normal distribution
Nð0;S�1=nÞ with mean zero and variance–covariance matrix S�1:

Proposition A.1 on p. 670 in Uhlig (1994) states that if the prior is described by B̄0;
N0; S0 and n0; then the posterior is described by B̄T ; NT ; ST and nT ; where

nT ¼ T þ n0,

NT ¼ N0 þ X0X,

B̄T ¼ N�1
T ðN0B̄0 þ X0XB̂Þ,

ST ¼
n0
nT

S0 þ
T

nT

Ŝþ
1

nT

ðB̂ � B̄0Þ
0N0N�1

T X0XðB̂ � B̄0Þ.

I use a weak prior, and N0 ¼ 0; n0 ¼ 0; S0 and B̄0 arbitrary. Then, B̄T ¼ B̂; ST ¼ Ŝ;
nT ¼ T ; NT ¼ X0X; which is also the form of the posterior used in the RATS manual
for drawing error bands, see e.g. 10.1 in Doan (1992).

No attempt has been made to impose more specific prior knowledge such as the
no-change-forecast of the Minnesota prior, see Doan et al. (1984), special treatments
of roots near unity, see the discussion in Sims and Uhlig (1991) as well as Uhlig
(1994), or to impose the more sophisticated priors of Leeper et al. (1996) or Sims and
Zha (1998) or Kadiyala and Karlsson (1997). Also, I have not experimented with
regime switching as in Bernanke and Mihov (1998a, b) or with stochastic volatility as
in Uhlig (1997).
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B.1. The pure-sign-restriction approach

Two rather technical remarks are in order. First, by parameterizing the impulse
vector, i.e. by formulating the prior as a product with an indicator variable in
ðB;S; aÞ-space rather than ðB;S; aÞ-space, an undesirable scaling problem is avoided.
Consider some ðB;SÞ as well as ðB; lSÞ for some l40: Rescaling S induces rescaling
of AðB;S;KÞ: As a result, a prior with an indicator variable in ðB;S; aÞ-space would
assign lðm�1Þ=2 as much weight to the �-ball around ðB; lSÞ as to the �-ball around
ðB;SÞ beyond the weights given by the Normal–Wishart prior. With the formulation
in ðB;S; aÞ-space, the weight of these two balls is given by the Normal–Wishart prior
alone.

Second, it should be noted that all decompositions S ¼ ~A ~A
0
together with a

uniform prior for a result in the same prior on the impulse vectors a and
thus the same inference, because two different decompositions differ by an
orthogonal rotation Q; see Eq. (6). Therefore, changing to a different decompo-
sition is equivalent to rotating the distribution for a with the appropriate Q:
Since an orthogonal rotation of a uniform distribution on the unit sphere
will leave that distribution unchanged, there is no change in the implied prior
on impulse vectors. In particular, reordering and choosing a different
Cholesky decomposition in order to parameterize impulse vectors will not
yield different results. In sum, any smooth, matrix-valued function of S;
satisfying ~AðSÞð ~AðSÞÞ0 ¼ S will lead to the same inference, because two such
functions differ only in an orthonormal transformation and thus by a Jacobian equal
to unity.

Finally, the flat prior is appealing, as the likelihood function is uninformative
about the appropriate choice of a; i.e., using Jeffreys prior would also result
in the choice of a flat prior in a: This is not true in ðB;S; aÞ-space due to the
rescaling issue described above. By change of variable, the prior chosen in
ðB;S; aÞ-space can be transformed in a prior in ðB;S; aÞ-space, obviously.
Alternatively, one could calculate the implied prior in the space of impulse
responses, which provide another means of parameterization. Dwyer (1997) pursues
that route.

To draw inferences from the posterior for the pure-sign-restriction approach, I
take n1 draws from the VAR posterior and, for each of these draws, n2 draws a from
the m-dimensional unit sphere. A draw a from the m-dimensional unit sphere is
easily obtained by drawing ~a from the m-dimensional standard normal distribution,
and then normalizing its length to unity, a ¼ ~a=k~ak: From S and a; I construct the
impulse vector, using characterization (3) or, alternatively, some other characteriza-
tion in Proposition A.1.

For each draw, I calculate the impulse responses, and check, whether the sign
restrictions are satisfied. If they are, I keep the draw. If not, I proceed to the next.
Finally, error bands, etc. are calculated using all the draws which have been kept.
For the calculations, I have chosen n1 ¼ n2 and high enough, so that a couple of
hundred joint draws satisfied the sign restriction. It turned out that I could use
n1 ¼ n2 ¼ 200 in all cases.
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Fig. 13. This figure shows the posterior distribution of the impact impulse response (i.e. at horizon 0),

when imposing the sign restrictions for K ¼ 5; using the pure-sign-restriction approach.

H. Uhlig / Journal of Monetary Economics 52 (2005) 381–419412
Fig. 13 shows the posterior of the initial responses of all variables as histogram,
similar to 3. While there are some subtle differences, they do not appear to be large.
This is comforting. The Bayesian approach allows for clean posterior inference, but
does not produce strong and thus potentially hard-to-explain deviations from a
simple OLSE-with-sign-restrictions analysis.
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B.2. The penalty-function approach

With the penalty-function approach, assumption A.1 is replaced with

Assumption B.1. A monetary policy impulse vector is an impulse vector a minimizing
a given criterion function f ð�Þ on the space of all impulse vectors, which penalizes
positive impulse responses of prices and nonborrowed reserves and negative impulse
responses of the federal funds rate at horizons k ¼ 0; . . . ;K :

Assumption ass:puresign is replaced with

Assumption B.2 (for the penalty-function approach). The parameters ðB;SÞ are
drawn from a Normal–Wishart prior. The monetary policy impulse vector a is
identified, using assumption B.1.

To compare this approach to the pure-sign-restriction approach, it is instructive to
consider the case of overidentification, i.e. if the set AðB;S;KÞ is empty. In that case,
the first approach will consider the particular B and S impossible, i.e. the posterior
will be constrained to be zero there. This is not a problem in principle, as long as
there are some B and S; for which AðB;S;KÞ is nonempty: the first method will only
permit these for drawing inferences. By contrast, the second approach will always
find a best impulse vector a for any given ðB;SÞ: If the set AðB;S;KÞ is empty, the
second approach will find an impulse vector a which comes as close as possible to
satisfying the sign restrictions by minimizing a penalty for sign restriction violations.

Numerically, I implement the penalty-function approach as follows. Define the
penalty function

f ðxÞ ¼
x if xp0;

100 � x if xX0

(
(10)

which penalizes positive responses in linear proportion and rewards negative
responses in linear proportion, albeit at a slope 100 times smaller than the slope for
penalties on the positive side.

Make Assumption B.2. For the true VAR coefficients, let rj;aðkÞ; k ¼ 0; . . . ;K be
the impulse response of variable j and sj be the standard deviation of the first
difference of the series for variable j: Let ij ¼ �1; if j is the index of the federal funds
rate in the data vector, and else, let ij ¼ 1: Define the monetary policy impulse vector
as that impulse vector a; which minimizes the total penalty CðaÞ for prices,
nonborrowed reserves and (after flipping signs) the federal funds rate at horizons
k ¼ 0; . . . ;K ;

CðaÞ ¼
X

j2

‘‘ GDP deflator’’ ;

‘‘ Comm: price index’’ ;

‘‘ Nonborr: reserves’’
‘‘ Federal funds rate’’

8<
:

9=
;

XK

k¼0

f ij
rj;aðkÞ

sj

� �
.
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The rescaling by sj is necessary to make the deviations across different impulse
responses comparable to each other. Note that the sign of the penalty direction is
flipped for the federal funds rate. Since the true VAR is not known, find the
monetary policy impulse vector for each draw from the posterior. This requires
numerical minimization. Keep all draws and accordingly calculated monetary policy
impulse vectors, and calculate statistics based on these.

Perhaps the most controversial aspect of the penalty function in (10) is the reward

given to responses satisfying the restriction. Numerically, this feature is needed in
order to (generically) exactly identify a best impulse vector, if AðB;S;KÞ is not
empty. But does this also make economic sense? I believe it does for the following
reason. At any point in time, many shocks hit the economy. In isolation or together,
some nonmonetary shocks may trigger minor responses in interest rates, prices and
nonborrowed reserves which satisfy the sign restrictions. On the other hand, it is
plausible that a monetary policy shock moves all these variables quite substantially.
Given a choice among many candidate monetary impulse vectors in AðB;S;KÞ; it
might therefore be desirable to pick the one, which generates a more decisive
response of the variables, for which sign restrictions are imposed: this is what the
penalty-function approach does. The drawback of this feature should also be clear:
one is, in effect, imposing somewhat more than just the sign restrictions. While I
have treated all sign restrictions symmetrically, one could alternatively modify the
penalty-function approach so that rewards are only given for those variables or at
those horizons, for which a large response in the correct direction seems a priori
most plausible. For example, one may expect monetary policy shocks to move
interest rates a lot in the first few periods, but one may be less sure about a strong
reaction of prices or a strong reaction of interest rates further out, compared to other
shocks hitting the economy.

A few remarks should be made in defense of the particular functional form used
for the penalty function in (10). First, because I wish to impose sign restrictions, the
penalty function should be asymmetric, punishing violations a lot more strongly
than rewarding large and correct responses. Second, a continuous penalty function is
needed in order to make standard minimization procedures work properly. Some
minimization procedures even require differentiability: this can be accomodated
fairly easily by smoothing out the kink at zero, modifying the function in a small
neighborhood around zero. Third, I do want to punish even small violations—which
is why e.g. a quadratic functional form is a less appealing choice than a linear one—
but at the same time, I do want to punish larger deviations more than small ones and
not treat them as equally bad—which is why e.g. a square-root function form is also
less appealing. A square-root specification would also generate infinite slopes at zero,
which may create numerical problems. Nonetheless, to check the robustness of my
results, I have also experimented with a square-root specification, replacing x byffiffiffiffiffiffi
jxj

p
in the calculation of the penalty on the right-hand side of Eq. (10) as well as

with a square specification, similarly replacing x with x2:
To draw inference from the posterior for the penalty-function approach, I take n

draws from it, employing a Monte-Carlo method: because optimizing over the shape
of the impulse responses is time consuming, I usually took n ¼ 100: For each of these
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draws, I calculate the impulse responses and the variance decomposition and collect
them. Thus, after 100 draws, I have 100 draws for each point on an impulse response
function I may wish to estimate: it is now easy to calculate their median and their
68% error band.

To do the numerical minimization of the criterion function C for each draw from
the posterior, I needed to parameterize the space of vectors ðajÞ

6
j¼1 of unit length: I

found the parameterization

a ¼

cosðg1Þ cosðg2Þ cosðg3Þ

cosðg1Þ cosðg2Þ sinðg3Þ

cosðg1Þ sinðg2Þ

sinðg1Þ cosðg4Þ cosðg5Þ

sinðg1Þ cosðg4Þ sinðg5Þ

sinðg1Þ sinðg4Þ

2
6666666664

3
7777777775
; ðgjÞ

5
j¼1 2 R5

particularly convenient. I have coded all my routines in MATLAB, and used its
general purpose minimizer fmins.m to perform the minimization task numerically. It
turned out that fmins sometimes stopped the search before converging to the optimal
solution: I thus performed fmins.m three times in a row, starting it first at a
randomly selected ðgjÞ

5
j¼1 2 R5 and then starting it successively at the previously

found optimum. Now, the minimization seemed to miss the minimum in safely less
than 5% of all cases. To achieve near-certain convergence, I did this procedure twice,
starting it from two different initial random vectors ðgjÞ

5
j¼1 2 R5; and selecting the

best of the two minimas found. That way, the chance of missing the optimum was
safely below 0.3%. To calculate this for a single draw from the posterior took
around four minutes on a Pentium-based machine. I used a sample of 100 draws
from the posterior for inference.
B.3. Results from the penalty-function approach

Fig. 14 provides some of the results for the penalty-function approach and the 6-
months horizon, K ¼ 5: This figure should be compared to Fig. 6 for the pure-sign-
restriction approach. The results look qualitatively largely the same. The magnitudes
are slightly larger, and the error bands considerably sharper, in particular
immediately after the shock, compared to the pure-sign-restriction approach. The
greatest difference is obtained for the impulse response for real GDP, i.e. for my
central question. Here, one can perhaps see some evidence for the conventional view:
real output now seems to clearly stay above zero for most of the first year at 0.1%
above the no-shock scenario.

The differences between these two approaches in Figs. 6 and 14 are easy to
explain. While the pure-sign-restriction approach is agnostic about the size of the
impulse response away from the sign restriction, larger responses are rewarded by
the penalty-function approach at least as long as this does not generate sign-
violations elsewhere. Instead of a range of impulse vectors consistent with the sign
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Fig. 14. Impulse responses to a contractionary monetary policy shock one standard deviation in size,

using the penalty-function approach with K ¼ 5: That is, the responses of the GDP price deflator, the

commodity price index, nonborrowed reserves and the negative of the federal funds rate have been

penalized for positive values and slightly rewarded for negative values in the months k; k ¼ 0; . . . ; 5
following the shock: the shock was identified by minimizing total penalties. The error bands are now much

sharper. While the real GDP response is still within the �0:2 interval around zero estimated before, there

now seems to be a piece between 1 and 12 month, showing a conventional response.

H. Uhlig / Journal of Monetary Economics 52 (2005) 381–419416
restriction, the penalty-function approach seeks a unique monetary policy impulse
vector by searching e.g. for a large initial reaction of the federal funds rate. Indeed,
this reaction is now fairly sharply estimated to be about 30 basis points, quickly
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rising by another 10 basis points. One obtains similar sharp error bands elsewhere.
The monetary policy impulse vector uniquely identified by the penalty function is an
element in the set of the vectors admitted by the pure-sign-restriction approach,
given a draw for the VAR coefficients, provided that set is not empty. One would
therefore expect the range of impulse responses of the penalty-function approach to
be contained in the range of impulse responses of the pure-sign-restriction approach.
Indeed, this seems to be the case: with 64% posterior probability, the response for
the real GDP response, for example, never seems to venture outside the �0:2%
interval around zero calculated similarly for the pure-sign-restriction approach.

One can thus either view the results in Fig. 14 as a sharpening of the results in Fig.
6, due to additionally desirable properties imposed on the restricted impulse
responses, or as a distortion of the results in Fig. 6 due to additional ad hoc
restrictions. Since the aim is to impose the sign restrictions and nothing else, I find
the pure-sign-restriction approach to be more appealing. The results of the second
approach are nonetheless informative in that they show the additional mileage
obtained from additional, potentially desirable restrictions, opening the door to
more detailed investigations.

Additional figures (not shown) demonstrate that the results of the penalty-
function approach are also more sensitive to the choice of the restriction horizon K :
Likewise, additional calculations show that the results are not affected much by the
specific functional form of the penalty functions.
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