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Abstract 

 

Price theory says that the most important effects of policy and technological change are 

often found beyond their first point of contact.  This appears opposed to econometric methods that 

rule out spillovers of one person’s treatment on another’s outcomes.  This paper provides a simple 

statistical framework highlighting that controls are indirectly affected by the treatment through the 

market.  Moreover, even the effect of the treatment on the treated reveals only part of the 

consequence for the treated of treating the entire market.  When combined with economic theory, 

the statistical assumption of parallel trends leads to a new application of Marshall’s Laws of 

Derived Demand.  Emphasizing a close connection between treatment effects and the scale and 

substitution effects featured in price theory, Marshall’s Laws show how difference-in-differences 

can diverge – both in magnitude and direction – from the causal effects of treating all market 

participants. 

  

 
* This paper grew out of a project of adding new chapters to Chicago Price Theory, in preparation for its second 

edition.  Kevin Murphy’s Price Theory lectures and further recommendations strongly influenced the preparation of 

this paper.  We also appreciate comments from Jim Heckman, Allen Sanderson, Alex Torgovitsky, Giuseppe Forte, 

Josh Gross, João Pugliese, and Alex Tordjman. 
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I. Introduction 
 

Markets are likened to an invisible hand.  Among other things, the hand coordinates 

individual choices with the decisions of all other participants on the same side of the market, 

regardless of whether they directly interact.  The invisible hand appears to contradict econometric 

methods that rule out “spillovers” of one person’s “treatment” on another’s outcomes.  Our purpose 

here is not to discourage such methods, but rather to use price theory to help understand what they 

measure and how empirical findings can be applied to settings other than the ones where the 

measurement occurred. 

 

Section II of this paper illustrates the invisible hand with a labor-market equilibrium 

example well-known in price theory’s oral tradition, relating it to the difference-in-differences 

(DiD) method from econometrics.  It shows that market spillovers can be the dominant factor 

determining outcomes, in at least some important contexts.  Section III provides a simple statistical 

framework that allows for market spillovers and incorporates two concepts of “parallel trends” for 

treatments and controls.  When treated and control observations are in the same market, the 

controls are indirectly affected by the treatment. Even without choice-theoretic restrictions, the 

framework indicates quantitative relationships between difference-in-differences estimates and 

meaningful counterfactuals. 

 

Another role of prices in equilibrium models is to equalize quantities supplied and 

demanded.  This function is left implicit in our analysis because it is already familiar in 

econometrics, particularly regarding the simultaneous feedback between supply and demand 

schedules.  We focus on relating restrictions from demand theory to parallel trends assumptions.  

In the choice framework, parallel trends require the treatment and control outcomes to be weakly 

separable in utility, production, or cost from all other outcomes.  This leads to Marshall’s Laws of 

Derived Demand as a source of precise price-theoretic interpretations of the direct and spillover 

effects of a treatment. 

 

A DiD estimator measures the degree of substitution between treatments and controls, 

regardless of the fraction of the market that is treated or the magnitude of market spillovers. In 

contrast, the effect of treating the entire market is a “scale effect,” which is the price-theoretic term 

for the degree of substitution with goods outside the market where treated and controls participate.  

The effect of the treatment on the treated (ToT) is a weighted average of the scale effect and the 

DiD, whereas the market spillovers are proportional to their difference. 

 

Our price-theoretic analysis classifies treatments and outcomes into three distinct 

categories. For treatments, they are prices, quantities, and productivity.  For outcomes, the 

categories are quantities, prices, and expenditures.  In some cases, the law of demand requires that 

the scale effect and DiD have the same sign.  However, with productivity treatments or expenditure 

outcomes, the two can have opposite signs.  In other words, DiD can have the opposite sign of the 

scale effect, and potentially of the ToT, for purely economic reasons.  

 

Our framework helps address a couple of misunderstandings about when spillover effects 

occur and how they affect the interpretation of DiD estimates.  Interestingly, as the share treated 

falls, the direct effects of the treatment diminish more than the equilibrium effects do.  Section IV 
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shows how the substitution effect isolated by DiD can help construct estimates of the scale effect.  

Sections V and VI conclude with additional applications in which acknowledging equilibrium 

effects profoundly changes the interpretation of DiD estimates. 

 

Econometric results on causal research designs, along with recent extensions in the 

literature, often rely on the assumption of “no spillovers.”1 “Spillovers” and “peer effects” are 

treated in microeconometrics as advanced, albeit interesting, topics that primarily arise when there 

are “externalities” (Angrist and Pischke 2008, Athey and Imbens 2017).  Attempts to relax this 

assumption entail structure on how treatment spills over to the controls (Manski 1993)—a structure 

which could be economic or statistical.  The statistical approach reviewed in Huber (2023) might 

allow spillovers from observations within predetermined clusters but not from observations outside 

those clusters (Sobel 2006, Hong and Raudenbush 2006, Hudgens and Halloran 2008).  Our 

contribution aligns with the economic approach, which we view as lacking in the general 

frameworks more recently available in statistics.  We provide closed-form results for interpreting 

quantity or price comparisons, showing how these estimates relate to broader treatment effects on 

the entire market. Our approach focuses on spillovers mediated by market forces as opposed to 

spillovers through externalities (such as the urban knowledge spillovers in Jacobs (1969) or 

spillovers of medical treatment in Miguel and Kremer (2004)).  

 

The analysis of specific market-based spillovers is extensive and spans many fields. In 

urban economics, for example, Glaeser and Gottlieb (2009) assess the benefits of easy labor 

mobility across firms within cities. See also Banzhaf (2021).  In labor economics, Monte, Redding, 

and Rossi-Hansberg (2018) find evidence that commuting is an important adjustment mechanism 

for localized labor demand shocks. Crépon et al. (2013) find that gains to unemployed job seekers 

of job placement assistance can be offset by displacement effects for those who did not receive the 

program. Cautioning against “inattention to the market consequences of the [programs evaluated],” 

Heckman, Lochner, and Taber (1999)  provide an equilibrium model for evaluating both behavior 

and welfare effects of tuition subsidies and other public policies.  Heckman, LaLonde, and Smith 

(1999) conclude that “the costs of ignoring indirect [equilibrium] effects may be substantial.”  In 

development economics, Egger et al. (2022) find that transfer payments in one village can affect 

outcomes in nearby villages, although the market forces featured in our paper are not necessarily 

“general equilibrium” because they can occur in a single market.  As discussed in our Section VII, 

public economics acknowledges that the introduction of state-specific cigarette taxes may affect 

the wholesale price of cigarettes faced by all states, a broader market response not captured by 

analyses comparing retail price changes in different states.  

 

Our contribution to this research space, into which we have provided only a small glimpse, 

is a versatile and concise equilibrium framework that researchers can apply to assess what market 

spillovers are present and how important they might be. While our approach can be used as a 

substitute for purely statistical models accounting for spillovers, it also has complementary 

elements. For instance, our results can provide useful insight for dividing observations into clusters 

within which spillovers are permitted from clusters where they are not, as discussed in Section IV.  

 

 
1 See, for example, de Chaisemartin and d’Haultfoeuille (2020); Goldsmith-Pinkham, Sorkin and Swift (2020); and 

Borusyak, Hull and Jaravel (2022).  Sometimes “no spillovers” is called “no interference” or is wrapped into the 

broader notion of the “stable unit treatment value assumption.” 
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Munro et al.’s (2021) observation that “the interference pattern produced by marketplace 

price effects is dense and simultaneously affects all units, so cluster- or sparsity-based methods are 

not applicable” is consistent with the price theoretic view of market equilibrium taken in this paper.  

They refer to a “Global Treatment Effect (GTE)” which we link to the scale effect from price 

theory.  Both our paper and theirs treat this as “a meaningful policy-relevant counterfactual of 

treating all individuals in the [market] compared to treating no individuals in the [market].”   

Although they examine an experimental setting, their “average direct effect” is closely analogous 

to what we call the “difference-in-differences” estimator. 

 

Drawing from market equilibrium analysis, we emphasize that the treated and untreated 

experience scale and substitution effects in different combinations.2  This analytical approach has 

parallels with Heckman and Vitlaycil’s (2005) expression of estimators as combinations of 

“marginal treatment effects,” each of which refers to a specific type of individual.  To focus on the 

price theoretic components, this paper considers only limited heterogeneity, namely treated versus 

untreated and in-market versus out-of-market.  It emphasizes market connections, with 

counterfactual treatment regimes understood as additional distinct combinations of scale and 

substitution effects. 

 

II. A labor market illustration of equilibrium spillovers 
 

From an input perspective, barbers today cut hair almost exactly as they did in the first half 

of the twentieth century: a chair, mirror, scissors, and sink.  By all accounts, fully-scheduled 

barbers have hardly changed the number of haircuts they perform per hour.  Meanwhile, other 

occupations have experienced dramatic productivity growth over the same time frame.  For 

example, the number of bushels of corn produced per farmer has increased by an order of 

magnitude (U.S. Department of Agriculture, National Institute of Food and Agriculture 2014).   

 

Given that the trends for inflation-adjusted wages of farmers and barbers are nearly the 

same despite their disparate productivity experiences, can we conclude that the causal effect of 

productivity on wages is essentially nil?  That would appear to be the answer coming from the 

“difference-in-differences” statistical method. 

 

Specifically, the DiD approach forms a “treatment group” as a sample of observations that 

were “exposed” to a “treatment,” to be compared with a “control group” that was not “exposed.”  

The treatment in our example is productivity growth.  The occupation of farmer might be 

considered a treatment group because farmers became significantly more productive on their jobs.  

Barbers could serve as a control group because “haircutting has exhibited virtually no productivity 

improvement over a century.” (Krueger 1991)  The difference in the log of barbers’ real wages 

now from a century ago is about 2, as is the difference for farmers.  In its simplest form, the DiD 

method calculates the difference between two differences: one treatment difference and another 

control difference.  Here the DiD is essentially zero because the two occupations have similar real-

wage growth.  In other words, the DiD seems to show that even massive productivity growth of 

the amount experienced by farmers has a trivial real-wage effect, if any.  Conversely, if 

 
2 Much quantitative work in both micro- and macro-economics treats scale and substitution parameters as constants. 
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productivity is an important determinant of real wages, the DiD estimate would seem to present us 

with a puzzle. 

 

The price theory solution to the puzzle is that occupation is a matter of choice.  If barbers 

are to voluntarily cut hair, their real wage must somehow keep up with real wages of alternative 

occupations.  That happens with a rising price of haircuts relative to corn.  Through labor markets, 

the wage growth of barbers is largely determined by the productivity growth of other occupations.  

To put it another way, the DiD “correctly” shows that occupation-specific productivity growth has 

little occupation-specific effect on real wages, but without clearly indicating the much larger wage 

effects of occupation-average productivity growth.3 

 

A statistician might say that the “control group is contaminated” because the productivity 

growth of the farmers is “spilling over” to barbers through labor markets.  Our purpose here is not 

to discourage DiD analysis, even those with contaminated control groups, but rather to use price 

theory to help understand what DiD measures and how its findings can be applied to other settings. 

 

III. Treatments and controls according to Marshall’s laws 
 

III.A.  A vector representation of market spillovers 
To begin the formal analysis, we consider a population of agents that are designated either 

as treatments or controls.  Their population shares are denoted  and 1−, respectively.  Their 

outcomes are denoted T and K, respectively.  The treatment, which directly affects the treated but 

not the controls, is denoted t.  We let k denote a comparable shock that directly affects the controls 

but not the treated.  The mappings from the two treatments to outcomes are denoted T(t,k;T) and 

K(t,k;K), where T and K denote other factors that influence outcomes for treated and controls. 

 

Figure 1 illustrates the effects of a treatment dt = 1 in the time dimension.  The familiar 

parts of the diagram are that (i) other factors influence both the T and K outcomes over time and 

(ii) the effect of the treatment on the treated (ToT) is the difference between the final outcome for 

the treated and what that outcome would be without treatment.  Given our emphasis on market 

connections between T and K, our Figure 1 also allows for an effect of dt = 1 on the outcome for 

the controls. 

 
3 In a slightly different setting, DiD could show a negative relationship between occupation-specific productivity 

growth and occupation-specific wage growth even though economy-wide productivity increases wages.  In such an 

example, the demand for, say, agricultural products is price inelastic.  Productivity growth must therefore reduce 

agricultural employment.  With imperfectly mobile labor in the short run, farm wages fall.  Indeed, this is the 

economics storyline in Steinbeck’s The Grapes of Wrath (1939).  See also this paper’s Section V. 
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To focus on equilibrium interpretations of DiD estimates, we maintain the parallel trends 

assumption that dT = dK and have the same marginal effects on each K and T.  We refer to this 

assumption as “parallel trends with respect to omitted variables” (PTOV).  In other words, under 

PTOV and without any treatments (dt = dk = 0), the treated and control groups experience the same 

outcome changes dT = dK.  PTOV requires that the heavy dashed lines in Figure 1 be parallel. 

 

With PTOV, the relevant four first partial derivatives of the outcome mapping are 

represented as a two-by-two matrix S: 

 

𝑆 = (
𝑠𝑇𝑡 𝑠𝑇𝑘

𝑠𝐾𝑡 𝑠𝐾𝑘
) = (

𝜕𝑇/𝜕𝑡 𝜕𝑇/𝜕𝑘
𝜕𝐾/𝜕𝑡 𝜕𝐾/𝜕𝑘

) (1) 

 

The first entry in S is the effect sTt of a unit treatment t on the treated, which is commonly known 

as ToT as labeled as such in Figure 1.  The final entry sKk is the analog of ToT for the controls.  The 

off-diagonal elements reflect spillovers, sometimes known as indirect effects of treatments.  The 

spillover effect shown in Figure 1 is sKt. 

 

S’s first column difference and first row sum are central to our interpretation of difference-

in-differences.  We therefore establish the following definitions: 

 

𝐷𝑖𝐷 ≡ 𝑠𝑇𝑡 − 𝑠𝐾𝑡 (2) 

 

휀 ≡ 𝑠𝑇𝑡 + 𝑠𝑇𝑘  (3) 
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Definition (2) is our representation of difference-in-differences (more literally, a difference in 

treatment derivatives) under the aforementioned parallel-trends assumption.  DiD subtracts the 

effect, measured per unit t, of the treatment t on controls from its effect on the treated.  The 

definition (3) refers to the “scale effect,” which is the effect on the treated group of applying the 

treatment uniformly across the entire population, or what we call “the entire market.”  The scale 

effect  is often the parameter of interest. 

 

The case of no spillovers has S as a diagonal matrix (sTk = 0 = sKt), with no difference 

between DiD and  or DiD and ToT  While not ruling out the zero-spillover case, the purpose of 

this paper is to link the off-diagonal elements to the diagonal elements and to results from price 

theory.  More generally, the difference between the scale effect and DiD is the sum of the spillover 

elements of S:  − DiD = sTk + sKt.
4   

 

Another restriction on the S matrix also resembles parallel trends and drives many of our 

results.  Specifically, administering the treatment uniformly to both the treated group and control 

group should not affect the difference between their outcomes: 

 

𝑠𝑇𝑡 + 𝑠𝑇𝑘 = 𝑠𝐾𝑡 + 𝑠𝐾𝑘  (4) 

 

We refer to assumption (4) as “Parallel Trends for Parallel Treatments” (PTPT).  At this point, 

PTOV is distinct from PTPT.  Proposition 1 establishes that the familiar procedure of dividing 

differential outcome changes by a treatment differential yields DiD if and only if the PTPT 

assumption (4) holds. 

 

PROPOSITION 1 (Differential and parallel treatments).  Assume parallel trends for 

omitted variables (PTOV) and that dk is neither 0 nor equal to dt.  Then the PTPT assumption (4) 

is equivalent to (5): 

 

𝐷𝑖𝐷 =
𝑑𝑇 − 𝑑𝐾

𝑑𝑡 − 𝑑𝑘
 (5) 

 

Proof.  To obtain an expression for the numerator in (5), totally differentiate T(t,k;T) − 

K(t,k;K).  With PTOV eliminating the  terms, the numerator is DiD (dt−dk) plus the product of 

dk and the difference between the LHS and RHS of (4).  With dk  0, the RHS of (5) differs from 

DiD if and only if equation (4) is satisfied.  QED 

 

A corollary to Proposition 1 is that, with PTPT, equation (5) corresponds to the DiD defined in (2) 

regardless of whether treatments are solely for the treatment group (dt  0 = dk) or solely for the 

control group (dt = 0  dk). 

 

 
4 See also Munro et al.’s (2021) expression of a “global treatment effect” as the sum of “direct” and “indirect” 

treatment effects. 



 7 

Figure 2 illustrates the model (1)-(4) for the case that  > DiD, showing all four elements 

of S.5  The axes measure outcomes for controls and treatments.  The square is the baseline, showing 

outcomes absent any treatment.  The green vector is the first column of S, showing the effects on 

both groups of treating only the treated.  As shown, that vector is not vertical but has a slope greater 

than 45 degrees, which indicates that t has a spillover effect, although one that is less than the 

direct effect on the treated group.  Unsurprisingly, the DiD (red segment) measures the distance 

between the treatment effect and the 45-degree line. 

 

  
 

The black vector, which is the second column of S, shows the effect of subsequently 

treating the rest of the market.  The sum of the two arrows follows the 45-degree line if and only 

if the PTPT assumption (4) holds.  The vertical and horizontal dimension of their sum is . 
 

Figure 3 illustrates a case with the same scale effect as Figure 2, but with DiD closer to 

zero.  In contrast, Figure 4’s case has the same DiD as Figure 2 but no scale effect (treating the 

controls “undoes” the effects of t).6  As such, it also shows an instance of  < DiD. 

 

 
5 It also shows DiD > 0, although for what follows the sign of each  and DiD is less important than the sign of their 

difference. 
6 The area of the triangle shown in Figures 2-4 is half of the magnitude of DiD*. 



 8 

  
 

  
 

Let  denote the share of the between-group spillover effects of a full market treatment dt 

= dk that would be experienced by the control group. 
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𝜆 ≡
𝑠𝐾𝑡

𝑠𝐾𝑡 + 𝑠𝑇𝑘
=

𝑠𝐾𝑡

휀 − 𝐷𝑖𝐷
 (6) 

 

The symmetry of our discussion of treated and controls suggests that  would be closely related to 

, if not identical to it, because a larger treatment group is expected to have a greater effect on the 

controls than treating a comparatively group would.  However, until we say more about the units 

of K, T, k, and t (see subsection III.B and following), a precise relationship between  and  cannot 

be specified.  Regardless, the common intuition that small-scale treatments (  0) have near-zero 

spillover effects on the controls can be represented by assuming (  0). 

 

 PROPOSITION 2 (Treatment effects decomposition).  If the PTPT assumption (4) holds, 

then the treatment effects matrix S can be written in terms of DiD, , and , as defined in (2), (3), 

and (6):  

 

𝑆 = (
𝜆휀 + (1 − 𝜆)𝐷𝑖𝐷 (1 − 𝜆)(휀 − 𝐷𝑖𝐷)

𝜆(휀 − 𝐷𝑖𝐷) (1 − 𝜆)휀 + 𝜆𝐷𝑖𝐷
) (7) 

 

 Proof.  The share defined by (6) distributes the sum of the spillover terms, already 

established to be  − DiD, between its two components as shown in (7).  From (2), the sTt term is 

the sum DiD + sKt and therefore what is shown in (7).  PTPT requires that sKk = DiD + sTk, which 

is the result shown in (7).  QED 

  

The definitions and axiom (2)-(6) allow the diagonal of S to be expressed entirely in terms 

of weighted averages of DiD and , using  and 1− as weights.  The off-diagonal “spillover” 

elements are the difference between the scale effect and DiD, scaled by either  or 1−.  The 

direction of the spillover effects can therefore be understood as a comparison between the scale 

effect and DiD.  The expression (7) and the intuition about signing market spillovers are familiar 

from price theory, where they are known as Marshall’s Laws of Derived Demand.   

 

The eigenvalues of S are simple, of intrinsic interest, and useful for establishing additional 

results. 

 

COROLLARY.  Under the PTPT assumption (4), the eigenvalues of S are DiD and .  The 

matrix sum (product) of two matrices each of the form (7) itself has the form (7), with one 

eigenvalue that is the sum (product) of the two component DiDs and another eigenvalue that is the 

sum (product) of the two s, respectively. 

 

Proof.  Use (7), which requires (4), to calculate the eigenvalues.  QED 

 

Even though (so far) the matrix S has three degrees of freedom, its eigenvalues are independent of 

the spillover share .  Each eigenvalue is of intrinsic interest because DiD is commonly measured 

while  represents a meaningful counterfactual.   
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III.B.  Derived-demand interpretations of treatment and treatment effects 
 

One interpretation of t and k is as log prices on the demand side of the market.   T and K 

represent the per-capita log quantities demanded of the two corresponding goods, out of a total of 

N consumption choices.  Final consumers have convex preferences represented by 

𝑢(𝑥1, … , 𝑥𝑁−2, 𝑒𝑇, 𝑒𝐾) and face a linear budget constraint.  In this context, the treatments t and k 

result from shocks to the supply of T and K.  We refer to this interpretation as demand-price 

treatments with quantity outcomes. 

 

Of course, the Marshallian demand functions for the T and K goods depend on income and 

all N prices.  In our notation, income and the N−2 prices are part of the “other factors” T and K.  

The parallel trends for omitted variables (PTOV) assumption therefore requires that the demand 

for the T and K goods have the same income elasticity and the same cross-price elasticities with 

respect to the other N−2 prices.  In this context, the second parallel trends assumption (PTPT or 

(4)) requires that the relative quantities demanded of the T and K goods is invariant to equi-

proportional changes in the two corresponding prices.  Proposition 3 establishes that, due to 

demand-theory restrictions, the PTOV assumption guarantees PTPT, which is required for many 

of our previous results. 

 

PROPOSITION 3.  If the N-good demand system satisfies PTOV, then it satisfies PTPT. 

 

Proof.  The sum of the N Marshallian price elasticities for the T good must be the same as 

it is for the K good because the two have the same income elasticity and Marshallian demands are 

homogeneous.  PTOV requires that the N−2 outside good price elasticities be the same for the T 

and K goods.  With the elements of the S matrix interpreted as Marshallian price elasticites, the 

PTPT assumption must be satisfied because the LHS (RHS) of equation (4) is the sum of the 

remaining two prices elasticities from the T-good (K-good) demand function, respectively.  QED 

 

In the language of production theory, PTOV requires that the preference function exhibit 

homogeneous weak separability in the T and K goods.7  That is, the two are inputs into a composite 

index F that is a homogeneous function of the input quantities, as shown in (8).  This is why 

Marshall’s Laws of Derived Demand are relevant. 

 

�̃�(𝑥1, … , 𝑥𝑁−2, 𝐹(𝑒𝑇, 𝑒𝐾)) = 𝑢(𝑥1, … , 𝑥𝑁−2, 𝑒𝑇 , 𝑒𝐾) (8) 

 

In some applications, as with the farmers and barbers discussed at the beginning of this 

paper, T and K are aptly described as production factors as Marshall (1895) does.  They could be 

labor in two different states, as in the minimum wage literature. They could be capital in two 

different industries.  In other applications, T and K might represent distinct retail products, firms 

in the same industry that differ by size or location, or different sectors of the economy as in Jaffe, 

Minton, Mulligan, & Murphy (2019, Chapter 17).  The model (8) is flexible in accommodating 

these cases. 

 

 
7 PTOV allows F to be homothetic but not homogeneous of degree one in its inputs, in which case  should be 

understood as the price elasticity of F demand d times a returns-to-scale factor.  See Solow (1955, p. 104). 
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Under this price-treatment quantity-outcome interpretation, the matrix S shown in (1) 

becomes the two-by-two submatrix of u’s Marshallian cross-price elasticity matrix Sd 

corresponding to the T and K rows and columns, expressed in elasticity format.  The PTPT 

assumption (4) is automatically satisfied.  Most important, the scale effect , the spillover share , 

and the DiD have precise economic interpretations, as established by Proposition 4. 

 

PROPOSITION 4 (Hicks-Marshall).  If the treatment effects matrix S is the submatrix Sd 

of Marshallian cross-price elasticities, and the demand system satisfies PTOV, then 

(i) The scale effect  is the Marshallian own-price elasticity of the demand d < 0 for the 

composite F, 

(ii)  is the share of the combined expenditure on the T and K goods that is spent on T, 

(iii) −DiD > 0 is the elasticity d of input substitution the composite index F from equation 

(8), and 

(iv) −DiD is also the shadow elasticity of substitution between the T and K goods in u() as 

defined by McFadden (1963). 

 

Proof.  Marshall (1895) and Hicks (1936) famously prove that price elasticities of input 

demands satisfy (7) with the economic interpretations cited in items (i)-(iii) of the proposition.  

See also our Appendix.  QED 

 

Simply put, the scale effect  is the price elasticity of the demand for the composite because 

the index function F is homogeneous.  Because the off-diagonal elements of Sd are cross-price 

elasticities, Hicksian symmetry and equal income elasticities require that the spillover share  

equal the share of the combined expenditure on the T and K goods that are spent on T.  This 

conforms with the usual intuition that a treatment t has little effect on the control outcome K if the 

treatment share  were close to zero. 

 

Perhaps the most important result is that −DiD > 0 is the elasticity d of factor substitution 

in F.  As such it has no obvious relation to the scale effect and other properties of �̃�.  A treatment 

affects the relative price of the T and K goods, changing their ratio – a difference in logs – according 

to the elasticity of substitution.  None of our analytical results require that elasticities or shares are 

constant even though our prose may refer to them as “parameters.”8 

 

Consumer theory permits either sign for d + d and therefore either sign for the spillover 

elements in (7).  In a complements case, as in Figures 2 and 3, the scale effect exceeds the 

substitution effect.  That is, the magnitude of the scale effect is underestimated by DiD’s 

magnitude.  At the other extreme, Figure 4 shows a case of treatment-control substitution in which 

the scale effect is zero. 

 

Complementarity is the case when the treated are affected more by a full-market treatment 

than receiving the same treatment while others in the market are untreated.  Note that 

complementarity requires neither increasing returns nor externalities.  It does not require that the 

treated and controls ever meet each other to trade.  It does not require Leontief preferences or even 

 
8 The shares and elasticities represent the values applicable to the point {𝑥1, … , 𝑥𝑁−2, 𝑇, 𝐾} where expression (8) is 

evaluated. 
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d < 1.  Complementarity could even occur through an income effect on the demand for the T and 

K goods because d includes the income effect of price treatments. 

 

Other than ruling out dt = dk, this analysis of quantity outcomes does not restrict the supply 

of T and K.  We interpret dt and dk as results of treatments, leaving implicit the supply-demand 

equilibrium determination of the quantitative relationship between them.  A subsidy paid to the 

treated, for example, may move the market further up a T-supply curve than it moves down the T-

demand curve represented by Sd.  We leave that part implicit because the econometrics of supply-

demand feedback is already well studied.  The equations that we do show are valid regardless of 

the details of that feedback, and are adequate to show the precise relationship between scale and 

substitution effects on the demand side.9 

 

Other DiD studies feature quantity treatments with price outcomes.  For the union wage 

effect that we examine in Section VI, the quantity treatment comes from efforts by trade unions to 

reduce the supply of labor to the union sector with the intended effect of raising wages in that 

sector.  Other studies have looked at the price effects of the sudden shutdown of a factory, perhaps 

by natural disaster or by regulation.10  These can be analyzed by inverting the Marshallian cross-

price elasticity matrix Sd that maps price treatments into quantity outcomes.  From equation (7), 

the diagonal elements of (Sd)−1 can be expressed as a weighted average of 1/d and −1/d.  Its off-

diagonal spillover elements rescale the difference between these two eigenvalues.11  The weights 

and scaling factors are the same two expenditure shares that apply to the case of quantity outcomes 

and price treatments.   

 

By definition, DiD exaggerates the magnitude of the scale effect if and only if  > DiD > 0 

or  < DiD < 0.  If that “substitutes” case describes the quantity effects of price treatments, then 

the price effects of quantity treatments in the same market must fall into the “complements” 

category.  That is, the scale effect for price outcomes would exceed DiD in magnitude.  The proof 

is that the price-outcome DiD is the reciprocal of the quantity-outcome DiD while the price-

outcome scale effect is the reciprocal of the quantity-outcome scale effect.  

 

 

III.C.  Difference-in-Differences may indicate the wrong sign 
 

Although the scale and substitution effects on quantities of price treatments are expected 

to have the same sign, their signs are not necessarily aligned for alternative treatments and 

outcomes.  Take the case of productivity treatments.  Let A measure productivity enhancements 

that augment the K factor and B those augmenting the T factor.  Formally, the prices are the same 

but preferences are 𝑢(𝑥1, … , 𝑥𝑁−2, 𝑒𝑇+𝐵 , 𝑒𝐾+𝐴).  Equivalently, consumers choose 𝑒𝑇+𝐵 and 𝑒𝐾+𝐴 

 
9 Scale and substitution effects can also be investigated on the supply side.  In the case of a subsidy to T, the factor-

supply price of T, ts, would exceed the demand price t featured in this paper.  If parallel trends are also satisfied on 

the supply side and the elasticity of substitution in supply is denoted s > 0, then a DiD constructed from supply 

prices would satisfy dT − dK = s(dts − dk), as compared to a DiD constructed from demand prices. 
10 Hakim, Gupta and Ross (2017) examines effects of regulator-required factory closures on retail prices in the 

market for generic drugs. 
11 Sd is invertible as long as d and  d are not zero.  Recall that the eigenvalues of the inverse of a matrix are the 

reciprocals of the eigenvalues of the original matrix. 
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subject to the augmented prices 𝑒𝑡−𝐵 and 𝑒𝑘−𝐴.  The price- and productivity-treatment effects 

satisfy: 

 

(
𝑑(𝑇 + 𝐵)
𝑑(𝐾 + 𝐴)

) = 𝑆𝑑 (
𝑑𝑡
𝑑𝑘

) − 𝑆𝑑 (
𝑑𝐵
𝑑𝐴

) (9) 

 

A and B appear on the LHS of (9) because T+B and K+A enter the preference function rather than 

T and K alone.  As the effect of price on quantity at given productivity levels, the first term on the 

RHS of (9) was worked out in the previous section.  The final term reflects the fact that A and B 

reduce the effective price of the productivity-augmented K and T goods, respectively.  Solving for 

the treatment and control outcomes and denoting the identity matrix as I, 

 

(
𝑑𝑇
𝑑𝐾

) = 𝑆𝑑 (
𝑑𝑡
𝑑𝑘

) − (𝐼 + 𝑆𝑑) (
𝑑𝐵
𝑑𝐴

) (10) 

 

 PROPOSITION 5 (Opposite signs for scale and DiD).  If the treatment effects matrix S is 

the matrix −(I+Sd) of quantity effects of productivity treatments that hold t and k constant, then the 

scale effect can have the opposite sign as DiD. 

 

 Proof.  Whereas the eigenvalues of Sd are d and −d and both negative, the eigenvalues of 

−(I+Sd) are −d−1 and d−1.  With either 0 < −d < 1 < d or −d > 1 > d > 0 satisfied, the scale 

effect and DiD, respectively, of productivity treatments have opposite signs. 

 

The direction of the factor-demand effects of factor-neutral productivity growth dA=dB > 

0 depends on whether consumers’ demand for the composite F is price elastic enough to absorb 

the additional production that occurs without any change in factor usage.  That is a comparison of 

d to −1.  In contrast, whether factor-specific productivity growth dB > 0 = dA increases or 

decreases T−K depends on whether factor substitution in F is elastic or not.  That is a comparison 

of d and 1.  Simply put, the scale and substitution effects of productivity treatments can have 

opposite signs because −d can be on the opposite side of one as d is.  

 

Let p denote the log of the average factor cost of F.  Because F is homogeneous and the 

factor quantities minimize cost, p changes are related to productivity and factor-price changes by 

(11): 

𝑑𝑝 = 𝜆(𝑑𝑡 − 𝑑𝐵) + (1 − 𝜆)(𝑑𝑘 − 𝑑𝐴) (11) 

 

where, as before,  is T’s share of expenditure on F.  Now we can return to the farmers from the 

beginning of this paper.  The hypothetical of interest is the real-wage effects dt−dp and dk−dp of 

productivity growth in all occupations, represented as dA = dB > 0.  Equation (11) requires that 

neutral productivity growth increase real wages by the same proportion, although the allocation of 

the wage increase between t and k can be uneven.12  Regardless, the average real-wage effect is 

independent of the elasticity d of input substitution, which is absent from (11). 

 
12 Depending on the supply conditions for T and K, which are unrestricted by our demand model (10), relative price 

changes may be required to motivate proportional increases in these two quantities. 
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In contrast, the dB > 0 = dA special case of (10) relates factor-specific productivity growth 

to relative factor quantities and relative factor prices.  For example, in the price theory oral 

tradition, dt − dk = 0 because the two inputs are perfect substitutes on the supply side.  Factor-

specific productivity growth would affect relative factor quantities to the extent that d  1, but 

not relative factor prices. In other words, market-wide productivity growth increases wages 

generally even while biased productivity growth has little effect on relative wages among 

competing occupations.13  See also Section V. 

 

The effects on expenditures of price treatments are similar to the quantity effects of 

productivity treatments (10).  Holding productivity constant, expenditure effects are described by: 

 

(
𝑑(𝑇 + 𝑡)
𝑑(𝐾 + 𝑘)

) = (𝐼 + 𝑆𝑑) (
𝑑𝑡
𝑑𝑘

) (12) 

 

where T+t is the log of expenditure on the T good, and likewise for K+k.  This is another case in 

which the DiD need not have the same sign as the scale effect because the former is 1−d while 

the latter is d+1. 

 

 DiD has the opposite sign of the scale effect when a treatment has a greater effect on the 

outcome for the untreated than for the treated.  Although this configuration of the S matrix is 

unexpected for the effects of prices on quantities, it can easily occur as the result of productivity 

treatments (among others).  The market may adjust to the augmentation of T’s productivity by 

increasing K and reducing T.  

 

 

III.D. The treatment share and the equilibrium spillover effect 
 

Recall from equation (7) that the effect sTt of the treatment on the treated is potentially 

different from DiD.  An advantage of small treatment shares is that sTt is well approximated by 

DiD.  A disadvantage is that sTt reveals little about the scale effect.  It may be tempting to “scale 

up the treatment” and estimate the DiD again.  But ’s relationship with DiD is very different than 

its relationship with sTt.  Indeed, under the economic interpretations that tie DiD to an elasticity of 

substitution d, the large-scale treatment may have the same DiD as a small-scale treatment even 

though the controls are far more “contaminated” in the former case. 

 

 Here we show how the share  of the market that is treated affects the interpretation of DiD 

estimates.  Small treatment shares have the advantage of spillover effects that are small compared 

to the effect of the treatment on the treated when both are measured in per capita terms.  However, 

surprisingly, the spillover effect is comparatively large in the aggregate. 

 

 
13 Recall that DiD for quantity outcomes exaggerates the magnitude of the scale effect when the two inputs are 

substitutes.  From Proposition 2’s Corollary, this is exactly the case when DiD for price outcomes understates the 

magnitude of the scale effect on prices. 
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When the spillover share  coincides with the treatment share  and dk = dA = dB = 0, 

Figure 5 shows the various possibilities for the spillover effect sKt as compared to the effect of the 

treatment on the treated sTt.  Based entirely on equation (7), Figure 5 is consistent with, but does 

not require any of, the consumer-theory interpretations of the treatment effects matrix S.  The 

figure’s horizontal axis is treatment share .  The vertical axis is the ratio of the magnitude of the 

scale effect  to the magnitude of DiD.  The horizontal line shows all the possibilities satisfying  
= DiD, which (in price theory terminology) means that treatments and controls are neither 

substitutes nor complements.  

 

 

 

 
 

On the horizontal line, the off-diagonal spillover terms in equation (7) are zero.  The other 

way that the spillover effect sKt can be zero is on the vertical line at zero treatment share.  However, 

the other spillover term sTk is not zero on that line except where it intersects the horizontal line.  

When treatments and controls are either substitutes or complements, treating the controls could 

have an important effect on the treatment group precisely because the treatment group is relatively 

small.  The spillover term sTk is part of the effect of treating the entire market. 

 

In price-theoretic terms, having a treatment share close to zero helps solve the control-

contamination problem but at the expense of increasingly weighting the ToT sTt toward the 

substitution effect  d rather than the scale effect d.  ToT closely approximates the scale effect in 
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only two circumstances: either the share treated is close to one, or the scale and substitution effects 

essentially cancel as they do on the horizontal line.14 

 

Figure 5 also shows three light-colored curves: one solid and two dashed.  The solid curve 

sKt + sTt = 0 represents those parameter combinations where the spillover effect, in per capita terms, 

has the same magnitude as the ToT.15  The area below that curve represents parameter combinations 

where the spillover effect has, in per capita terms, the greater magnitude.  These parameters are on 

the bottom right of Figure 5 because the spillover effect is relatively large when a large share of 

the market is treated, especially when the scale effect is large. 

 

The effect of the treatment share  can be illustrated with a geographic example.  Let T 

represent Canada and K the rest of the world (ROW).  Canada has about one percent of world 

income and about 0.5 percent of world population.  With a treatment share  near zero, a public 

policy implemented in Canada alone (dt > 0 = dk) is unlikely to have a noticeable effect on the 

ROW’s economic or demographic statistics.  Nevertheless, implementing the same policy 

throughout the ROW may well have a significant effect on Canada.  If only 0.1 percent of the 

world’s population decided to move to Canada, that would increase Canada’s population by 20 

percent.  Comparing Canada’s before-after to the before-after of an untreated but otherwise similar 

country shows the dt effect but not the dk effect that Canada would experience if the ROW were 

treated. 

 

 In per capita terms, the spillover effect can still be significant by comparison with the ToT, 

even if the ToT has the greater magnitude.  The two light-colored and dashed curves show 

parameters for which the magnitude of the spillover effect is exactly half that of the ToT.  

Parameters above the upper dashed curve have a spillover effect that is more than half ToT.16  As 

expected from the Canadian example, increasing the treatment share increases the spillover effect 

by a greater proportion than it changes the ToT.  Even at a small treatment share, the magnitude of 

the spillover effect can be arbitrarily close to that of the ToT if the scale effect is large enough. 

 

 For some purposes, such as welfare analysis, the aggregate spillover effect is important.  

Figure 5’s solid dark curve represents those parameter combinations where the spillover effect has 

the same magnitude as the ToT in aggregate.  Surprisingly, a reduced treatment share results in a 

greater proportionate decline in the magnitude of the aggregate ToT than in the aggregate spillover 

effect, if the latter is affected at all.  The more significant aggregate spillover effects are therefore 

shown in Figure 5 in the lower-left corner and, especially, the upper-left corner. 

 

 The reason for this surprising result can be understood by considering the scale and 

substitution effects separately.  A scale effect by itself (in the consumer choice context, an income 

effect is an example) has aggregate effects in proportion to the shares 1− and .  That is merely 

the aggregate counterpart to the parallel trends assumption that scale contributes equal per capita 

changes to both treatments and controls.  With a small treatment share, essentially all the aggregate 

effect of scale is on the untreated.  In this case, the only way to conclude that aggregate spillovers 

 
14 DiD itself may vary with , but that does not necessarily restrict the ratio DiD/. 
15 If the variable T and K represent natural logs of quantities, then sKt and sTt are interpreted as percentages. 
16 The sign comparison of the TOT and spillover effect depends on whether the varieties are substitutes (opposite 

sign; bottom half of Figure 5) or complements (same sign; top half of Figure 5). 
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are comparatively small is for the scale and substitution effects on the untreated approximately 

offset, as they do near Figure 5’s horizontal line representing “neither substitutes nor 

complements.” 

 

Without any scale effect ( = 0), the aggregate spillover effect would be equal to the 

aggregate ToT effect, albeit in the opposite direction, regardless of .  Figure 4 shows that case.  In 

the consumer demand context, equal and opposite aggregate effects essentially define a 

substitution effect.   

  

Algebraically, the necessary and sufficient condition describing the upper-left area in 

Figure 5 is: 

[
1 − 𝜏

𝜏

𝜏(휀 − 𝐷𝑖𝐷)

𝜏휀 + (1 − 𝜏)𝐷𝑖𝐷
]

2

> 1 ⟺ (
1

2
− 𝜏)

휀

𝐷𝑖𝐷
> 1 − 𝜏 (13) 

 

where the term in square brackets has two fractions.  The first fraction, which is the ratio of the 

control share to treatment share, is needed because (13) refers to aggregates.  The second ratio has 

the spillover and direct effects as numerator and denominator, respectively, each expressed as 

elasticities.  The simpler equivalent expression shows that the condition simultaneously requires 

the control group to be larger ( < ½) and T and K to be complements (/DiD > 1).  As the share 

treated becomes small, the inequality (13) reduces to /DiD > 2. 

 

Suppose, for example, that  = −2 and DiD = −1/2.  In aggregate, the direct effect of dt is 

−(3+1)/2 and the spillover effect is −(1−)3/2.  The spillover effect has greater magnitude for 

any  < 1/3.  In the limit as  approaches zero, the spillover effect is three times the direct effect.  

Section V further illustrates this possibility in the case of a randomized labor-market experiment. 

 

IV. Bias correction 
 

 The straightforward case for generalizing a DiD estimate is when we are interested in ToT 

– the effect on T of dt > 0 = dk – rather than the effect of a hypothetical aggregate treatment.  

Proposition 2 shows that ToT =  + (1−)DiD, which we expect to be similar to the DiD estimate 

when the share treated is close to zero.  For example, one could use a DiD estimate of Canada’s 

policy experience as an estimate of what would happen to another small and otherwise similar 

country that might adopt the same policy because both of them would be DiD dt. 

 

Even when the parameter of interest is involves the effect  of treating the entire market, 

price theory shows how DiD can be part of obtaining a reliable estimate.  Two instances follow. 

 

IV.A.  DiD indicates the correction required for uneven treatments 
 Due to the invisible hand, the controls may be “contaminated” by T’s treatment.  

Nevertheless, our results show how a DiD estimator can be useful in recovering the scale effect .  

To see this consider the total derivative of T(t,k;T): 
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𝑑𝑇 =
𝜕𝑇

𝜕𝜃
𝑑𝜃𝑇 + 휀

𝑑𝑡 + 𝑑𝑘

2
+ [(

1

2
− 𝜆) 휀 − (1 − 𝜆)𝐷𝑖𝐷] (𝑑𝑘 − 𝑑𝑡) (14) 

 

In words, equation (14) separates the price effects on T into two terms: (i) an average treatment 

term whose coefficient is the scale effect , and (ii) a correction term accounting for inequality of 

treatments.  Calculating the correction term is facilitated by having an estimate of DiD.  Although 

DiD does not include the scale effect, it can be a tool for estimating the scale effect by providing 

quantitative information about the amount of substitution between treatments and controls. 

 

IV.B.  Outside- and within-market control groups 
Here we briefly consider the case in which a fraction n of the controls is beyond the reach 

of the invisible hand.  Outside-market controls would be contaminated neither by t nor k.  The 

treatment effects matrix S becomes a weighted average of (1) and the version of it without 

spillovers: 

 

𝑆 = (1 − 𝑛) (
𝑠𝑇𝑡 𝑠𝑇𝑘

𝑠𝐾𝑡 𝑠𝐾𝑘
) + 𝑛 (

𝑠𝑇𝑡 0
0 𝑠𝐾𝑘

) (15) 

 

We assume that the first matrix satisfies PTPT. 

 

The scale effect is defined as before, in equation (3).  We denote the difference between 

the Tt and Kt elements of S as DiD(n): 

 

𝐷𝑖𝐷(𝜆𝑛) ≡ 𝑠𝑇𝑡 − (1 − 𝑛)𝑠𝐾𝑡 = 𝜆𝑛휀 + (1 − 𝜆𝑛)𝐷𝑖𝐷(0) (16) 

 

where the second equality follows from the element-by-element equations (7).  Unlike DiD(0), 

DiD(n) puts some weight on the scale effect.  The scale effect coefficient is less than one both 

because only part of the market is treated ( < 1) and because only some of the controls are outside 

the market (n < 1).  Still, DiD(n) over- or under-estimates the magnitude of the scale effect 

according to whether T and K are substitutes or complements, respectively.  If none of the controls 

were in the market (n = 1), DiD(n) would be the ToT but still differ from the scale effect because 

it does not include the effect on the treated of applying treatments to the untreated in their market. 

 

Having at least some of the controls out of the market raises the possibility of recovering 

the scale effect from a meta-analysis.  Specifically, assume that two DiDs are available from 

distinct markets with the same  and DiD(0) but different shares for the out-of-market controls (n) 

or different treatment shares as reflected in .  Letting subscripts denote markets, the common 

scale effect can be written in the two-market case as a weighted average of DiD from each market: 

 

휀 = 𝛿𝐷𝑖𝐷(𝜆1𝑛1) + (1 − 𝛿)𝐷𝑖𝐷(𝜆2𝑛2) (17) 

 

𝛿 ≡
1 − 𝜆2𝑛2

𝜆1𝑛1 − 𝜆2𝑛2
 (18) 
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Note that the market-1 weight  must be outside the unit interval and therefore put negative weight 

on one of the DiDs and a coefficient greater than one on the other.  One, but not both, of the markets 

could have n = 0. 

 

V. Further examples of difference-in-differences in the 
marketplace 

 

V.A. The union wage effect 
  

The union wage effect has been studied with the DiD method, with log wages as the 

outcome.  In our notation, the outcome for the treated is T, which is compared to the log wage rate 

K for the non-union “controls.”  Here we interpret the unionization “treatment” as a restriction t 

on the supply of labor in the unionized sector to raise wages T in that sector.  Licensing 

requirements are examples (Lewis 1963). 

 

Early work on the union wage effect indicated a “strong presumption” of equilibrium 

spillovers, which are less discussed in the more recent literature.17  Here we sketch a simple version 

of the labor-market equilibrium described by Rees (1962) and Lewis (1963).  Union and nonunion 

employment totals are denoted U and N, respectively.  Workers unable to gain employment in the 

unionized sector are employed in the nonunion sector, which means that U =  − t + k, R = 1 −  − 

k + t, where t and k are quantity treatments.  That is, the treatment t increases union wages by 

shifting employment from union to nonunion while the treatment k does the opposite. 

 

The demand side of the market has the same structure as in our Section III.B, but with a 

labor market interpretation.  Wage-taking employers minimizing factor costs have conditional 

labor-demand functions that depend on aggregate output and all factor prices.  As before, d 

denotes the shadow elasticity of substitution in demand, but now the two “goods” are union and 

nonunion labor.  Also recall that our specification of the parallel trends assumption requires that 

the relative treatment and control quantities vary only with their relative factor prices, and vice 

versa.  The corresponding two-by-two matrix of cross-price elasticities is still denoted Sd.  Hicksian 

symmetry and parallel trends together imply that the diagonal elements of (Sd)−1 can be expressed 

as a weighted average of 1/d and −1/ d, where the weights are the union and non-union shares of 

labor income.18 

 

 
17 Quoted from Lewis (1983, p. 3).  He adds that “the relative wage of each worker depends, not only on his union 

status, sex, color, schooling, experience, and like variables, but also on the extent of unionism in the whole work 

force….”  In contrast, Freeman (1984) and others refer to “the effect of unionism” and the “true impact of unionism” 

without drawing distinctions between DiD, TOT, etc. 
18 The demand-side scale effect 1/d of decreasing both U and R in the same proportion is only hypothetical because 

the supply constraints prevent that from occurring in equilibrium.  Because we refer to the treatments as t and k 

rather than the logs of U and R, the first column of the matrix S from the model (1) corresponding to the equilibrium 

union-wage model is {
1

𝜏

1

𝜎𝑑 , −
1

1−𝜏

1

𝜎𝑑
}.  The second column is the negation of the first column, which is the version of 

(1) shown in Figure 4. 
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With baseline union and nonunion employment and factor shares equal to  and 1 − , 
respectively, the wage effects of the quantity treatment t satisfy: 

 

𝑑𝑇 = −
𝑑 ln 𝑈

𝜎𝑑
 (19) 

 

𝑑𝐾 =
𝜏

1 − 𝜏

𝑑 ln 𝑈

𝜎𝑑
 (20) 

 

where dlnU < 0 is the change in log union labor quantity resulting from the supply restriction.19    

Note that (19) and (20) imply that unionization increases log wages T in the union sector while 

reducing log wages K elsewhere with magnitudes governed by  and  d.  

 

The DiD estimator is the effect of the treatment on the union-nonunion wage gap: 

 

𝑑𝑇 − 𝑑𝐾 = −
1

1 − 𝜏

𝑑 ln 𝑈

𝜎𝑑
 (21) 

 

The DiD estimator (21) is different from equation (19), which is the treatment effect of 

unionization on the  who remain unionized.  The difference between the two is equation (20), 

whose final term quantifies the “contamination of” (or treatment spillover onto) the non-union 

controls. 

 

The spillover term (20) would be near zero if the union share were close to zero.  However, 

studies of union wages often include markets with sizeable union sectors.20  In such cases, much 

of the union-nonunion wage gap may reflect a reduction in nonunion wages rather than an increase 

in union wages.21  Even with a small union sector, the aggregate effects of supply constraints on 

non-union wages can exceed their effect on union wages (that is, the ToT) precisely because of the 

relatively large number of workers in the non-union sector. 

 

Both equation (19)’s RHS and the DiD estimator (21) are different from (20)’s RHS times 

−1, which would be the effect of unionizing the remaining 1 −  of the workforce by restricting 

that supply by the same proportion.  Particularly when the unionization rate is low, the effect on 

the wages of erstwhile nonunion workers of extending union status to all of them would be much 

 
19 Our comparative statics begin from the efficient allocation of labor between the sectors, where factor shares equal 

employment shares for a production function in which the two types of workers enter symmetrically.  The more that 

union-sector labor supply is restricted, the more that union workers’ factor share would exceed its employment 

share, adding an additional term to both (19) and (20) reflecting first-order aggregate deadweight costs of the 

restrictions. 
20 Referring to the year 1977, Freeman and Medoff (1984, Table 2-1) estimate that 30 percent of blue-collar workers 

were unionized, with a unionization rate of 61 percent in “Transportation, communication, and other public 

utilities.” 
21 See also Lewis (1963) and Heckman, Lochner, and Taber (1999).  Another interesting “spillover” effect of 

unionization is the effect on wages in non-unionized firms in the same sector.  Studies such as Rosen (1969) suggest 

that those wages are increased due to a “union threat” effect. 
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less than indicated by the union-nonunion wage gap (21).22  These are further examples of how, in 

market settings, the DiD estimator differs from parameters that are potentially more interesting. 

 

 

V.B. Models with time and region fixed effects 
Without price theory as a guide, difference-in-differences estimates can easily be 

misinterpreted in geographical contexts.  One case is an early set of studies attempting to detect 

imperfect competition in cigarette manufacturing in the form of “over-shifting” cigarette excise 

taxes (Sumner 1981).  Over-shifting means a $1 per pack tax would increase the retail price of 

cigarettes by more than $1 per pack, whereas “one-for-one passthrough” refers to a dollar-for-

dollar correspondence between excise taxes and retail prices.  These studies were executed with 

essentially a difference-in-differences framework by comparing states with large tax increases to 

states with little or no increase. 

 

DiD pass-through studies found nearly one-for-one passthrough, but overlooked the 

possibility that retail prices in the control states were increased by the tax rates in the treatment 

states.23  If the control states were affected in this way, nationwide increases in excise taxes would 

be over-shifted even though the state DiD shows one-for-one pass through.  If we interpret T as 

retail prices in the states with tax increases and K represents retail prices in the other states, that is 

the situation illustrated in Figures 2 and Figures 3.  The blue arrow represents the retail-price 

effects of a nationwide tax increase.  A national tax would increase prices more than a 

geographically-concentrated tax increase (green arrow), even in the states targeted by those taxes. 

 

Another example is related to Jaffe, Minton, Mulligan, & Murphy (2019, Chapter 17), 

which concludes that business taxes reduce wages in the long run because the taxes reduce 

productivity.  Nevertheless, an increase in business taxes in a particular locality may not reduce 

wages in that locality relative to the rest of the nation because workers have a choice of where to 

live and work.  In effect, the wage in any locality is influenced by business taxes throughout the 

country, or even throughout the world.  By failing to account for this, a DiD approach might not 

show any wage effect of business taxes for much the same reason discussed at the beginning of 

this chapter in the occupational context. 

 

If geographic differences in business taxes result in little or no geographic differences in 

wages, they might result in especially large geographic differences in employment.  This is another 

case in which the geographic-specific effect is different from the aggregate effect, but this time 

with the former effect being greater. 

 
22 In terms of Figure 4, the initial treatment effect (green arrow) is near vertical when  is near zero.  That is, 

unionization increases per-worker wages more for the  than it reduces wages for the 1−.  Unionizing the rest of the 

market returns the wage outcomes back to the baseline, which is hardly any per-worker change for the erstwhile 

non-union workers. 
23 Suppose that, for example, cigarette manufacturers set one nationwide wholesale price because of concerns that 
regional wholesale price inequality would result in unauthorized wholesale orders and shipments in the low-price 

regions on behalf of the high-price regions.  Such manufacturers would respond to an increase in one state’s excise 

rate by adjusting their nationwide wholesale price, and through that mechanism indirectly adjust retail prices 

throughout the nation.  Later studies acknowledged this market mechanism's effect on state differences (Keeler, et al. 

1996, Evans, Ringel and Stech 1999, Adhikari 2004); see also Tennant (1950).  Harris (1987) emphasizes the results 

of a federal tax change. 
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Another policy question is the employment effect of public projects such as building a 

sports stadium or hosting a major event such as the Olympics.  Early studies used something like 

a DiD approach and found a “multiplier”: that total employment in the vicinity of the stadium 

increased more than the number directly employed by the sports enterprise (Wanhill 1983, 

Johnson, Obermiller and Radtke 1989).  For example, complementary businesses such as 

restaurants, lodging, and parking were opened nearby.  But later studies found that most, if not all, 

of the additional employment was pulled in from other localities (Dwyer and Forsyth 2009). 

 

Development economics includes experiments that encourage healthcare providers in 

treatment villages to supply more healthcare.  Others incentivize more instructional effort by 

teachers in the treatment villages.  Such experiments can be analogous to the sports-stadium 

studies.  Namely, through factor markets the experiment reallocates resources from control villages 

to treatment villages.  The per-capita effect of treating all villages would be different unless 

resources are moved with equal ease (or difficulty) between villages as from outside the village 

economy as a whole.  In our notation, that condition is  = DiD. 

 

 

V.C. Welfare effects of random treatments 
 

Let’s examine treatment effects in a straightforward substitutes setting.  As such, the 

substitution effect exceeds the scale effect.  A large pool of ex ante identical workers supplies hours 

on the intensive margin.  Their population is normalized to one.  From employers’ perspective, any 

worker’s hours are perfect substitutes for another’s.  In the baseline, each worker is paid the same 

hourly wage w and supplies the same hours.  The aggregate demand for their hours is D(w), with 

D(w) < 0.  The per capita supply of labor is L(w), with L(w) > 0. 

 

An experiment selects a fraction  of the workers for a wage subsidy t  0.24  Their hours 

are denoted T per treated and T in total.  The untreated “controls” supply K per control and (1−)K 

in aggregate.  To highlight the analogy with the model (1), our notation also includes k as a subsidy 

for the controls, although it is not emphasized here.  Given values for , t and k, an equilibrium is 

a list {w,T,K} of wage and hours satisfying: 

 

𝐾 = 𝐿(𝑤 + 𝑘)  
 

𝑇 = 𝐿(𝑤 + 𝑡) 

 

(1 − 𝜏)𝐾 + 𝜏𝑇 = 𝐷(𝑤) 

 

 
24 This is a simplified version of Heckman, LaLonde, and Smith (1999) that focuses on incidence rather than 

employment effects. 
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Unsurprisingly, dK/dt < 0 < dT/dt and dw/dt < 0.25  The subsidy benefits the treated and employers 

(even those who do not employ any treated) and harms the controls.26  Regardless of the share 

treated, the first magnitude can easily be less than the combined magnitudes of other two. 

 

Take the case when labor demand is wage inelastic,   (0,1), and the subsidy is small.27  

The treated benefit from the subsidy, but employers benefit even more because they pay less for 

both treated workers and untreated workers.  Shrinking the treated share does not change this 

result.  If the treated are to be the primary beneficiary of the subsidy, demand needs to be wage 

elastic enough or supply inelastic enough.28  Clearly, quantifying the scale effect is essential for 

understanding the relationship between the welfare effect on the treated and welfare effects more 

broadly. 

 

This example also distinguishes the DiD estimator dT/dt − dK/dt from the effect of treating 

all workers.  The DiD estimate is L(w) because the subsidy moves treated and controls in opposite 

directions along the supply curve.  The equilibrium quantity effect of subsidizing all workers, is a 

parameter of interest and results from shifting the supply curve downward by dt.  As expected from 

the general substitutes case, this scale effect is closer to zero than the DiD estimate. 

 

VI. Summary and conclusions 
 

Markets are ubiquitous.  Consumers and businesses do not live or work in isolation, even 

approximately so.  Perhaps one reaction among those engaged in measurement is to actively 

attempt to isolate members of the treatment group.  Clinical drug trials, for example, do try to 

prevent trial participants from trading with each other, that is, sharing or exchanging the treatments 

with others.  Some clinical trials even discourage participants from communicating specifics about 

their trial experiences to prevent (what the investigators view as) potential bias or cross-

contamination of results. 

 

We take a different approach in this paper, which is to acknowledge trade and keep it at the 

center of the analysis.  In our framework, parallel trends require the treatment and control outcomes 

to be weakly separable in utility, production, or cost from all other outcomes.  Marshall’s Laws of 

Derived Demand are thereby vehicles for several analytical results.  One is that a DiD estimator 

measures the degree of substitution between treatments and controls, regardless of the fraction of 

the market that is treated and the magnitude of market spillovers (Proposition 4). In contrast, the 

effect of treating the entire market is a “scale effect,” which is the degree of substitution with goods 

outside the market where treated and controls participate.  The effect of the treatment on the treated 

 
25 For this example, the matrix elements corresponding to (1) are 𝑠𝑇𝑡 = 𝐿′(𝑤)

(1−𝜏)𝐿′(𝑤)−𝐷′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
, 𝑠𝑇𝑘 =

−(1 − 𝜏)𝐿′(𝑤)
𝐿′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
, 𝑠𝑘𝑇 = −𝜏𝐿′(𝑤)

𝐿′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
, and  𝑠𝐾𝑘 = 𝐿′(𝑤)

𝜏𝐿′(𝑤)−𝐷′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
.  These satisfy  =  and the 

parallel trends assumption (4). 
26 The expressions for aggregate effects on surplus for treated, controls, and employers are (dw+dt)T, (1−)Kdw, 

and −D(w)dw, respectively. 
27 A “small subsidy” refers to the comparative static dt > 0 in the neighborhood of t = 0, holding k constant at zero. 
28 For non-zero supply and demand elasticities, the aggregate benefit for the treated as a ratio to the aggregate 

employer benefit is 1 −  − D(w)/L(w). 
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(ToT) is a weighted average of the scale effect and the DiD, whereas the market spillovers are 

proportional to their difference (Proposition 2). 

 

Proposition 2 also establishes that, assuming “parallel trends for parallel treatments” 

(PTPT), the eigenvalues of the treatment-effects matrix are the scale effect and the DiD.  As a 

result, any arithmetic operations on treatment-effects matrices translate into the same operations 

on their respective scale effects and DiDs.  This correspondence appeared in a few of our examples 

where treatment effects on demand were inverted, combined with an identity matrix, or combined 

with treatment effects on supply. 

 

The presumption that market-equilibrium responses are typically dampened relative to 

experimental evidence (an example of which is provided in Banerjee and Duflo (2009)) may refer 

to the market-level feedback between supply and demand, which we have left only implicit in this 

paper.  For the usual incidence reasons, for example, the market-level reduced form for the quantity 

elasticity of tax changes is −sd/(s−d).  This incidence coefficient reflects equilibrium dampening 

in the sense that it is less than both the demand elasticity magnitude −d and the supply elasticity 

s.29   

 

However, there is more to market equilibrium than supply-demand feedback. In particular, 

the actions of market participants—even those on just one side of the market—are coordinated by 

prices.  Either the controls are affected by the treatment, the treated would be further affected by 

treating the rest of the market, or some combination thereof.  Market spillovers drive a wedge 

between DiD and the scale effect.   The market-level demand elasticity d, the market-level supply 

elasticity s and the market-level incidence coefficient sd/(s−d) are each examples of a scale 

effect.  The DiD from an experiment with control and treatment in the same market recovers 

substitution effects instead of scale effects.  Treatment-control comparisons by themselves do not 

even partially identify d, s, or sd/(s−d). 

 

Complementarity is the case when the treated are affected more by a full-market treatment 

than by receiving the same treatment while others in the market are untreated.  Note that 

complementarity requires neither increasing returns nor externalities.  It does not require that the 

treated and controls ever meet each other to trade.  It does not require Leontief preferences or 

technology.  Complementarity in this sense only means that the scale effect exceeds the 

substitution effect. 

 

What econometricians sometimes call “spillover” effects are not well described as 

externalities – missing markets – because markets also transmit treatment effects to the untreated 

through prices.  Analogizing spillover effects with externalities may give the wrong impression 

that such effects are rare or beyond basic economic training. 

 

Per capita market spillover effects tend to decrease as the size of the treatment group goes 

to zero, but so does the aggregate treatment effect.   Small-scale treatments thereby come with two 

 
29 The incidence coefficient can be derived in the usual way as the equilibrium quantity effect of a one price-unit 

wedge between market supply and market demand. 
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disadvantages.  One is that scale effects are especially obscured by substitution effects.  Second, 

and surprisingly, the spillover effect is comparatively large in the aggregate. 

 

  



 26 

Appendix: Derivation of the Hicks-Marshall Laws of Derived Demand 

As with equation (8), this appendix interprets T and K as log quantities and t and k as log 

prices.  In levels, the conditional demand equations for the T and K goods are: 

 

𝑒𝑇 =
𝜕𝐶(𝑒𝑡, 𝑒𝑘, 𝑌)

𝜕𝑒𝑡
 ∧  𝑒𝐾 =

𝜕𝐶(𝑒𝑡, 𝑒𝑘, 𝑌)

𝜕𝑒𝑘
 (22) 

 

where the cost function C is the minimum expenditure of achieving output Y: 

 

𝐶(𝑒𝑡, 𝑒𝑘, 𝑌) ≡ min
𝑇,𝐾

𝑒𝑇+𝑡 + 𝑒𝐾+𝑘     𝑠. 𝑡.    𝐹(𝑒𝑇, 𝑒𝐾) = 𝑌 

 

Here  is the T good’s share of C.  As usual, C is homogeneous of degree one in prices and 

of degree one in output.  The elasticity of substitution in F, which we denote d > 0, is defined as 

the cross-price derivative of C(w,r,Y) times C(w,r,Y)/[(1−)].  That makes the cross-price 

elasticity of either conditional input demand equal to the product of d and the other input’s share.  

By homogeneity, its own price elasticity is the negation of its cross-price elasticity.  From (22), the 

log-derivative form of T and K demand are therefore: 

 

𝑑𝑇 = 𝑑 ln 𝑌 − (1 − 𝜆)𝜎𝑑(𝑑𝑡 − 𝑑𝑘) ∧  𝑑𝐾 = 𝑑 ln 𝑌 + 𝜆𝜎𝑑(𝑑𝑡 − 𝑑𝑘) (23) 

 

Let d < 0 denote the Marshallian price elasticity of demand for F associated with the 

preferences �̃� shown in equation (8).  If income and the other prices are constant, then dlnY = ddp, 

where ep is the average and marginal price of F.  Equations (11) (without the two productivity 

terms) and (23) then require (24): 

 

𝑑𝑇 = [𝜆휀𝑑 − (1 − 𝜆)𝜎𝑑]𝑑𝑡 + (1 − 𝜆)(휀𝑑 + 𝜎𝑑)𝑑𝑘 ∧ 

𝑑𝐾 = 𝜆(휀𝑑 + 𝜎𝑑)𝑑𝑡 + [(1 − 𝜆)휀𝑑 − 𝜆𝜎𝑑]𝑑𝑘 
(24) 

 

which coincides with equation (7) when  is replaced with d and DiD with −d.  

 

 Recall that Section III.B defines the matrix Sd in terms of u’s Marshallian cross-price 

elasticity matrix.  By definition (2), DiD is the difference between two of those elasticities, which 

by the Slutsky equation and equal income elasticities is also a Hicksian price elasticity difference.  

Because Hicksian cross-price elasticities are proportional to Allen (1938) partial elasticities of 

substitution (of u), DiD is also the difference between Allen elasticities up to the same expenditure-

share proportion.  With PTPT and McFadden’s (1963) definition of the shadow elasticity of 

substitution in terms of expenditure shares and Allen substitution elasticities, −DiD must also be 

the shadow elasticity of substitution between the T and K goods in u.  
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