CHAPTER 4

Shocks, Sign Restrictions, and Identification
Harald Uhlig

This chapter highlights some key issues in the use of sign restrictions for
the purpose of identifying shocks. It does so by examining two benchmark
examples. In the first part, I discuss a generic example of demand and sup-
ply, seeking to identify a supply shock from price—quantity data. In the second
part, I discuss a generic example of Bayesian vector autoregressions and the
identification of a monetary supply shock. Along the way, I formulate some
principles and present my view on some of the recent discussion and literature
regarding sign restrictions.

1 INTRODUCTION

The approach of sign restrictions in time series analysis has generated an active
literature, many successful applications, and a lively debate. The procedures
are increasingly easy to use, with implementations in econometric software
packages such as RATS or with ready-to-implement code in a variety of pro-
gramming languages; see, e.g., Danne (2015) as one example. Let me say from
the outset that I am very happy about that, including those contributions that
have criticized my own work, sometimes sharply. Skepticism and critique is
crucial for science to advance, so all power to them! That should not prevent
me from critiquing back, of course, and that is partly what this chapter will be
about. Debate is good.

While Leamer (1981) surely deserves being highlighted here, I believe that
the literature pretty much started with Dwyer (1998), Faust (1998) and its dis-
cussion, Uhlig (1998), Canova and Pina (1999), Canova and de Nicolo (2002),
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as well as my “agnostic identification” paper Uhlig (2005b). This one was pub-
lished quite a number of years after my discussion of the Faust paper, but that
discussion shows that I had already developed my methodology then, and that
imposing sign restrictions on impulse responses and not just on impact can add
considerable bite. There are deep connections to the seemingly different liter-
ature on partial identification and estimation subject to inequality restrictions:
rather than review that literature, let me just point the reader to the excellent
discussions on this topic by Canay and Shaikh (2017) as well as by Ho and
Rosen (2017), appearing elsewhere in this volume, or, say, Kline and Tamer
(2016).

The purpose of this chapter instead is to help shed some light on some
issues that arise when using sign restrictions. From discussions with fellow
researchers or occasional statements in the existing literature, I find that some
of these issues can be a cause of confusion, misunderstanding, misinterpreta-
tion or misjudgement. I feel that these issues should be given some thought: so
here are mine. I will list my main lessons as “principles.” That surely sounds
more grandiose than is intended: perhaps “recommendation” or “my current
random thought on this issue” would be a better label, but let me proceed with
the more pompous label without further apology. Other researchers might well
disagree with some or many of them. Let the discussions commence.

I will organize my discussion around two key questions:

1. What happens after a supply shock?
2. What happens after a monetary policy shock?

I provide some generic econometric perspective as well as occasionally engag-
ing with some of the recent debate and literature concerning sign restrictions.
Of course, both of these questions have been part of the bread-and-butter
econometrics literature for years. Since much (perhaps too much?) has been
written about them, and since much of that might be familiar to the reader,
they are thus particularly useful to discuss the issues at hand. If you do not
feel familiar with that earlier literature at all, fear not, though. This chapter is
largely self-contained.

The first question concerns one of the most generic questions one may wish
to ask, given market observations on quantities and prices. This question is
also, in essence, at the core of many other applications of the sign restriction
methodology and, in fact, identification generally: how should one disentangle
contemporaneous observations into their underlying stochastic sources? How
can one identify the individual shocks moving the data? For the first question,
I shall disregard the time series perspective entirely and focus solely on the
identification issue. Much has already been written about the baseline case
of interpreting price—quantity data in terms of their underlying movements
in supply and demand, and using that baseline case for a deeper understand-
ing of more general issues. Some important examples of that literature are
Leamer (1981) as perhaps the first author to emphasize the importance of
inequality constraints, Angrist, Graddy, and Imbens (2000) and, more recently,
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Baumeister and Hamilton (2015) with a focus on sign restriction identification
in time series analysis. The first part of this chapter is based on my draft paper,
Uhlig (2005a), considerably revised and updated for the purpose here. Com-
pared to the other two papers, I will therefore introduce yet another way of
mathematically framing the issue, with all due apologies. There are deep con-
nections between them all, of course, and I will be able to only superficially
touch upon them.

For better or worse, the second question has become the showcase example
for much of the time series literature, analyzing macroeconomic interrelation-
ships with the aid of vector autoregressions. Here, the time series perspective
is of considerable importance, and provides me with the opportunity to expose
some key issues arising. The previous issues of identification have not gone
away, however: far from it.

2 SUPPLY AND DEMAND

Consider Figure 1. Let’s say it shows an artificially generated sample of draws
((P;, Qi))i_, of equilibrium price—quantity pairs, from some repeated market-
clearing observations of some market subject to some i.i.d. shocks. I have
removed the mean: thus, the points cluster around (0, 0) rather than some aver-
age price and quantity. One may wish to add those back in or also consider
them to be part of the challenge (or information) of estimating supply and
demand, but I shall proceed with abstracting from that. I seek to understand
how the equilibrium shifts in the wake of a shock to supply.
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Figure 1 Some artificial sample of draws of equilibrium price—quantity pairs,
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Let me imagine, thus, that the price—quantity pairs shown in Figure 1 arise
as the intersection of supply and demand curves with constant slopes, where
the curves are shifted by random shocks, but would intersect at P = 0, Q =
0 without such shocks. If you wish, you may interpret the price P and the
quantity Q here on a log scale, relative to some mean, so that the slopes of the
supply and demand curves represent the elasticities of supply and demand. I
shall restrict these shocks to be i.i.d. across observations for the purpose of the
discussion here. It should be clear that considerable structure already has been
imposed on the problem.

To interpret the data then, one would like to know the slopes of these supply
and demand curves, and disentangle the equilibrium observations (P;, Q;) into
their underlying supply and demand shocks. As is well known, this gives rise to
a challenging identification problem. The raw price—quantity data, as shown in
Figure 1, is insufficient to identify the slopes of demand and supply. Figure 2
exhibits the challenge. There, I picked one of the (P;, Q;) observations and
show, in two different ways, how this observation could have arisen. In the
panel on the left, the supply and demand curves are fairly steep, whereas they
are quite flat in the panel on the right. Both possibilities are consistent with
the chosen (P;, Q;) observation. I will soon give this statement a bit more
mathematical structure.

It should be clear then that additional identifying restrictions are needed.
But which? That then is the key issue: which restrictions should one impose?

Figure 3 shows one of many possibilities. There, the condition is imposed
that demand is vertical, i.e., completely price-inelastic. As a consequence, sup-
ply shocks move prices, not quantities. We now know how far the demand
curve must have been moved by the demand shock: exactly as much so as to
move the demand curve to the observed quantity rather than zero. So far, we
still do not know the slope of the demand curve: it should be clear, from inspec-
tion of the picture, that there still is a range of possibilities. But nonetheless,
some progress has been made.

One possibility Another possibility
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Figure 2 The identification problem: two examples for supply and demand
shocks giving rise to the same observed price—quantity pair
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Horizontal shift must
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Figure 3 Identifying restriction: demand is vertical, i.e., completely price-
inelastic. As a consequence, supply shocks move prices, not quantities.

Is the restriction of vertical demand a good one? It may be, under certain
circumstances. Indeed, in many macroeconomic time series applications of
identified vector autoregressions, it is quite popular to bring the series at hand
into some order and to then to employ a Cholesky decomposition to identify
their shocks. That decomposition assumes that shocks to one series only influ-
ence that series and series that come later in that order, but not those that come
earlier. In the example here, one would order the data with quantity coming
first and prices coming second. A shock to quantity would then be allowed to
move both price and quantities and would correspond to a demand shock. A
shock to prices would then be interpreted as a supply shock and assumed to
not also move quantities, per the Cholesky decomposition, thus implementing
the vertical demand curve assumption.

So, is this a good idea or not? My answer may be rather obvious. If the
researcher can defend this causal ordering, sure. If not, then not. Let me for-
mulate this as my first two principles. They may sound rather banal, but they
are central in almost all applied work, and worth reflecting on in any particular
application.

Principle 1: If you know it, impose it!
Principle 2: [f you do not know it, do not impose it!

Of course, it is good to impose what you know: it allows you to deduce
more from the data. There is usually no good reason to discard such infor-
mation. Some of the criticism of the sign restriction seems to imply that the
sign restriction literature tended to encourage users to disregard more precise
identifying assumptions: that, of course, is not the case.

The astute reader may be asking, though, what I mean by “knowing.” Do
we really know anything at all? That would make it impossible ever to apply
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Principle 1. I suggest interpreting the treshold much more liberally and with a
practical mind. McCloskey (1998) has argued that economics is rhetoric. One
does not need to go as far as McCloskey to realize that the main objective of
research findings is nonetheless indeed often to move and, ideally, convince
skeptical audiences and colleagues. So, if some assumption can reasonably be
imposed to that end, go ahead. If not, then be careful.

2.1 Sign Restrictions

Are there assumptions in the situation at hand, then, that are palatable to most
audiences? I shall argue that there are. Supply slopes up. Demand slopes down.
Always? Perhaps not. But usually, typically. As assumptions go, these may be
among the most agreeable to impose. Let me give this a bit more structure:
another reasonable assumption will then emerge.

The slopes of the supply and demand curves are key. Since slopes can be
horizontal or vertical, it seems most natural to me to characterize the slope
by the point that these curves intersect with the unit circle in (P, Q)-space.
Likewise, it seems most natural to me to then characterize shifts by mov-
ing those curves in a direction orthogonal to their slopes. Additionally, this
turns out to be algebraically convenient. Since we are shifting the entire curve
rather than worrying how to shift a particular point on the supply curve, it
really is immaterial whether one assumes the random shift to be exactly in
an orthogonal direction or in a somewhat aligned fashion. The orthogonality
assumption should be understood to be a convenient normalization. Obviously,
other parameterizations are possible.

With that, the supply curve is the line

P
[ 0 ] = zsAs + xs0s5€s, As € R ey

where zg is the direction of the supply curve, xgs is the direction of supply
curve shift, and ogeg is the supply shock, where €g is normalized to have unit
variance. I normalize zg to be of unit length and xg to be orthogonal to zg,

| cos(vs) | —sin(vs)
- |: sin(vg) i| XS = [ cos(vs) 2)
where vg € [0, 27) and where og > 0.
In most cases, it is then reasonable to impose the following assumption.

Assumption A.1  Supply slopes upward

I impose the additional normalization that a positive supply shift is towards
higher Q. Such normalizations are often innocous, but sometimes they are not,
especially in a time series context. For example, if small quantity movements
now are followed by larger movements later on, which additionally show a
more stable sign, it may be much more sensible to normalize shifts by the
subsequent later movement rather than by the contemporaneous movement. |
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once witnessed a presentation by leading researchers who tripped themselves
up badly by normalizing by the sign of the initial response instead. Here,
of course, there is no time series aspect to worry about. Together with
Assumption A.1 and vg € [0, 27r), we then have more formally that

Assumption A.2  Supply slopes upward and a positive supply shift is towards
higher Q: vs € [0, w/2].

I shall additionally impose the distributional assumption

Assumption A.3
es ~ N, 1). 3)

While a standard deviation of 1 is simply a normalization, the normal-
distribution assumption may be too much, in some circumstances and for some
audiences. I read it as a convenient benchmark for making further progress with
a more formal statistical analysis.

It is also here where the normalization of a shift as a shift in an orthogonal
direction compared to the original curve matters. Another possibility would
be to parameterize the shift by the quantity change, for a fixed price change.
This is pursued by Baumeister and Hamilton (2015), who show that unap-
pealing distributions such as Cauchy distributions may result. It is clear where
their result comes from. For very flat supply curves, large quantity changes are
then needed in order to generate a given price response: as the supply curve
becomes completely flat asymptotically, the required quantity change diverges
to infinity. There may be circumstances to proceed in this manner. Sometimes
the focus question is indeed about the effect of supply shocks with a given
price change. An example might be to ask about the impact of a monetary
policy shock, when interest rates are raised by 100 basis points; see also Fig-
ure 10. At that point, though, it may be useful to contemplate whether this
normalization is truly at the heart of the question or just a convenience for
phrasing the question. It may well be the latter, in which case another normal-
ization would be perfectly legitimate. Conversely, if one insists on fixing the
impact on one variable such as the price, it might then be appropriate to bound
the range of supply curves per bounding by the range of quantity reactions.
Though not used much, it should not be hard to convince an audience that
imposing an upper bound on, say, the quantity reaction is legitimate. Such a
bound then avoids the unappealing properties of the distributions documented
by Baumeister and Hamilton (2015).

Likewise, the demand curve is the line

P
|: 0 i|=ZD)»D + xpopep, Ap € R 4)
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where op > 0, where

= |: cos(vp) :| p = [ sin(vp) :| 5)

sin(vp) —cos(vp)

and where vp € [0,2n). In parallel with Assumption A.l, it is usually
reasonable to impose

Assumption A.4 Demand slopes downward.

Again, we add the normalization that a positive demand shift is towards
higher Q. In sum, we shall impose

Assumption A.5 Demand slopes downward and a positive demand shift is
towards higher Q: vp € [n/2, 7]

Furthermore, I shall once again impose the distributional assumption that

Assumption A.6
ep ~ N, 1). (6)

While the distributional assumptions may impose too much structure, the
following assumption should often be broadly agreeable even without it,
however.

Assumption A.7 €g and €p are mutually independent.

This is the third assumption promised above. Without that assumption, it
becomes conceptually murky what one means, when analyzing equilibrium
properties in response to a supply shock. If the supply shock hits, does the
demand shock move too? Or is it the other way around: should one first
cleanse the supply shock of the movement by the demand shock? A chicken-
and-egg problem arises. Assumption A.7 may arguably impose too much in
certain circumstances, however. Perhaps, a third source of randomness is mov-
ing both. But then, one ought to find it and model it! It would then not be
legitimate to call the supply shock a “shock”: rather, it should be decomposed
into a response to stochastic movements elsewhere and a genuine own-shock
component. With that, let me announce my next principle.

Principle 3: Shocks are independent.

Notationally, it is convenient to summarize the sign restrictions in Assump-
tions A.2 and A.5 by “+” or “—"" or “?” (in case of no restriction) to indicate
the sign of the response to a positive shock. In order to learn about equilibrium
behavior in response to supply shocks, it may be tempting to just impose the
sign restrictions of Assumption A.2 on supply shocks. Furthermore, in larger
systems, one may not feel comfortable imposing sign restrictions on other
shocks as well. In the context here, though, it seems natural to impose sign
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Figure 4 A graphical representation of the mathematical definitions for the
slopes and shifts of demand and supply

restrictions on both supply and demand shocks, i.e., to impose both Assump-
tions A.2 and A.S5. I shall investigate the consequences of both choices. If only
sign restrictions on supply shocks are imposed, we have

€5 €p
P [- (7)
0 B + 7|
If sign restrictions on both, supply and demand shocks, are imposed, we have

€s €D

0] [0 1]

I can now bring all that structure to bear on the decompositions shown above
in the left panel of Figure 2. Figure 4 provides a graphical representation of that
additional structure.

Statistically, I can now proceed as follows. The structural parameters are

0 = (VS,VD,(Ts,O’D). (9)

Note that 6 is four-dimensional. Further, and as a rule, it is typically reasonable
to impose the assumption that

Assumption A.8 o5 > 0andop > 0.

Without it, we would reduce the supply-and-demand structure to one with
a single shock or no shock at all. One should note that there are important
exceptions to this rule, though. Simple real business cycle models are some-
times driven by a few shocks only. If more time series are used to estimate
such models than there are available shocks, this creates singularity problems.
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It is then best to introduce sufficiently many shocks, either as measurement
error or, often better, as a structural part of the model, to avoid these singu-
larities. One needs to realize, though, that the introduction of these additional
shocks will then modify or constrain how the data are interpreted in terms
of the original shocks: different shock additions can create potentially quite
different interpretations. With that caveat, I shall announce

Principle 4: Have at least as many shocks as the length of the data vector.

In the context of our price—quantity example, that means we ought to have two
shocks, i.e., Assumption A.8.
The following are some convenient definitions

Z=[ 25 ]= [ cos(vp) cos(vs) i|

sin(vp) sin(vg)

X = [ xg | [ —sin(vs)  cos(vs)
L xp | | sin(vp) —cos(vp)
_ [ oy 0

Q= L 0 op :|

A ]

. ED

Given €5 and €p, one can solve for Ag and A p as well as P and Q, such that the
supply function and the demand function both deliver the price—quantity pair
(P, Q), i.e., so that supply and demand intersect and equilibrium is achieved:

Proposition 1 Equilibrium, i.e., equality of demand and supply is given by

[ g ] = X 'Qe. (10)

Proof “Guess and verify”. I need to show that there is a solution Ap and Ag,
generating this price—quantity pair. For supply, substitute (10) for the left-hand
side in (1). Multiply with X to find

OS€ES . 0 1
v 1= Lages oL Jmes

Proceed likewise for demand. The first row of (11) and the second row of the
similar equation for demand together imply that

X[Z}:Qe (12)

which implies (10). If one wishes to proceed further, note that the second row
of (11) can be solved for

Ls = (op€p — xpxsoses)/(xpzs)
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noting that x},zs % 0 per (vs — vp)mod w # 0, i.e., per ruling out parallel
demand and supply curve. The solution for

Ap = (0s€s — X5xpopep)/(Xszp)
follows likewise. O

This allows me to characterize the statistical distribution of the price—
quantity data, exploiting the normal distribution assumption for the supply and
demand shock. Given 6,

Lo]-([5]>)

where
() =AWB)A®) (13)
with
ol . | A A
AB)=X""Q= s [ 0SZp ODZS ] =: [as,ap] = |: Asi Ay ]

(14)

The matrix A(0) has a natural interpretation, which is important to the lead
question at hand. Given 6, the first column of A(f) is the movements in price
and quantity [P, Q] after a positive supply shock one standard deviation in
size. Such a shock will lead to a movement along the demand curve, i.e., in
the direction zp. The length of the movement is given by os/(x},zs) for a
unit-sized supply shock, and therefore depends on the standard deviation og
of the non-normalized supply shock as well as the angle between the supply
and demand curves, characterized by the inner product x},zg. Likewise, the
second column of A(6) is the movements in price and quantity [P, Q] after
a positive demand shock one standard deviation in size. As per our conven-
tions stated above, we shall impose the normalization that the bottom row is
positive, so that positive demand or supply shocks have a positive impact on
quantities. For any given decomposition in (13) one can always achieve this
by possibly flipping the signs of the columns of A(f). As a consequence,
sgn (det(A(0))) = —1. Note furthermore that the mapping 6 +— A() is
invertible, due to Assumption A.8.

Given finite data on pairs of prices and quantities, one can estimate X (6).
There are finite-sample issues in doing so, but they are not of particular rele-
vance for the discussion at hand. Let us then assume that we see “enough” data
so that we learn

Z(Q):Z:E[[Z}[P Q]}

(assuming that the means of P and Q are zero) perfectly. It should also be clear
that there is not more to learn from the data. X (0) is it.
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I can now describe the identification problem more succinctly. The param-
eter vector 6 is four-dimensional. The variance-covariance matrix X (6) is
three-dimensional, due to symmetry. There is therefore one degree of freedom,
in decomposing X () into A(6) and A(6)" in (13), aside from some convention
regarding the sign of the columns.

One additional exact restriction can render this problem exactly identified.
For example, imposing that demand is vertical per vp = m, as shown in Figure
3 will do the trick. This may actually be odd: wasn’t it the case that one still
could not know the slope of the supply function in Figure 3?7 How come we
know it now? The reason is Principle 3 or, more precisely, the assumed inde-
pendence of our normally distributed shocks €5 and €p. Now, the observed
covariance of prices and quantities can be ascribed to vertical demand and
mutually independent shocks €s and €p only for one particular slope of the
supply curve, as the calculations above show.

So, one additional exact restriction would be wonderful. But generally, it is
hard to come by. Is it really reasonable to impose the condition that demand
is vertical, say? As I discussed above: perhaps not. And perhaps then, we only
have the sign restrictions, as embodied by Assumptions A.2 and A.5. Let me
examine the consequences. The sign restrictions deliver inequalities on the
slope parameters for the demand and supply curves, and therefore deliver sets
® of Os compatible with the data. Some are excluded, but plenty are still left
that merit consideration.

If we restrict only demand to be downward sloping, i.e., if we restrict supply
shocks to move P, Q in opposite direction, then

®Op ={0 = (vs,vp,0s,0p) |
vp € [7/2, ], vs € (vp — 7, vp),05 > 0,0p > 0}.

If we restrict demand and supply, then

Ops = {0 = (vs, vp,0s,0p) |
vs € [0, /2], vp € [n/2, 7], (vs,vp) # (0,7), 05 > 0,0p > 0}.

So, if sign restrictions are all we have, then in the example at hand, we get the
next observation:

Principle S: Without an additional exact restriction, the sign restrictions
deliver a one-dimensional set © of 0s, which all could have generated the
data.

Note that this is true even asymptotically, i.e., if X is known exactly. Note also
that one could parameterize this resulting set © by, say, vy € N = [vg, Vs].

How useful are sign restrictions? To think about this further, let me intro-
duce another way to write the parameter vector 6 and to parameterize the set
® resulting from sign restriction. Consider the Cholesky decomposition

T=LL



Shocks, Sign Restrictions, and Identification 107

of ¥ into the product of a lower triangular matrix L with its own transpose,
normalized to have positive diagonal entries. Consider the decomposition of X
shown in equation (13). Any such decomposition can be written as

LR = A(0) (15)

for some orthogonal matrix

_ | cos(u)  sin(u)
R‘[ sin(j1) —cos(u)] 10

and some u = w(f). Conversely, any u and consequently R as in (16) gen-
erates a candidate decomposition in equation (13), provided A;; > 0 and
A > 0. A satisfies the sign restrictions on demand and supply, iff the signs
as indicated in equations (8) are satisfied, i.e., if

A1 £0,A21 20,A12>0,A42 =20
Likewise, A satisfies the sign restrictions on supply shocks, iff
A1 0,421 20

as indicated in equation (7) Equation (10) shows, how to back out the
underlying shocks, given knowledge of A(6):

€S _ —1 P _ -1 P
A AR

noting that L~ is known with ¥ and that R = R~!.
With that, we can re-parameterize 6. Write

_ |: o3 sin(@)opog :| [ |: op 0 :|

sin(¢)opog O'é sin(¢p)op cos(¢)og

for some ¢ € (—m, ). Note that sin(¢) is the correlation between price
and quantity. For example, ¢ < 0 iff corrP, Q < 0. Thus, instead of
0 = (vs,vp, 0s,0p), let me use ¥ = (¢, u, op, 0p). Calculate, that

A=LR=] as(¥) ap(¥) ]

where now

_ [ cosuor _ sin(u)op
as(¥) = [ sin(¢ + w)og } ap () —[ —cos(¢ + o ] (18)

This provides us with another way to look at the mathematical structure
shown in the right panel of Figure 4, exploiting the sign structure as indicated
in (8) to constrain p, given ¢. The left panel of Figure 5 shows the conse-
quences of imposing the supply sign restriction of Assumption A.2 or of the
first column of (8) in the two-dimensional space of R{; and Rj>. This is the first
row of R: with that, we know the second row of R per (16). Likewise, the right
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Supply shock restricted Demand shock restricted
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P<0 P>0
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Q>0
¢ Ry

R;1=—Ry;
Figure 5 Sign restrictions and their consequences for u, ¢ and R
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Figure 6 Sign restrictions, if corr(P, Q) =0

panel of Figure 5 shows the consequences of imposing the demand sign restric-
tion of Assumption A.5 or of the second column of (8) in the two-dimensional
space of Ry and Ry».

Figures 6, 7, and 8 now show the consequences of imposing both sign
restrictions, for different cases of observed price—quantity correlations. The
worst case scenario surely is 6 of zero correlation: in that case, the joint restric-
tion is the same that results from just imposing sign restrictions on demand
or just sign restrictions on supply. There simply is not much one can learn
about the slopes of demand and supply in this case. With an uncorrelated
cloud of price and quantity, one might be tempted to draw diagonal supply
and demand curves through them, but they might as well be very close to hor-
izontal or vertical. One simply cannot tell. Matters change, once correlation
between prices and quantities is observed. Figure 7 shows what happens for
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Figure 7 Sign restrictions on demand and supply, and their consequences
for u,¢ and R, if prices and quantities are positively correlated. As
corr(P, Q) — 1, the supply shock sign restriction suffices for asymptotically

exact identification.
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Figure 8 Sign restrictions on demand and supply, and their consequences
for w,¢ and R, if prices and quantities are negatively correlated. As
corr(P, Q) — —1, the demand shock sign restriction suffices for asymp-

totically exact identification.

positive correlation between prices and quantities. The supply sign restriction
is now the one that imposes more bite, whereas the demand sign restriction
becomes less restrictive. In the limit, as corr(P, Q) — 1, the supply shock
sign restriction suffices for asymptotically exact identification. Given that we
have imposed the independence of supply and demand shocks, a nearly per-
fectly positive alignment of price—quantity pairs must mean that we have found
the supply curve, provided we are willing to impose Assumption A.1, that
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the supply curve indeed slopes up. Once we know the supply curve, we have
found one additional parameter restriction and identification is achieved. Like-
wise, Figure 8 shows what happens for negative correlation between prices
and quantities, where the demand sign restriction is now the one that imposes
more bite and achieves exact identification in the asymptotic limit, as the cor-
relation becomes perfectly negative, while the supply sign restriction becomes
increasingly useless.
Let me formulate the lesson from these observations:

Principle 6: Sign-restricting both shocks compared to just sign-restricting
one shock can help: sometimes a lot, sometimes not at all.

2.2 Inference

What are practical ways to generate the set ® of 6s or, equivalently, the sets
M of ps, which are consistent with the imposed sign restrictions? One may go
ahead and proceed algebraically, as described above. This should work well in
two dimensions, but will be increasingly challenging in more than two dimen-
sions. The following draw-and-reject procedure is then more straightforward
and of use in many situations:

1. Draw p from prior on [0, 27].
2. Calculate the resulting A = LR(w).
3. Check sign restrictions:

(a) If satisfied, keep draw.
(b) If not satisfied, reject draw.

If one rejects many draws, one may feel that something is going wrong.
But here, the opposite is really true. Consider the right panels in Figures 7
or 8, when imposing both sign restrictions. The closer the correlation is to
the extremes and thus, the sharper the identification, the smaller the range
of p that results in non-rejection. This is an important insight that is often
misunderstood.

Principle 7: When a lot of draws are rejected, the identification is sharp.
Good!

The judgement “good” is not meant to say “good” for the patience of the
researcher, waiting for results, or “good” for whoever has to pay the electricity
bill from running the computer at full capacity for a long time. “Good” here
means that it is good in terms of being able to learn something from the data:
that, after all, is what we normally care about the most.

So far, we have ignored the issue of finite samples, but it is time to return
to it and its practical implications. Here, the question or object of interest is
quite important. One can treat the vector 6 as the parameter of interest or the
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entire set ®. That is, while some researchers may be interested in estimating
6 or [ or provide probabilistic statements about it, other researchers may be
interested in © or M and probabilistic statements about that. There is no right
or wrong here. The question of interest is chosen by the researcher, and the
econometric procedures are there to help answer it. My own research has so far
entirely been focused on treating 6 or u as the object of interest, but there is an
interesting and developing literature on set identification focusing, effectively,
on the set ® or M instead; see, e.g., the discussions on this topic by Canay
and Shaikh (2017) as well as by Ho and Rosen (2017), appearing elsewhere
in this volume, or, say, Kline and Tamer (2016). These procedures then may
give different answers, but that should not surprise us at all. Let me formulate
the following rather obvious principle, which is sometimes oddly ignored in
debates on this topic (or other topics, for that matter).

Principle 8: Different questions usually have different answers.

For example, if one treats the set M as the object of interest, and if one seeks
to cover the true set M with 95% probability with some set M of p, then M
will typically be larger than the true M. Conversely, in my own paper Uhlig
(2005b), I was interested in p as the object of interest. I imposed a Bayesian
prior on . Consequently, I was interested in finding a Bayesian confidence
set M, so that the true w lies in that set with 95% probability. This set will
typically be smaller than the true M. The two versions of M differ, because
they answer different questions.

The same principle applies to the issue of using a classical versus a Bayesian
perspective. I personally prefer the Bayesian perspective, for a number of rea-
sons. I find it conceptually easier to focus attention entirely on potentially true
us, for which the sign restrictions surely hold, rather than having to think about
confidence interval of us, that covers a given truth with some probability. What
should be in that confidence interval? Are us allowed, that result in violations
of the sign restrictions? The classical perspective requires a bit more careful
thought, is more challenging and feels less natural. But once again, it is up to
the researcher to decide on the question, and it is up to the econometricians
to develop the appropriate tools for answering it. If someone prefers a ques-
tion that requires the classical perspective, I shall not be the one to judge. Just
be aware that different questions or different approaches naturally generate
different answers.

Consider first what happens asymptotically. Principle 5 formulated that
sign restrictions and the assumption of independent shocks deliver a one-
dimensional set of 8s or us. Graphically, this is shown in Figure 9. The left
panel shows, how the 0s are translated into us, using the example of no corre-
lation between prices and quantities. For that example, the resulting set M of
us will be M = [r/2, ]. The right panel then shows the posterior over us,
given an infinite sample and given the sign restrictions and given a flat prior
of us on [0, 2). The prior and the posterior obviously coincide on that set
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Figure 9 Inference for w: Classical vs Bayesian, asymptotic vs finite sample

M, up to scale. This is a fairly direct consequence of Principle 5 and there is
nothing really particularly surprising or remarkable about that. Let me remark
on it nonetheless, as a principle.

Principle 9: Asymprotically, the likelihood function is flat and the prior and
the posterior coincide with each other, up to scale, on the set ® of Os or the set
M of us, satisfying the sign restrictions.

While fairly obvious, this particular point received considerable emphasis in
Baumeister and Hamilton (2015).

As a Bayesian, one can now construct a set M , so that the true w lies in that
set with 95% probability. For example,

M = [(1 4 0.025) % 7/2, (2 — 0.025) % /2] (19)

will do the trick in the example here. It is these sorts of sets that I have
constructed in Uhlig (2005b).
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Bizzarly, Fry and Pagan (2011) seem to criticize that approach, writing on
p. 948 that “...referring to this range as if it is a confidence interval ... is
quite false . .. it should not be imbued with probabilistic language.” This state-
ment of theirs is either plain wrong or just confused, as a statement about the
Bayesian approach advocated in Uhlig (2005b). Their statement may perhaps
be true from a classical perspective. But for a Bayesian, that set M obviously
has a probabilistic interpretation, as I have just explained. For those that have
bothered to read their paper: there really is no “multiple shocks” or “multiple
models” issue, given the Bayesian approach. It seems to me that Fry and Pagan
(2011) changed the question and then elevated the changed answer to a critique
of the former, ignoring Principle 8. I may have misread their paper, though. For
example, perhaps they did not mean to address the approach in Uhlig (2005b)
at all.

Moon and Schorfheide (2012) is an excellent investigation into the dif-
ference between classical and Bayesian inference. They note that these two
approaches differ even asymptotically. A Bayesian 95% highest-posterior-
density (HPD) set such as M of equation (19) is “strictly inside” the true
M, whereas a classical 95% confidence set is “strictly outside.” One can
see that in the bottom row of Figure 9, which compares the finite-sample
Bayesian and classical perspective. Both the classical econometrician and the
Bayesian econometrician seem to answer the same question, namely “what is
the smallest interval M, so that the true W is in M with 95% probability?”’
The classical econometrician holds the true u fixed in this exercise, and is
concerned with the random M. The classical econometricians will then note
that the true w could be any value in the true M. The estimation confidence
interval M then needs to contain the true u with 95% probability, no mat-
ter which particular p is the truth. For example, if the true u happens to
be equal to /2 in the example at hand, the set M needs to start to the left
of that, to be sure to include 7 /2. Given that the true p is not known, the
classical confidence set needs to be wider than M. The Bayesian econome-
trician, on the other hand, treats the sample and therefore the calculated M
as given, and instead treats u as random. If M starts to the right of 7 /2, it
does indeed exclude the potentially true value u = m/2. But that’s alright,
since it is unlikely that the random w is very near the boundaries of the inter-
val [7/2, ], given a uniform prior over [0, 27). I find it remarkable that
classical and Bayesian answers often agree very closely, in seeming viola-
tion of Principle 8. Cases where the answers differ and where Principle 8
then is affirmed, as in Moon and Schorfheide (2012) or in Sims and Uhlig
(1991), therefore receive our deserved attention. Just as an aside, because the
correlation between price and quantity is now uncertain, given a finite sam-
ple, the likelihood function is no longer flat and the choice for the Bayesian
HPD is no longer arbitrary, in contrast to what one would learn from thinking
about equation 19. It also means that the bottom row of Figure 9 is slightly
misleading in that regard. But this is a finite sample artifact that disappears
asymptotically.
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3 SHOCK IDENTIFICATION IN BVARs

Ever since Sims (1980), vector autoregressions or VARs have become a core
tool in empirical macroeconomics, and are often estimated with Bayesian
methods or as BVARs. There are good reasons to use them for macroeconomic
data. Dynamics and lags matter; observations are rarely i.i.d. Moreover, one is
often interested in the interrelationship of more than two data series. With that,
and hopefully with Uhlig (2005b), sign restrictions have become particularly
popular in the analysis of BVARSs in recent years.
In reduced form, a VAR can be written as

k
Yy=c+ ) BiY_j+u. (20)
j=1
where 0= Efu | (Y;—j)j>0l and & = Efupuy | (Yi—;j) j=0]

and where Y; is the column data vector at time #, ¢ is a column vector of
constants, B; are square coefficient matrices, u, is the column vector of one-
step-ahead prediction errors and X is its variance—covariance matrix. All these
can be estimated using data on Y;. What one then often cares about, though,
is to analyze the response to a structural shock, such as a monetary policy
shock or a technology shock. Thus, let €; be the column vector of structural
shocks. Assume them to be independent of each other, following Principle 3,
and normalize their variance to unity:

0= Ele | (Yi—j)j>o0l and I = Elere; | (Yi—j) >0l 2D

One then needs to state, or find, how these structural shocks map into one-step-
ahead prediction errors (leaving aside the thorny issue of fundamentalness).
There should then be a matrix A with

Uur = AG[ . (22)
Therefore,
T = AA. (23)

Typically, it is assumed that A is square, so that there are exactly as many
structural shocks as observed time series. This may be a bit odd. If another
time series is added, another structural shock is added as well: why should that
be the case? Certainly and as per Principle 4, it is wise to have at least as many
structural shocks as time series, to avoid singularities in X. One could, though,
conceive of having more shocks than observable series; see, e.g., Schmitt-
Grohe and Uribe (2012) for a fully structural macroeconomic model of that
sort. Nonetheless, we shall stick with this common practice of having equally
many structural shocks as observable time series, and a square matrix A for the
purpose of the exposition here.
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As is well known, one can stack all this into a huge VAR of lag one. Let

Y; c By --- By_1 By A
5 Y1 0] . I - 0 0 . 0
Y, = ) c=|.|,B=]| . ) A= .
Yi—k+1 0 o .- 1 0 0
One then has
Y[ = E+ g?[_l + A~€[.
Moreover, the impulse response at horizon k = 0, 1, ... to the j-th shock, one

standard deviation in size and of positive sign is given by
Fk = EkA~€ j

where ¢; is a vector of the same length as e with only zero entries, except a
1 in entry j. From r%, it is now easy to extract the impulse responses of the
individual time series. Sign restrictions are then typically imposed on entries
in 7 at various horizons k.

As a benchmark example, consider the focus question of understanding the
effect of a monetary policy shock. It may be sensible to impose the condition
that a contractionary monetary supply shock raises interest rates and lowers
the money in circulation, as well as prices, for some time following the ini-
tial shock. Of course, in this day and age and given the constraints of the zero
lower bound, it may no longer be wise to employ the linear specification shown
above. However, there is a large literature, which has used this framework in
the past, and it is very useful for discussing the issues at hand. It is an interest-
ing research challenge to consider how to then update it all in this new age of
monetary policy.

I shall consider a VAR with k = 5 lags in the four monthly time series of
real GDP, CPI, FFR (i.e., the Federal Funds Rate) and M1, from 1959-2015. 1
downloaded the data from the website of the Federal Reserve Bank in St Louis.
For monthly real GDP, I used a rescaled version of industrial production, and
may call it industrial production in some plots or explanations. I used logs of
all variables, except the FFR. I did not difference the data. In my calculations,
I also dispensed with calculating standard errors or posterior analysis, which
one surely should not do for a serious analysis. Obviously, something more
sophisticated could be done, and is routinely done, but this shall do for this
discussion: my main aim here is to clarify some issues, not to somehow provide
a well-crafted econometric analysis of the focus question.

Figure 10 shows the resulting one-step-ahead prediction errors from the
VAR, for FFR and industrial production. That figure may look oddly familiar.
Indeed, I have used that same figure as Figure 1 to illustrate the discussion
of identifying supply and demand shocks. Indeed, the same issues there arise
now here, with the additional challenges created by having four rather than two
dimensions and with having to consider dynamic issues.
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Figure 10 One-step-ahead prediction errors from the VAR, for FFR and
industrial production

The identification problem here then is to disentangle the equilibrium obser-
vations of the one-step-ahead prediction errors for (realY,CPLLFFR,M1) into
monetary policy shocks and other shocks. The raw data alone is insufficient.
Additional identifying restrictions are needed. The key issue at hand is: which
restrictions should one impose?

One popular procedure is a Cholesky decomposition. For that and the
purpose of identifying monetary policy shocks, many researchers follow the
lead of Bernanke and Mihov (1998) and distinguish between “slow-moving”
variables that do not respond to monetary policy shocks within the period, and
“fast-moving” variables that do. A Cholesky decomposition, where one orders
the slow-moving variables first in any order, then the Federal Funds Rate as the
monetary policy variable, and then all the fast-moving variables in any order,
will provide the sought answer to the question of the response to a monetary
policy shock, if that shock is identified as the Cholesky decomposition shock
for the Federal Funds Rate. Among the “slow-moving” variables, one often
picks production and prices on the grounds that, say, prices are sticky, while
the “fast-moving” variables often include financial variables such as money
stocks, other interest rates or stock market prices, given that they often react
within minutes to economic news.

There is considerable appeal in that approach. Furthermore, the Cholesky
decomposition is convenient, clear, and easy to compute. However, issues arise
that should lead one to feel uncomfortable with that approach. One set of issues
are conceptual. The other set of issues are the empirical implications.

For the first, consider the “slow-moving” variables; say, prices. Prices may
be rather sticky indeed. If they were completely sticky, then they would never
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move and their one-step-ahead prediction error would be zero: obviously, then,
they could not react to any news at all, including news about monetary pol-
icy. However, the one-step-ahead prediction errors for prices are decidedly
not zero. So even if many prices are sticky, clearly some prices react within
the period to some news. By what logic, then, can these prices react to such
news, but not to monetary policy shocks? The popular slate of New Keynesian
models, for example, has all firms that just have been visited by the “Calvo
fairy” react to all contemporaneous shocks, including monetary policy shocks.
Models that impose the timing assumption inspired by Bernanke and Mihov
(1998) and routinely used in empirical work can be written down, but they
often quickly feel rather artificial. In sum, then, it seems to me that the logic
of “slow-moving” variables not reacting to monetary policy shocks is on very
thin grounds. Let me state this as follows.

Principle 10: The Cholesky decomposition is convenient, clear. However, the
“slow—fast” logic is hard to defend.

For the second, empirical set of issues, one should note that results from
Cholesky decomposition can be at considerable odds with prior views on what,
say, a monetary policy shock does. Consider Figure 11, which shows the result
for the VAR at hand, admittedly without any error bands. A contractionary
shock in monetary policy leads to a sustained rise in prices, before prices drop:
in the figure above, they actually never drop and even the resulting impulse
response for inflation, i.e., the first difference of (log) CPI does not drop below
zero either. It is hard to square that behavior with the conventional idea that
a surprise tightening in monetary policy should lead to a throttling, not an
acceleration of inflation.

There seem to be a number of responses to such results. One is to embrace
them, and to call for a modified paradigm in which, indeed, contractionary
monetary policy shocks raise rather than lower prices and inflation. One can
write down theories in which this is the case: in some ways, it is even all too
easy to come up with such theories. Some feel happy with proceeding this
way. But most do not. The second possibility, then, is to declare the positive
responses to be there, but not significant, and make statements using standard
errors and so forth. From a Bayesian perspective, this makes little sense. Each
impulse response shown by a Bayesian econometrician is a candidate truth, and
not some estimator with some distance from the possible truth. If a Bayesian
econometrician shows an impulse response exceeding zero, that means that
some probability is assigned to this being the truth. Someone who prefers
the classical perspective can wriggle out of this conundrum by citing standard
errors and such, but it seems to me that this is a cop-out, rather than address-
ing the vexing challenge at hand. A third response is to keep trying various
time series or orderings, until the problem goes away. But such a specification
search should really then be done on a more formal level, as Leamer (1978)
has proposed. The reasons for disregarding one specification and embracing
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Figure 11 Cholesky decomposition results: the price puzzle

another should be spelled out for others to judge and see, and be an explicit
part of the procedure, even if one does not wish to be fully formal about it. If
one proceeds this way, one no longer truly uses just a Cholesky decomposi-
tion to identify shocks. Conversely, if one does, the first response listed above
seems to me to be the only intellectually honest one, but not one that many
might be prepared to live with. Let me formulate this as a principle:

Principle 11: If you are worried by the “price puzzle” and the like, do not
rely on the Cholesky decomposition. Use it if you are willing to “live or die”
by its implications.

“Live or die” can be dangerous. Results change over time. The price puzzle
seems to have gotten worse over time. It may be wiser to abandon the Cholesky
decomposition as identification procedure than to stick with it through thick
and thin.

There are various other approaches, of course, some of them based entirely
on the time series at hand, some based on additional information like data at
a higher frequency. This is not the place to review this large and productive
literature, except perhaps for pointing out that [ am even more skeptical about
long-run restrictions than Cholesky decomposition, for a variety of reasons;
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see, e.g., Uhlig (2004). For an excellent discussion and review of much recent
VAR literature, the reader is instead pointed to Ramey (2016).

3.1 Sign Restrictions in VARs

Let me turn to sign restrictions instead. I have used them for analyzing mon-
etary policy shocks in Uhlig (2005b). Here, I wish to broaden that discussion
and raise further issues.

For example, in my original article, Uhlig (2005b), I only restricted the
response to a monetary policy shock. Should one sign-restrict other shocks
as well? We have seen in the demand—supply discussion, above, that they
can potentially help a lot. They require, though, that additional shocks can
be named and their impact on the variables at hand can be signed. Recall the
first two Principles 1 and 2: if you know it, impose it; otherwise do not! The
same holds true for additional restrictions that one may wish to impose, such
as contemporaneous causal ordering or structural relationship between some
variables or some long-run restrictions like long-run monetary neutrality.

But if one only feels comfortable with sign restrictions, and if one is inter-
ested in the impact of monetary policy on output in particular, without wishing
to prejudge the outcome, and if only sign restrictions for monetary policy
shocks are available, then this is the list:

€En €1 €2 €3
realY ?7 0?2?77
CPI B -7 92 2 (24)
FFR o + 7 2?7 7
M1 - 2?2?77

This is what I pursued in Uhlig (2005b), using six rather than four variables
in the VAR. I showed that not much can be said about the reaction of output,
as a result: output may react positively or negatively. If one truly believes out-
put to react negatively, then this must arise from some additional identifying
restrictions, other data, or a priori reasoning.

An important caveat with the sign restrictions (24) is that one should be
reasonably sure not only that no other shock has the same sign implications as
the monetary policy shock, but that this is also true for linear combinations of
other shocks. The latter actually has always struck me as a potentially rather
strong exclusion restriction, and one that should merit a much deeper and more
critical investigation than is available in the literature so far. One example of
doing so is Wolf (2016).

Note that equation (24) imposes sign restrictions on the matrix A. Some
recent discussions in the literature have taken up the issue as to whether one
ought to impose sign restrictions on the matrix A~! instead, or perhaps even on
both. The matrix A encodes the instantaneous reaction of variables to shocks.
A~! instead encodes such things as a monetary policy rule in reaction to
observable data. For example, the equation for the Federal Funds Rate would
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then relate the one-step-ahead prediction errors urprr; to ugpp.r» UCPIt»
up1,r and the monetary policy shock €, ; as

UFFR;: = QUGDP,: + Bucprs + yumi + €m, (25)

where a, B, y and 8 can be calculated from the appropriate coefficients in A~
and X. In principle, one can then proceed to impose sign restrictions or even
zero restrictions on some or all of these coefficients. One important recent
paper arguing in favor of that approach is Arias, Caldara, and Rubio-Ramirez
(2015). They argue that the Federal Reserve Bank will not react contemporane-
ously to the one-step-ahead prediction error in total reserves or non-borrowed
reserves, perhaps on grounds that these are under the control of the Fed, and
they argue for imposing sign restrictions on «.

While I applaud their hard work and serious investigation of the issues, and
while I applaud the much-needed search for additional restrictions, I find that
approach, and thus their results, dubious and unconvincing for the following
reasons. Equation (22) implies that, potentially, all shocks move the one-step-
ahead prediction errors for all equations. It may be tricky to truly label these
other shocks. The Federal Reserve Bank is tasked with keeping inflation sta-
ble. One reading of the reaction function of the Fed as encapsulated in equation
(25), then, is that it needs to aim at somewhat neutralizing shocks that other-
wise would have subsequently lead to higher inflation down the road. That
line of reasoning can potentially lead to interesting additional sign restrictions:
one would have to find out what moves inflation, aside from monetary policy
shocks, and then impose a reaction function to these shocks that move inflation
in the opposite direction. Let me encourage interested readers to pursue this
idea. However, it just seems implausible to me that these restrictions will lead
to simple and direct sign restrictions or zero restrictions on A~!. For example,
for imposing a positive sign on «, one would have to argue that all upticks in
current GDP lead to inflation down the road, if they are not caused by monetary
policy. To me, that seems too strong an assumption.

An alternative reading of imposing signs or zero restrictions on the coeffi-
cients in equation (25) is that this is somehow based on what one knows how
the Fed “reacts” to current news. I just feel that the Fed is doing a much more
sophisticated signal-extraction exercise than would be assumed by such a sim-
plistic rule. Moreover, one needs to realize that the one-step-ahead prediction
errors appearing on the right-hand side of (25) are already moved by the mone-
tary policy shock itself. At the very least, one would like to think of the Fed as
reacting to that portion in these one-step-ahead prediction errors, that are not
caused by its own actions. Finally, I cannot help to think that (25) is bringing
the broken Cholesky decomposition in through the backdoor. In a Cholesky
decomposition, the FFR would indeed react to all the one-step-ahead predic-
tion errors of the “slow-moving” variables, and not react to the one-step-ahead
prediction errors of the “fast-moving” variables. We have seen where that rea-
soning led us, see Principles 10 and 11. Should we really go down that route
once again?
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For the same reasons, I disagree with the statements in Baumeister and
Hamilton (2015), that our economic intuition is about restricting A~!. In my
own thinking, I find it much more fruitful to reason from shocks to propagation
and outcomes. The Fed may face the non-enviable task of partially inverting
that mapping, in order to sort out which movements in observables indicate
future inflationary pressure. It is certainly a valuable perspective to consider a
policy maker who has to interpret observable data rather than the unobservable
shocks to reach policy conclusions: in the end, the mapping surely is from
observable data to policy. One may be able to circumvent reasoning about
shocks that way, in the end, and I do not want to be misunderstood as dis-
couraging thinking along on those lines: on the contrary. But once again, I find
it a genuine challenge to derive straightforward restrictions about A~! from
that perspective.

Let me formulate this as a principle, with the caveat that there are now other
researchers who disagree with it. It is good to keep this a topic of debate.

Principle 12: Impose sign restrictions on A, not on A~ unless excellent
reasons are given.

Principle 1 and 2 are at work: I can imagine circumstances where one would
rather impose restrictions on A~! or on a combination of both. This is why I
included the caveat in the statement of Principle 12.

3.2 Inference in BVARs

It may be good to discuss likelihood functions, prior and posteriors in BVARs.
With (20) and the additional assumption, that u; are normally distributed, one
can explictly write out the likelihood function for the parameter vector ¢ of the
reduced-form VAR

¢ =(c,By,..., B, X).

Conditional on the initial observation, one can show that the likelihood
function is proportional to a Normal-Wishart density, which specifies that

« »71is Wishart,
« and, conditionally on X, the vector of coefficients b = vec(By, ..., Bi)
follows a Normal distribution A'(b, £ ® N_l), for some N.

This insight, which is only seemingly at odds with much of the literature on
unit roots and cointegration, was at the heart of Sims and Uhlig (1991) when
juxtaposing classical and Bayesian inference, and it is further elaborated upon
in Uhlig (1994b). Let me formulate this as a principle.
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Principle 13: With normally distributed one-step-ahead prediction errors, the
likelihood function, conditional on the initial observations, is proportional to
a Normal-Wishart density.

From this follows another interesting principle for Bayesian analysis, which
has received nearly no attention so far, to the best of my knowledge.

Principle 14: The special Normal-Wishart shape of the conditional likelihood
function considerably restricts the space to where the posterior can be taken.

The posterior is the product of the prior times the Normal-Wishart conditional
likelihood function. In particular, if the prior has itself this Normal-Wishart
shape, then this remains true for the posterior as well. The likelihood function
has a very particular and restricted shape, though, restricting the directions in
which the prior can be moved to result in the posterior. One can see that from
the statement above: there are Kronecker products, implying certain propor-
tionalities in many pairings of variables. These implicit restrictions on where
the posterior can be moved, relative to the prior, and, therefore, these restric-
tions as to which aspects the data can speak about and which aspects it cannot,
is a fascinating topic all on its own, that truly deserves much more attention
than it has received so far in the literature. Let me hope that this remark spawns
some insightful research on this topic in the future.

The likelihood function is Normal-Wishart, but that is true only condition-
ally, on the initial observations. The initial observations can be thought of as
containing considerable information about the VAR parameters, if they are
viewed as drawn from the same data generating process. One can most eas-
ily see this for an AR(1) with a fixed variance for the innovation term. If the
root for the AR(1) is much closer to zero than to one in absolute value, the
unconditional distribution of a draw from this time series will be reasonably
tight around zero. If the root is much closer to unity, an unconditional draw
will tend to be drawn from a density that is spread out far more. The issues
and the resulting implications for Bayesian priors and Bayesian analysis are
discussed in more detail in Uhlig (1994a) and Uhlig (1994b).

As a matter of practice, one may often proceed with the following procedure
to generate inference for a BVAR with sign restrictions:

. Take many draws b;, ;.
. Cholesky-decompose ¥; = L;L].
3. Any other decomposition X; = A; A/ satisfies

DN =

A,’ = L,'R,', where R,‘Rl{ =1.

4. Draw R;, see below. Check whether A; satisfies sign restrictions.
5. Check sign restrictions.
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If the restriction is on a single shock, then it suffices to obtain a single column
of A;. For that, it then suffices to draw a single vector r; with || r; ||= 1 (“first
column of R;”) and calculate a; = L;r; (“first column of A”).

That procedure should be clear enough, except for this portion: how to draw
R; and from which distribution? As far as the distribution is concerned, there is
one that is particularly natural. Recall that any other decomposition X; = A; A;
satisfies

A; = L;R;, where R;R, = |

It is desirable to have a procedure so that the particular choice of the decom-
position X; = L; L] does not matter. For example, the original ordering of the
variables should result in the same probability distribution for the resulting A;
or g; as any other ordering: otherwise the whole issue of ordering is brought
back in through the back door. But that means, it should be equally likely to
draw R; or R; = OR;, where QQ’ = I. This is called the Haar measure, as
is well understood and as has been pointed out particularly clearly by Rubio-
Ramirez, Waggoner, and Zha (2010). With one vector only, it should be equally
likely to draw r; or 7; = Qq;, where Q Q' = I. Put differently, the distribution
of r; should be uniform on a sphere. This, at least, is easy to accomplish: draw
each entry from a standard normal distribution and normalize the resulting
vector to unit length.

For some reason, Baumeister and Hamilton (2015) criticize this Haar mea-
sure, since transformations of a uniform priors look informative. Of course they
do. That does not invalidate the principle advantage of using a Haar measure,
in my view.

Principle 15: Use the Haar measure to draw R; or r;.

A subtle issue arises in the sampling procedure as stated above, which
concerns the interaction of sign restrictions and the reduced-form VAR. The
sampling procedure described samples from a joint posterior for (b, X, R).
Consider, then, two different (b, X). If the sign restrictions are easy to satisfy
for the first, but difficult to satisfy for the second, the first will be sampled
more often, i.e., be given higher marginal probability relative to the no-sign-
restriction case. But “difficult to satisfy” means the sign restrictions are better
at tightly identifying the shock; see Principle 7. Thus, the procedure above
implicitly puts more weight on (b, X), which offer less tight identification. It
may be better to use a conditional prior instead:

Pick some standard prior for the reduced form (b, X).

Take a draw (b, ) from the resulting posterior.

Check whether there is any R then satisfying sign restrictions.
If not, discard.

If yes, draw a fixed number that satisfy sign restrictions.

Nk WD
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While perhaps more appealing, it seems harder to implement in practice, since
step 3 should rely on analytics, not random draw testing. In any case, a proper
foundation per a Bayesian prior for either sampling procedure can be given
and is provided in Uhlig (2005b), if that helps to inform the choice.

When imposing sign restrictions, the issue arises for how many periods
after the shock they shall be imposed. In my discussion Uhlig (1998), I
showed that imposing it for longer than just the initial impact can make
a considerable difference. Theory can potentially provide some guidances.
Thus, Canova and Paustian (2011) provide a model without capital and
where doubts then arise about the persistence of the signs of the shock
response, calling sign restrictions beyond the initial period into questions.
Note also that the price—quantity framework discussed in the first half of
this chapter has no persistence of shocks: I considered an i.i.d. example
on purpose. In fact, it is easy to construct non-persistent theories. But are
these convincing reasons to exclude extended horizons, when imposing sign
restrictions? Put differently, are non-persistent theories plausible from the
perspective of a priori reasoning? Now, if you truly trust and believe some
non-persistent theory, or can convince an audience within reason that it offers
the right framework, as opposed to one with persistence, do go ahead; see
Principle 1. But do not, if you do not; see Principle 2. Usually, many macroe-
conomic theories are highly stylized on purpose: one should probably feel
uncomfortable trusting all their implications. I therefore conclude that it is
typically appropriate to impose sign restrictions beyond the initial impact
period.

Principle 16: Often, it is reasonable to impose sign restrictions for up to one
year after the initial shock.

It is instructive to analyze, how longer-horizon sign restrictions make a dif-
ference in simple time series models. Consider, for example, a bivariate VAR
with one lag. Suppose that, for some reason, the coefficient matrix is always
diagonalizable, and has two identical roots and stable roots. Let me distinguish
three cases, then. One case is that the two roots are real and positive. In that
case, the sign of the initial shock persists forever, i.e., an impulse response to
a positive shock stays positive. The second case is that the two roots are real
and negative. In that case, the impulse response will oscillate between negative
and positive values, period by period. The third case is that the two roots are
complex conjugate. In that case, we get oscillations that may last longer than
a single period: think “damped sin waves.” Consider then imposing the sign
restriction that the response is positive, up to some horizon K, where K = 0
would mean imposing sign restrictions on impact only. These sign restrictions
do not further inform case 1. They rule out case 2, in case K > 0. Further,
they rule out ranges of complex roots, and the more this is so, the larger is
K: only damped sin waves with the lowest frequencies will show a positive
response for sufficiently many periods after the impact. While I shall leave the
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details of the algebra to the reader, the insight from this example should be
clear: dynamic sign restrictions can have considerable bite. They do not have
to: indeed, if it is known that the roots are real and positive, increasing K has
no bite at all.

Finally, let me offer some remarks on how to read impulse response ranges.
With a Bayesian analysis, these are proper probability statements about poste-
riors. The common way of plotting them and their quantiles provides graphic
information about marginal distributions, at each horizon and for each vari-
able plotted. Each single plot therefore provides information about a number
of marginal distributions. The median of the distribution of some impulse
response at some horizon is the median of that particular marginal distribution.
It is obvious that connecting the medians from these marginals does not rep-
resent some particular draw or even some “median” draw. They simply show
how the medians and these marginal distributions evolve, from one horizon
to the next. This has always been true for Bayesian impulse response error
bands, and I find it rather unremarkable. I would not have remarked on it if it
weren’t for Fry and Pagan (2011) on page 949 somehow thinking this to be a
big deal. Personally, I am much less inclined to highlight this as a key insight,
but nevertheless:

Principle 17: The common way of plotting Bayesian impulse responses and
their quantiles provides graphic information about marginal distributions, at
each horizon and for each variable plotted. The median of the distribution
of some impulse response at some horizon is the median of that particular
marginal distribution. As a collection, they typically do not represent some
particular draw or even some “median” draw.

4 CONCLUSIONS AND SOME FINAL
RECOMMENDATIONS

Rather than summarizing the chapter (which I have already done, in essence,
in the introduction), let me conclude by offering some final thoughts and
recommendations. Sometimes sign restrictions are criticized because they are
weak and sometimes not much can be concluded. They may be weak indeed.
But, truly, what else is there? Principles 1 and 2 hold: if more can comfortably
be imposed, go ahead, but if sign restrictions are all one has, then one has no
choice but to live with the weak conclusions that can be drawn on their basis,
or change the research strategy entirely. For example, while I find Cholesky
decompositions easy and clear to use, and while they sometimes can be put to
excellent and informative purpose, their defense is sometimes murky and their
results unpalatable; see Principles 10 and 11. Long-run restrictions are often
even more problematic, in my view, and seem to require exact knowledge of
unit roots and such. Perhaps medium-run restrictions are a way out of some of
the conundrums bedeviling long-run restrictions — see, e.g., Uhlig (2004) — but
it would be a stretch to say that they have found much popularity so far.
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There are lots of other approaches that are promising and which sometimes
truly deliver insightful answers. I am thinking of approaches such as variance-
maximization procedures, exploiting regional data or panel data, employing
high-frequency identification approaches, introducing regime shifts or het-
eroskedasticity induced by shocks around, say, FOMC announcement dates
(with all due apologies to the key authors proposing these approaches, for not
providing a more fully fledged and citation-based review of that literature).
When a debate such as the one laid out in this chapter can make some approach
thorny, one is then tempted to think that the grass is greener over there. But, as
Friedman has remarked, there is no such thing as a free lunch. It is generally
useful advice to avoid losing the general lessons learned from VARSs on aggre-
gate time series when turning to these other approaches. On the contrary: they
need to be thought through anew for these approaches as well. And with that,
and with the discussion offered here, the sign restriction approach should be
even more appealing.

I have not much left now, therefore, but to once again mention my main
recommendation. Recall Principles 1 and 2: if you know it, impose it! If you
do not know it, do not impose it!
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