SUPPLEMENT TO "PARTIAL IDENTIFICATION IN TRIANGULAR SYSTEMS OF EQUATIONS WITH BINARY DEPENDENT
 VARIABLES": APPENDIX

(Econometrica, Vol. 79, No. 3, May 2011, 949-955)
By Azeem M. Shaikh and Edward J. Vytlacil

Proof of Lemma 2.1: First recall the simplifications following from Assumptions 2.1 and 2.2 noted at the beginning of Section 2. Next, note from equation (1) and Assumption 2.1 that

$$
\operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p\right\}=\operatorname{Pr}\left\{\varepsilon_{2} \leq p, \varepsilon_{1} \leq \nu_{1}\left(1, x^{\prime}\right)\right\}
$$

and

$$
\operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p^{\prime}\right\}=\operatorname{Pr}\left\{\varepsilon_{2} \leq p^{\prime}, \varepsilon_{1} \leq \nu_{1}\left(1, x^{\prime}\right)\right\}
$$

Thus, for $p>p^{\prime}$,

$$
\operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p\right\}-\operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p^{\prime}\right\}
$$

is equal to

$$
\operatorname{Pr}\left\{p^{\prime}<\varepsilon_{2} \leq p, \varepsilon_{1} \leq \nu_{1}\left(1, x^{\prime}\right)\right\}
$$

It follows similarly that

$$
\operatorname{Pr}\left\{D=0, Y=1 \mid X=x, P=p^{\prime}\right\}=\operatorname{Pr}\left\{\varepsilon_{2}>p^{\prime}, \varepsilon_{1} \leq \nu_{1}(0, x)\right\}
$$

and

$$
\operatorname{Pr}\{D=0, Y=1 \mid X=x, P=p\}=\operatorname{Pr}\left\{\varepsilon_{2}>p, \varepsilon_{1} \leq \nu_{1}(0, x)\right\} .
$$

Therefore,

$$
\operatorname{Pr}\left\{D=0, Y=1 \mid X=x, P=p^{\prime}\right\}-\operatorname{Pr}\{D=0, Y=1 \mid X=x, P=p\}
$$

is equal to

$$
\operatorname{Pr}\left\{p^{\prime}<\varepsilon_{2} \leq p, \varepsilon_{1} \leq \nu_{1}(0, x)\right\}
$$

Hence,

$$
h\left(x, x^{\prime}, p, p^{\prime}\right)=\left\{\begin{array}{l}
\operatorname{Pr}\left\{p^{\prime}<\varepsilon_{2} \leq p, \nu_{1}(0, x)<\varepsilon_{1} \leq \nu_{1}\left(1, x^{\prime}\right)\right\} \\
\quad \text { if } \nu_{1}\left(1, x^{\prime}\right)>\nu_{1}(0, x), \\
0 \quad \\
\quad \text { if } \nu_{1}\left(1, x^{\prime}\right)=\nu_{1}(0, x), \\
-\operatorname{Pr}\left\{p^{\prime}<\varepsilon_{2} \leq p, \nu_{1}\left(1, x^{\prime}\right)<\varepsilon_{1} \leq \nu_{1}(0, x)\right\} \\
\text { if } \nu_{1}\left(1, x^{\prime}\right)<\nu_{1}(0, x) .
\end{array}\right.
$$

The desired conclusion now follows immediately from Assumption 2.2. Q.E.D.

Proof of Theorem 2.1: Consider part (i) of the theorem. We derive bounds on $G_{1}(0, x)=\operatorname{Pr}\left\{Y_{0}=1 \mid X=x\right\}$; the bounds on $G_{1}(1, x)$ and on $\Delta G_{1}(x)$ follow from parallel arguments.

Note that

$$
\begin{aligned}
\operatorname{Pr}\left\{Y_{0}=1 \mid X=x, P=p\right\}= & \operatorname{Pr}\left\{D=0, Y_{0}=1 \mid X=x, P=p\right\} \\
& +\operatorname{Pr}\left\{D=1, Y_{0}=1 \mid X=x, P=p\right\}
\end{aligned}
$$

By Lemma 2.1, equation (1), and Assumption 2.1,

$$
\operatorname{Pr}\left\{D=1, Y_{0}=1 \mid X=x, P=p\right\} \leq \operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p\right\}
$$

for all $x^{\prime} \in \mathbf{X}_{0+}(x)$ and

$$
\operatorname{Pr}\left\{D=1, Y_{0}=1 \mid X=x, P=p\right\} \geq \operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p\right\}
$$

for all $x^{\prime} \in \mathbf{X}_{0-}(x)$. Thus, $\operatorname{Pr}\left\{Y_{0}=1 \mid X=x, P=p\right\}$ is bounded from below by

$$
\begin{aligned}
& \operatorname{Pr}\{D=0, Y=1 \mid X=x, P=p\} \\
& \quad+\sup _{x^{\prime} \in \mathbf{X}_{0-}(x)} \operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p\right\}
\end{aligned}
$$

and from above by

$$
\begin{aligned}
& \operatorname{Pr}\{D=0, Y=1 \mid X=x, P=p\} \\
& \quad+p_{x^{\prime} \in \mathbf{X}_{0+}(x)} \operatorname{Pr}\left\{Y=1 \mid D=1, X=x^{\prime}, P=p\right\}
\end{aligned}
$$

where all supremums and infimums are only taken over regions where all conditional probabilities are well defined, and with the convention that the supremum over the empty set is 0 and the infimum over the empty set is 1 . The stated result now follows by noting that equation (1) and Assumption 2.1 imply that $\operatorname{Pr}\left\{Y_{0}=1 \mid X=x\right\}=\operatorname{Pr}\left\{Y_{0}=1 \mid X=x, P=p\right\}$.

Consider part (ii) of the theorem. We prove the result for the term $L_{0}(x)$; the result for the other terms follows from parallel arguments.

Suppose $\operatorname{supp}(P)$ is not a singleton, for otherwise there is nothing to prove. Since $\operatorname{supp}(X, P)=\operatorname{supp}(X) \times \operatorname{supp}(P), h\left(x, x^{\prime}, p, p^{\prime}\right)$ is well defined for some $p<p^{\prime}$ with $\left(p, p^{\prime}\right) \in \operatorname{supp}(P)^{2}$ and any $\left(x, x^{\prime}\right) \in \operatorname{supp}(X)^{2}$. Hence, by Lemma 2.1, we have that

$$
\begin{equation*}
\mathbf{X}_{0-}(x)=\left\{x^{\prime}: \nu_{1}\left(1, x^{\prime}\right) \leq \nu_{1}(0, x)\right\} . \tag{4}
\end{equation*}
$$

It follows from Assumptions 2.3 and 2.4 that $\mathbf{X}_{0-}(x)$ is compact. Hence, by Assumption 2.4, there exists $x_{0}^{l}(x) \in \mathbf{X}_{0-}(x)$ such that

$$
\nu_{1}\left(1, x_{0}^{l}(x)\right)=\sup _{x^{\prime} \in \mathbf{X}_{0-}(x)} \nu_{1}\left(1, x^{\prime}\right)
$$

From equation (1), we therefore have for any $p \in \operatorname{supp}(P)$ that

$$
\begin{aligned}
& \sup _{x^{\prime} \in \mathbf{X}_{0-}(x)} \operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=p\right\} \\
& \quad=\operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{l}(x), P=p\right\}
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
L_{0}(x)= & \sup _{p}\{\operatorname{Pr}\{D=0, Y=1 \mid X=x, P=p\} \\
& \left.+\operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{l}(x), P=p\right\}\right\}
\end{aligned}
$$

To complete the argument, note for any $p>p^{\prime}$ that

$$
\begin{aligned}
& (\operatorname{Pr}\{D=0, Y=1 \mid X=x, P=p\} \\
& \left.\quad+\operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{l}(x), P=p\right\}\right) \\
& \quad-\left(\operatorname{Pr}\left\{D=0, Y=1 \mid X=x, P=p^{\prime}\right\}\right. \\
& \left.\quad+\operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{l}(x), P=p^{\prime}\right\}\right) \\
& =\operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}\left(1, x_{0}^{l}(x)\right), p^{\prime}<\varepsilon_{2} \leq p\right\} \\
& \quad-\operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}(0, x), p^{\prime}<\varepsilon_{2} \leq p\right\} \\
& \leq 0
\end{aligned}
$$

where the final inequality follows from the fact that $x_{0}^{l}(x) \in \mathbf{X}_{0-}(x)$ and (4).
Finally, consider part (iii) of the theorem. Before proceeding, we introduce some notation. Let $\left(\varepsilon_{1}^{*}, \varepsilon_{2}^{*}\right)$ denote a random vector with $\left(\varepsilon_{1}^{*}, \varepsilon_{2}^{*}\right) \Perp$ (X, Z) and with $\left(\varepsilon_{1}^{*}, \varepsilon_{2}^{*}\right)$ having density $f_{1,2}^{*}$ with respect to Lebesgue measure on \mathbf{R}^{2}. Let f_{2}^{*} denote the corresponding marginal density of ε_{2}^{*} and let $f_{1 \mid 2}^{*}$ denote the corresponding density of ε_{1}^{*} conditional on ε_{2}^{*}. Let $f_{1,2}, f_{1 \mid 2}$, and f_{2} denote the corresponding density functions for $\left(\varepsilon_{1}, \varepsilon_{2}\right)$. We will also make use of $F_{1,2}$, the cumulative distribution function (c.d.f.) for ($\varepsilon_{1}, \varepsilon_{2}$), and $F_{1,-2}$, the c.d.f. for $\left(\varepsilon_{1},-\varepsilon_{2}\right)$.

To show that our bounds on $G_{1}(0, x), G_{1}(1, x)$, and $G_{1}(1, x)-G_{1}(0, x)$ are sharp, it suffices to show that for any $x \in \operatorname{supp}(X)$ and $\left(s_{0}, s_{1}\right) \in\left[L_{0}(x)\right.$, $\left.U_{0}(x)\right] \times\left[L_{1}(x), U_{1}(x)\right]$, there exists a density function $f_{1,2}^{*}$ such that the following claims hold:
(A) $f_{1,2}^{*}$ is strictly positive on \mathbf{R}^{2}.
(B) the proposed model is consistent with the observed data, that is,
(i) $\operatorname{Pr}\{D=1 \mid X=\tilde{x}, P=p\}=\operatorname{Pr}\left\{\varepsilon_{2}^{*} \leq p\right\}$,
(ii) $\operatorname{Pr}\{Y=1 \mid D=1, X=\tilde{x}, P=p\}=\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(1, \tilde{x}) \mid \varepsilon_{2}^{*} \leq p\right\}$,
(iii) $\operatorname{Pr}\{Y=1 \mid D=0, X=\tilde{x}, P=p\}=\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(0, \tilde{x}) \mid \varepsilon_{2}^{*}>p\right\}$
for all $(\tilde{x}, p) \in \operatorname{supp}(X, P)$.
(C) The proposed model is consistent with the specified values of $G_{1}(0, x)$ and $G_{1}(1, x)$, that is,
(i) $\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(0, x)\right\}=s_{0}$,
(ii) $\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(1, x)\right\}=s_{1}$.

Let $x \in \operatorname{supp}(X)$ and $\left(s_{0}, s_{1}\right) \in\left[L_{0}(x), U_{0}(x)\right] \times\left[L_{1}(x), U_{1}(x)\right]$ be given. We prove the result for the case where $\mathbf{X}_{d-}(x) \neq \emptyset, \mathbf{X}_{d+}(x) \neq \emptyset$, and $\mathbf{X}_{d-}(x) \cap$ $\mathbf{X}_{d+}(x)=\emptyset$ for $d \in\{0,1\}$; the result in the other cases follows from analogous arguments. Note that by arguing as in Remark 2.2, this implies in particular that $L_{d}(x)<U_{d}(x)$ for $d \in\{0,1\}$. For brevity, we also only consider $\left(s_{0}, s_{1}\right) \in$ $\left(L_{0}(x), U_{0}(x)\right) \times\left(L_{1}(x), U_{1}(x)\right)$; the case where s_{d} equals $L_{d}(x)$ or $U_{d}(x)$ for some $d \in\{0,1\}$ follows from a straightforward modification of the argument below.
Recall that $h\left(x, x^{\prime}, p, p^{\prime}\right)$ is well defined for some $p<p^{\prime}$ with $\left(p, p^{\prime}\right) \in$ $\operatorname{supp}(P)^{2}$ and any $\left(x, x^{\prime}\right) \in \operatorname{supp}(X)^{2}$ because $\operatorname{supp}(X, P)=\operatorname{supp}(X) \times$ $\operatorname{supp}(P)$. Arguing as in the proof of part (ii) of the theorem, we have that

$$
\begin{align*}
L_{0}(x)= & \operatorname{Pr}\{D=0, Y=1 \mid X=x, P=\underline{p}\} \tag{5}\\
& +\operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{l}(x), P=\underline{p}\right\} \\
U_{0}(x)= & \operatorname{Pr}\{D=0, Y=1 \mid X=x, P=\underline{p}\} \\
& +\operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{u}(x), P=\underline{p}\right\} \\
L_{1}(x)= & \operatorname{Pr}\{D=1, Y=1 \mid X=x, P=\bar{p}\} \\
& +\operatorname{Pr}\left\{D=0, Y=1 \mid X=x_{1}^{l}(x), P=\bar{p}\right\} \\
U_{1}(x)= & \operatorname{Pr}\{D=1, Y=1 \mid X=x, P=\bar{p}\} \\
& +\operatorname{Pr}\left\{D=0, Y=1 \mid X=x_{1}^{u}(x), P=\bar{p}\right\}
\end{align*}
$$

where $x_{d}^{l}(x)$ and $x_{d}^{u}(x)$ for $d \in\{0,1\}$ denote evaluation points such that

$$
\begin{aligned}
& \operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{l}(x), P=\underline{p}\right\} \\
& \quad=\sup _{x^{\prime} \in \mathbf{X}_{0-}(x)} \operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=\underline{p}\right\} \\
& \operatorname{Pr}\left\{D=1, Y=1 \mid X=x_{0}^{u}(x), P=\underline{p}\right\} \\
& \quad=\inf _{x^{\prime} \in \mathbf{X}_{0+}(x)} \operatorname{Pr}\left\{D=1, Y=1 \mid X=x^{\prime}, P=\underline{p}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left\{D=0, Y=1 \mid X=x_{1}^{l}(x), P=\bar{p}\right\} \\
& \quad=\sup _{x^{\prime} \in \mathbf{X}_{1+}(x)} \operatorname{Pr}\left\{D=0, Y=1 \mid X=x^{\prime}, P=\bar{p}\right\} \\
& \operatorname{Pr}\left\{D=0, Y=1 \mid X=x_{1}^{u}(x), P=\bar{p}\right\} \\
& \quad=\inf _{x^{\prime} \in \mathbf{X}_{1-}(x)} \operatorname{Pr}\left\{D=0, Y=1 \mid X=x^{\prime}, P=\bar{p}\right\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& s_{0}^{*}=s_{0}-\operatorname{Pr}\{D=0, Y=1 \mid X=x, P=\underline{p}\} \\
& s_{1}^{*}=s_{1}-\operatorname{Pr}\{D=1, Y=1 \mid X=x, P=\bar{p}\} .
\end{aligned}
$$

Using equation (5) and the fact that $s_{d} \in\left(L_{d}(x), U_{d}(x)\right)$ for $d \in\{0,1\}$, we have that

$$
\begin{align*}
& s_{0}^{*} \in\left(F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right), F_{1,2}\left(\nu_{1}\left(1, x_{0}^{u}(x)\right), \underline{p}\right)\right) \tag{6}\\
& s_{1}^{*} \in\left(F_{1,-2}\left(\nu_{1}\left(0, x_{1}^{l}(x)\right),-\bar{p}\right), F_{1,-2}\left(\nu_{1}\left(0, x_{1}^{u}(x)\right),-\bar{p}\right)\right)
\end{align*}
$$

These intervals are nonempty because $L_{d}(x)<U_{d}(x)$ for $d \in\{0,1\}$. It follows by Lemma 2.1 that

$$
\begin{equation*}
\nu_{1}\left(d, x_{1-d}^{l}(x)\right)<\nu_{1}(1-d, x)<\nu_{1}\left(d, x_{1-d}^{u}(x)\right) \tag{7}
\end{equation*}
$$

for $d \in\{0,1\}$, where the strict inequalities follow from our assumption that $\mathbf{X}_{d-}(x) \cap \mathbf{X}_{d+}(x)=\emptyset$ for $d \in\{0,1\}$. Furthermore, by the construction of $x_{d}^{l}(x)$ and $x_{d}^{u}(x)$ for $d \in\{0,1\}$, it must be the case for $d \in\{0,1\}$ and $\tilde{x} \in \operatorname{supp}(X)$ that

$$
\begin{equation*}
\nu_{1}(d, \tilde{x}) \notin\left(\nu_{1}\left(d, x_{1-d}^{l}(x)\right), \nu_{1}\left(d, x_{1-d}^{u}(x)\right)\right) \tag{8}
\end{equation*}
$$

We now construct the proposed density $f_{1,2}^{*}$ as follows. Let $f_{1,2}^{*}\left(t_{1}, t_{2}\right)=$ $f_{1 \mid 2}^{*}\left(t_{1} \mid t_{2}\right) f_{2}^{*}\left(t_{2}\right)$, where $f_{2}^{*}\left(t_{2}\right)=f_{2}\left(t_{2}\right)=I\left\{0 \leq t_{2} \leq 1\right\}$ and

$$
f_{1 \mid 2}^{*}\left(t_{1} \mid t_{2}\right)=\left\{\begin{array}{l}
a\left(t_{2}\right) f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) \\
\text { if } \nu_{1}\left(1, x_{0}^{l}(x)\right)<t_{1}<\nu_{1}(0, x) \text { and } t_{2}<\underline{p} \\
b\left(t_{2}\right) f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) \\
\text { if } \nu_{1}(0, x) \leq t_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \text { and } t_{2}<\underline{p} \\
c\left(t_{2}\right) f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) \\
\text { if } \nu_{1}\left(0, x_{1}^{l}(x)\right) \leq t_{1}<\nu_{1}(1, x) \text { and } t_{2}>\bar{p} \\
d\left(t_{2}\right) f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) \\
\text { if } \nu_{1}(1, x) \leq t_{1}<\nu_{1}\left(0, x_{1}^{u}(x)\right) \text { and } t_{2}>\bar{p} \\
f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) \\
\quad \text { otherwise }
\end{array}\right.
$$

with

$$
\begin{aligned}
a\left(t_{2}\right)= & \frac{\operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\}}{\operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}(0, x) \mid \varepsilon_{2}=t_{2}\right\}} \\
& \times \frac{s_{0}^{*}-F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)}{F_{1,2}\left(\nu_{1}\left(1, x_{0}^{u}(x)\right), \underline{p}\right)-F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)}, \\
b\left(t_{2}\right)= & \left(\operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\}\right. \\
& \left.-a\left(t_{2}\right) \operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}(0, x) \mid \varepsilon_{2}=t_{2}\right\}\right) \\
& / \operatorname{Pr}\left\{\nu_{1}(0, x)<\varepsilon_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\}, \\
c\left(t_{2}\right)= & \frac{\operatorname{Pr}\left\{\nu_{1}\left(0, x_{1}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(0, x_{1}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\}}{\operatorname{Pr}\left\{\nu_{1}\left(0, x_{1}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}(1, x) \mid \varepsilon_{2}=t_{2}\right\}} \\
& \times \frac{s_{1}^{*}-F_{1,-2}\left(\nu_{1}\left(0, x_{1}^{l}(x)\right),-\bar{p}\right)}{F_{1,-2}\left(\nu_{1}\left(0, x_{1}^{u}(x)\right),-\bar{p}\right)-F_{1,-2}\left(\nu_{1}\left(0, x_{1}^{l}(x)\right),-\bar{p}\right)}, \\
d\left(t_{2}\right)= & \left(\operatorname{Pr}\left\{\nu_{1}\left(0, x_{1}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(0, x_{1}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\}\right. \\
& \left.-c\left(t_{2}\right) \operatorname{Pr}\left\{\nu_{1}\left(0, x_{1}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}(1, x) \mid \varepsilon_{2}=t_{2}\right\}\right) \\
& / \operatorname{Pr}\left\{\nu_{1}(1, x)<\varepsilon_{1}<\nu_{1}\left(0, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\} .
\end{aligned}
$$

These quantities are well defined because of the fact that the intervals in (6) are nonempty, because of (7), and Assumption 2.2.

We now argue that $f_{1,2}^{*}$ satisfies claim (A), that is, that it is a strictly positive density on \mathbf{R}^{2}. For this purpose, it suffices to show that $f_{1 \mid 2}^{*}$ integrates to 1 and is strictly positive on \mathbf{R}. First consider whether $f_{1 \mid 2}^{*}$ integrates to 1 . For $t_{2} \in[\underline{p}, \bar{p}]$, $f_{1 \mid 2}^{*}\left(\cdot \mid t_{2}\right)=f_{1 \mid 2}\left(\cdot \mid t_{2}\right)$ and so the result follows immediately. For $t_{2}<\underline{p}$,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{1 \mid 2}^{*}\left(t_{1} \mid t_{2}\right) d t_{1} \\
& =\int_{-\infty}^{\nu_{1}\left(1, x_{0}^{l}(x)\right)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1}+a\left(t_{2}\right) \int_{\nu_{1}\left(1, x_{0}^{l}(x)\right)}^{\nu_{1}(0, x)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1} \\
& \quad+b\left(t_{2}\right) \int_{\nu_{1}(0, x)}^{\nu_{1}\left(1, x_{0}^{u}(x)\right)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1}+\int_{\nu_{1}\left(1, x_{0}^{u}(x)\right)}^{\infty} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1} \\
& = \\
& \quad \operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}\left(1, x_{0}^{l}(x)\right) \mid \varepsilon_{2}=t_{2}\right\} \\
& \quad+\operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\} \\
& \quad \\
& \quad+\operatorname{Pr}\left\{\varepsilon_{1} \geq \nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\} \\
& =
\end{aligned}
$$

A similar argument shows that $\int f_{1 \mid 2}^{*}\left(t_{1} \mid t_{2}\right) d t_{1}=1$ for $t_{2}>\bar{p}$.
Since $f_{1 \mid 2}$ is strictly positive on \mathbf{R}, to establish that $f_{1 \mid 2}^{*}$ is strictly positive on \mathbf{R}, it suffices to show that $a\left(t_{2}\right), b\left(t_{2}\right), c\left(t_{2}\right)$, and $d\left(t_{2}\right)$ are all strictly positive. Consider $a\left(t_{2}\right)$ and $b\left(t_{2}\right)$; the proof for $c\left(t_{2}\right)$ and $d\left(t_{2}\right)$ follows from similar arguments. From (6), we have that $s_{0}^{*}>F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)$, which together with (7) and Assumption 2.2 implies that $a\left(t_{2}\right)>0$. Similarly, from (6), we have that $s_{0}^{*}<F_{1,2}\left(\nu_{1}\left(1, x_{0}^{u}(x)\right), \underline{p}\right)$, which implies that

$$
\frac{s_{0}^{*}-F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)}{F_{1,2}\left(\nu_{1}\left(1, x_{0}^{u}(x)\right), \underline{p}\right)-F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)}<1
$$

It therefore follows from (7) and Assumption 2.2 that

$$
\begin{aligned}
& \operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\} \\
& \quad-a\left(t_{2}\right) \operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}(0, x) \mid \varepsilon_{2}=t_{2}\right\} \\
&= \operatorname{Pr}\left\{\nu_{1}\left(1, x_{0}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(1, x_{0}^{u}(x)\right) \mid \varepsilon_{2}=t_{2}\right\} \\
& \times\left(1-\frac{s_{0}^{*}-F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)}{F_{1,2}\left(\nu_{1}\left(1, x_{0}^{u}(x)\right), \underline{p}\right)-F_{1,2}\left(\nu_{1}\left(1, x_{0}^{l}(x)\right), \underline{p}\right)}\right) \\
& \quad> 0
\end{aligned}
$$

so $b\left(t_{2}\right)>0$.
We now argue that $f_{1,2}^{*}$ satisfies claim (B). Since $f_{2}^{*}=f_{2}$, we have immediately that $\operatorname{Pr}\left\{\varepsilon_{2}^{*} \leq p\right\}=\operatorname{Pr}\{D=1 \mid X=\tilde{x}, P=p\}$ for all $(\tilde{x}, p) \in \operatorname{supp}(X, P)$. Consider $\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(1, \tilde{x}) \mid \varepsilon_{2}^{*} \leq p\right\}$. From (8), we have that $\nu_{1}(1, \tilde{x}) \leq \nu_{1}\left(1, x_{0}^{l}(x)\right)$ or $\nu_{1}(1, \tilde{x}) \geq \nu_{1}\left(1, x_{0}^{u}(x)\right)$ for any $\tilde{x} \in \operatorname{supp}(X)$. For $(\tilde{x}, p) \in \operatorname{supp}(X, P)$ such that $\nu_{1}(1, \tilde{x}) \leq \nu_{1}\left(1, x_{0}^{l}(x)\right)$, we have

$$
\begin{aligned}
\operatorname{Pr} & \left\{\varepsilon_{1}^{*} \leq \nu_{1}(1, \tilde{x}) \mid \varepsilon_{2}^{*} \leq p\right\} \\
& =\frac{1}{p} \int_{0}^{p} \int_{-\infty}^{\nu_{1}(1, \tilde{x})} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
& =\frac{1}{p} \int_{0}^{p} \int_{-\infty}^{\nu_{1}(1, \tilde{x})} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
& =\operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}(1, \tilde{x}) \mid \varepsilon_{2} \leq p\right\}=\operatorname{Pr}\{Y=1 \mid D=1, X=\tilde{x}, P=p\}
\end{aligned}
$$

For $(\tilde{x}, p) \in \operatorname{supp}(X, P)$ such that $\nu_{1}(1, \tilde{x}) \geq \nu_{1}\left(1, x_{0}^{u}(x)\right)$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(1, \tilde{x}) \mid \varepsilon_{2}^{*} \leq p\right\} \\
& \quad=\frac{1}{p} \int_{0}^{p} \int_{-\infty}^{\nu_{1}(1, \tilde{x})} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{p}\left\{\int_{\underline{p}}^{p} \int_{-\infty}^{\nu_{1}(1, \tilde{x})} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}\right. \\
& +\int_{0}^{\underline{p}}\left[\int_{-\infty}^{\nu_{1}\left(1, x_{0}^{l}(x)\right)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1}+a\left(t_{2}\right) \int_{\nu_{1}\left(1, x_{0}^{l}(x)\right)}^{\nu_{1}(0, x)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1}\right. \\
& \left.\left.+b\left(t_{2}\right) \int_{\nu_{1}(0, x)}^{\nu_{1}\left(1, x_{0}^{u}(x)\right)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1}+\int_{\nu_{1}\left(1, x_{0}^{u}(x)\right)}^{\nu_{1}(1, \tilde{x})} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1}\right] d t_{2}\right\} \\
= & \frac{1}{p}\left\{\operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}(1, \tilde{x}), \underline{p}<\varepsilon_{2} \leq p\right\}+\operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}(1, \tilde{x}), \varepsilon_{2} \leq \underline{p}\right\}\right\} \\
= & \operatorname{Pr}\left\{\varepsilon_{1} \leq \nu_{1}(1, \tilde{x}) \mid \varepsilon_{2} \leq p\right\}=\operatorname{Pr}\{Y=1 \mid D=1, X=\tilde{x}, P=p\} .
\end{aligned}
$$

The proof that $\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(0, \tilde{x}) \mid \varepsilon_{2}^{*}>p\right\}=\operatorname{Pr}\{Y=1 \mid D=0, X=\tilde{x}, P=p\}$ for all $(\tilde{x}, p) \in \operatorname{supp}(X, P)$ follows from an analogous argument.

Finally, we argue that $f_{1,2}^{*}$ satisfies claim (C). Consider $\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(0, x)\right\}$. From (8), we have that $\nu_{1}(1, x) \leq \nu_{1}\left(1, x_{0}^{l}(x)\right)$ or $\nu_{1}(1, x) \geq \nu_{1}\left(1, x_{0}^{u}(x)\right)$. In the former case, we have that

$$
\begin{aligned}
\operatorname{Pr}\{ & \left.\varepsilon_{1}^{*} \leq \nu_{1}(0, x)\right\} \\
= & \int_{0}^{1} \int_{-\infty}^{\nu_{1}(0, x)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
= & \left\{\int_{0}^{\underline{p}}\left(\int_{-\infty}^{\nu_{1}\left(1, x_{0}^{l}(x)\right)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1}+\int_{\nu_{1}\left(1, x_{0}^{l}(x)\right)}^{\nu_{1}(0, x)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1}\right) d t_{2}\right. \\
& \left.+\int_{\underline{p}}^{1} \int_{-\infty}^{\nu_{1}(0, x)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}\right\} \\
= & \left\{\int_{0}^{\underline{\underline{p}}}\left(\int_{-\infty}^{\nu_{1}\left(1, x_{0}^{l}(x)\right)} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1}+a\left(t_{2}\right) \int_{\nu_{1}\left(1, x_{0}^{l}(x)\right)}^{\nu_{1}(0, x)} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1}\right) d t_{2}\right. \\
& \left.+\int_{\underline{p}}^{1} \int_{-\infty}^{\nu_{1}(0, x)} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}\right\} \\
= & s_{0}^{*}+\operatorname{Pr}\{D=0, Y=1 \mid X=x, P=\underline{p}\}=s_{0} .
\end{aligned}
$$

In the latter case, it suffices to show that

$$
\int_{\underline{p}}^{1} \int_{-\infty}^{\nu_{1}(0, x)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=\int_{\underline{p}}^{1} \int_{-\infty}^{\nu_{1}(0, x)} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} .
$$

For this purpose, it suffices to show that

$$
\int_{\bar{p}}^{1} \int_{\nu_{1}\left(0, x_{1}^{l}(x)\right)}^{\nu_{1}\left(0, x_{1}^{u}(x)\right)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=\int_{\bar{p}}^{1} \int_{\nu_{1}\left(0, x_{1}^{l}(x)\right)}^{\nu_{1}\left(0, x_{1}^{u}(x)\right)} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}
$$

since outside of this region of integration $f_{1,2}^{*}=f_{1,2}$. Note that

$$
\begin{aligned}
\int_{\bar{p}}^{1} & \int_{\nu_{1}\left(0, x_{1}^{l}(x)\right)}^{\nu_{1}\left(0, x_{1}^{u}(x)\right)} f_{1,2}^{*}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \\
= & \int_{\bar{p}}^{1} c\left(t_{2}\right) \int_{\nu_{1}\left(0, x_{1}^{l}(x)\right)}^{\nu_{1}(0, x)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1} d t_{2} \\
& \quad+\int_{\bar{p}}^{1} d\left(t_{2}\right) \int_{\nu_{1}(0, x)}^{\nu_{1}\left(0, x_{1}^{u}(x)\right)} f_{1 \mid 2}\left(t_{1} \mid t_{2}\right) d t_{1} d t_{2} \\
= & \int_{\bar{p}}^{1} c\left(t_{2}\right) \operatorname{Pr}\left\{\nu_{1}\left(0, x_{1}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}(0, x) \mid t_{2}\right\} d t_{2} \\
& \quad+\int_{\bar{p}}^{1} d\left(t_{2}\right) \operatorname{Pr}\left\{\nu_{1}(0, x)<\varepsilon_{1}<\nu_{1}\left(0, x_{1}^{u}(x)\right) \mid t_{2}\right\} d t_{2} \\
= & \int_{\bar{p}}^{1} \operatorname{Pr}\left\{\nu_{1}\left(0, x_{1}^{l}(x)\right)<\varepsilon_{1}<\nu_{1}\left(1, x_{1}^{u}(x)\right) \mid t_{2}\right\} d t_{2} \\
= & \int_{\underline{p}}^{1} \int_{\nu_{1}\left(0, x_{1}^{l}(x)\right)}^{\nu_{1}\left(0, x_{1}^{u}(x)\right)} f_{1,2}\left(t_{1}, t_{2}\right) d t_{1} d t_{2},
\end{aligned}
$$

as desired. The proof that $\operatorname{Pr}\left\{\varepsilon_{1}^{*} \leq \nu_{1}(1, x)\right\}=s_{1}$ follows from an analogous argument.
Q.E.D.

Dept. of Economics, University of Chicago, 1126 East 59th Street, Chicago, IL 60637, U.S.A.; amshaikh@uchicago.edu
and

Dept. of Economics, Yale University, New Haven, CT 06520-8281, U.S.A.; edward.vytlacil@yale.edu.

Manuscript received February, 2010; final revision received October, 2010.

