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a b s t r a c t

Propensity score matching has become a popular method for the estimation of average treatment effects.
In empirical applications, researchers almost always impose a parametric model for the propensity score.
This practice raises the possibility that the model for the propensity score is misspecified and therefore
the propensity score matching estimator of the average treatment effect may be inconsistent. We show
that the common practice of calculating estimates of the densities of the propensity score conditional on
the participation decision provides a means for examining whether the propensity score is misspecified.
In particular, we derive a restriction between the density of the propensity score among participants and
the density among nonparticipants. We show that this restriction between the two conditional densities
is equivalent to a particular orthogonality restriction and derive a formal test based upon it. The resulting
test is shown via a simulation study to have dramatically greater power than competing tests for many
alternatives. The principal disadvantage of this approach is loss of power against some alternatives.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Propensity score matching is a widely used approach for
the estimation of average treatment effects. See Heckman et al.
(1999) for a detailed survey of its use. The method is based
on the following well-known result of Rosenbaum and Rubin
(1983): if selection into the program is independent of the
potential outcomes of interest conditional on a vector of covariates,
then selection into the program is also independent of the
potential outcomes conditional on the propensity score, where
the propensity score is the probability of selection into the
program conditional on the same vector of covariates. The high
dimensionality of the vector of observed covariates often forces
researchers to adopt a parametric model for the propensity score,
in lieu of a more flexible nonparametric model. This practice
raises the possibility that the model for the propensity score
is misspecified. If this is the case, then the estimator of the
propensity score will be inconsistent and the resulting propensity
score matching estimator of the average treatment effect may be
inconsistent as well.
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Following Heckman et al. (1998a), it is now common when
implementing propensity score matching to calculate estimates
of the densities of the propensity score conditional on the
participation decision. These estimates are calculated in order to
determine the region of common support on which to perform
matching. The importance of common support was recognized
as early as Rosenbaum and Rubin (1983). We show that these
conditional densities provide a means for examining whether
the propensity score is misspecified. In particular, we derive a
restriction between the density of the propensity score among
participants and the density among nonparticipants. Failure of
this restriction to hold for the estimated conditional densities
provides evidence that the model for the propensity score is
misspecified. In this way, it provides a convenient diagnostic
tool for detecting misspecification. We show further that this
restriction between the two conditional densities is equivalent
to a particular orthogonality restriction and derive a formal test
based upon it. Unlike other tests for correct specification of the
propensity score versus a nonparametric alternative, our test
has dramatically greater power than competing tests for many
alternatives. The principal drawback of this approach is that our
test does not have power against certain alternatives, but we argue
that these alternatives are rather exceptional.

The literature on propensity score matching includes instances
in which researchers have used conventional tests of a parametric
null hypothesis against a parametric alternative hypothesis to
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guide specification of the model for the propensity score. See, for
example, Lechner (1999, 2000). In contrast to the tests in this
literature, our test is a test of a parametric null hypothesis against
a nonparametric alternative hypothesis.

The literature on propensity score matching has also used
‘‘balancing score’’ tests to detect misspecification of the model
for the propensity score. These tests were first proposed by
Rosenbaum and Rubin (1985), who suggest that researchers
examine whether the observable characteristics of the population
are independent of participation conditional on the propensity
score. In practice, this idea is often implemented by researchers
by examining whether moments of the observable characteristics
for ‘‘matched’’ participant and nonparticipant observations are
the same. See Dehejia and Wahba (2002), Lechner (2002), Sianesi
(2004), and Smith and Todd (2005) for examples of such tests. As
described above, our test differs from these tests in that it examines
whether the conditional densities of the propensity score for the
‘‘unmatched’’ participants and nonparticipants differ in a certain
way. In this sense, our test is in fact the opposite of a ‘‘balancing
score’’ test.

To the best of our knowledge, we are the first to use the
conditional distribution of the propensity score in the unmatched
sample as a means of testing for misspecification of the model
for the propensity score. In this way, our paper complements the
literature on propensity score matching that uses the conditional
distribution of the propensity score to provide insight into the
degree of bias of naive estimators of average treatment effects that
do not adjust for covariates.

Our paper proceeds as follows. In Section 2, we first provide
a summary of the method of propensity score matching. We
then derive in Section 3 the restriction upon which our test is
based. In Section 4, we use this result to develop a formal test
of misspecification. We examine its finite sample properties via a
simulation study in Section 5. We provide an empirical illustration
of our procedure in Section 6. Section 7 concludes.

2. Review of matching

Before proceeding, we review in this section matching as
a means of program evaluation. There are two groups of
individuals, participants and nonparticipants, in a program of
interest. Participation in the program of interest is denoted by
the dummy variable D, with D = 1 if the individual chooses to
participate and D = 0 otherwise. Individuals in each of these
two groups are associated with observed characteristics X . Two
commonly usedmetrics for evaluating the effect of participation in
a programare the average treatment effect, given by E[Y1−Y0], and
the average treatment effect on the treated, given by E[Y1−Y0|D =
1], where Y1 is the potential outcome in the case of participation
and Y0 is the potential outcome in the case of nonparticipation. The
difficulty with estimation of these objects lies with the following
missing data problem: the counterfactual outcome Y1−D is never
observed, which precludes direct estimation of E[Y0|D = 1] and
E[Y1|D = 0].

The method of matching resolves this difficulty by matching
each participant with a nonparticipant that is similar in terms of
observed characteristics X . As described in Rosenbaum and Rubin
(1983), matching formally requires that:

Assumption 2.1. (Y0, Y1)!D | X .
Assumption 2.2. 0 < P(x) < 1 where P(x) = Pr[D = 1|X = x]
for all x ∈ supp(X).

Note that a consequence of Assumption 2.2 is that E[Y0|D =
1, X = x] and E[Y1|D = 0, X = x] are well defined for all x ∈
supp(X). Hence, matching suggests estimation of E[Y0|D = 1] and
E[Y1|D = 0] by a two-step procedure in which E[Y0|D = 1, X] and
E[Y1|D = 0, X] are first estimated by exploiting Assumption 2.2,

and then integrated with respect to the empirical distribution of
X in order to obtain an estimate of E[Y1 − Y0] or integrated with
respect to the empirical distribution of X conditional on D = 1
to obtain an estimate of E[Y1 − Y0|D = 1]. Following Heckman
et al. (1998a), it is clear that one can relax the first condition
to only require mean independence instead of full independence.
Using this procedure, it is in principle possible to construct a

√
n-

normal estimator of the parameter of interest without imposing
any parametric restrictions. See Heckman et al. (1998b), Hahn
(1998) and Abadie and Imbens (2007).

An alternative approach for estimating E[Y0|D = 1] and
E[Y1|D = 0] is propensity score matching, which relies upon a
celebrated result of Rosenbaum and Rubin (1983). They show that
the above assumptions imply:

Assumption 2.3. (Y0, Y1)!D | P(X).

Assumption 2.4. 0 < Pr[D = 1|P(X) = p] < 1 for all p ∈
supp(P(X)).

This result can be restated as follows: if matching on X is valid,
so is matching based on the propensity score P(X). This result
motivates propensity score matching, in which one first estimates
the propensity score in a first step and then performs matching, as
described above, using the estimated propensity score.

Importantly, both matching on X and matching on P(X) suffer
from the so-called ‘‘curse of dimensionality’’. While matching
on X requires the researcher to estimate E[Y0|D = 1, X],
matching on P(X) requires the researcher to estimate E[D|X],
an equally high dimensional object. Thus, if X has more than
a few dimensions, nonparametric procedures for estimating
these objects are undesirable due to sizable finite sample bias.
This difficulty leads to the common practice of implementing
propensity score matching with a parametric model for the
propensity score. This raises the possibility that the model for the
propensity score is misspecified, in which case we would expect
the estimator of the propensity score to be inconsistent. In this
case, wewould generally expect propensity scorematching to lead
to inconsistent estimates of both E[Y1 − Y0] and E[Y1 − Y0|D = 1].

3. Restriction between the conditional distributions

In order to ensure that the appropriate conditional expec-
tations exist, propensity score matching is only valid over the
region of common support of the densities of the propensity score
conditional on the participation decision. Following the influential
work of Heckman et al. (1998a), researchers therefore compute
estimates of both of these densities to determine the appropriate
region over which to perform matching. The test for misspecifica-
tion that we develop in the following section will exploit a restric-
tion that must hold between these two densities.

Throughout the following we will assume that the propensity
score P(X) has a density with respect to Lebesgue measure. Let
f (p) denote this density, f1(p) the density of the propensity score
conditional on participation, and f0(p) the density of the propensity
score conditional on nonparticipation. Using this notation,we have
the following result:

Lemma 3.1. Let α = Pr{D=0}
Pr{D=1} and assume 0 < Pr{D = 0} < 1. Then,

for all 0 < p < 1 and p ∈ supp(P) we have that

f1(p) = α
p

1 − p
f0(p). (1)

Proof. Consider 0 < p < 1 and p ∈ supp(P). For such p, by the
Law of Iterated Expectations, we have that

Pr{D = 1|P(X) = p} = E[E[D|X]|P(X) = p] = p.
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Bayes’ Theorem implies further that

f1(p) Pr{D = 1} = Pr[D = 1|P(X) = p]f (p) = pf (p) > 0 .

Similarly, we have that

f0(p) Pr{D = 0} = (1 − p)f (p) > 0 .

Combining these two implications, we have that
f1(p)
f0(p)

= α
p

1 − p
,

from which the asserted conclusion follows immediately. !
Lemma 3.1 implies that to the extent that the parametric

model for P(X) is correctly specified, we would expect (1) to
hold approximately when estimated. The property can be easily
checked given estimates f̂1,n(·) and f̂0,n(·) by graphing f̂1,n(p) along
with the function α̂n

p
1−p f̂0,n(p), where α̂n is the sample analogue of

α. Dramatic departures of one graph from another should be taken
as evidence of misspecification of the propensity score. In this
way, Lemma3.1 provides a convenient diagnostic tool for detecting
misspecification.

We now provide an illustration of this diagnostic for detecting
misspecification of the propensity score. Define
X1 = Z1 (2a)

X2 = Z1 + Z2√
2

, (2b)

where Z1 and Z2 are independent standard normal variables.
Consider the model

D∗ = 1 + X1 + X2 + X1X2 − ε, ε ∼ N(0, σ 2) (3a)

D = I{D∗ > 0}, (3b)
where ε!(X1, X2), and I{·} is the logical indicator function. We
consider fitting a misspecified model
Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2) (4)
that only differs from the true model by omitting the quadratic
term.

Wegenerate an i.i.d. sequence of randomvariables (Di, X1,i, X2,i,
εi), i = 1, . . . , n for n = 10,000 according to the model given by
(3a) and (3b). We then estimate the propensity score using the in-
correctly specified model (4) and maximum likelihood. Estimates
of the densities of the propensity score conditional on the partici-
pation decision are then constructed using kernel density estima-
tion. For this purpose, we use the biweight kernel and choose the
bandwidth using Silverman’s rule of thumb. See Silverman (1986)
for further details.

Fig. 1 depicts the resulting estimates of f̂1,n(p) and α̂n
p

1−p f̂0,n(p).
We see that graphs of these two objects deviate substantially from
each other, which can be taken as evidence of misspecification.

We also consider the case where the true data generating
process is given by

D∗ = 1 + X1 + X2 − ε, ε ∼ U(−1, 1) (5)
and we again fit the misspecified model (4). The estimated
densities from this exercise are displayed in Fig. 2. We find that
the two graphs lie very close to one another, suggesting that
the misspecification is not very severe. This feature is perhaps
not too surprising when one considers the fact that the only
source ofmisspecification is the distribution for ε and the assumed
distribution shares many features with the true distribution. In
particular, both are symmetric about zero.

This example shows that misspecification of the propensity
score may lead to noticeable departures from the restriction (1)
when estimated. In order to develop a formal test based on this
restriction, it will be useful to restate it in terms of an equivalent
orthogonality condition. To this end, we have the following result:

Fig. 1. Estimates of density of propensity score. Note: ______, α̂n
p

1−p f̂0,n(p);

— — — — —, f̂1,n(p) DGP: D∗ = 1 + X1 + X2 + X1X2 − εi , ε ∼ N(0, σ 2); estimated
model:Q (X, θ) = Φ(θ0+θ1X1+θ2X2). Density estimated using the biweight kernel
and Silverman’s rule of thumb.

Fig. 2. Estimates of density of propensity score. Note: ______, α̂n
p

1−p ;

— — — — —, f̂1,n(p) DGP: D∗ = 1 + X1 + X2 − εi , ε ∼ U(−1, 1); estimated model:
Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2). Density estimated using the biweight kernel and
Silverman’s rule of thumb.

Lemma 3.2. Let α = Pr{D=0}
Pr{D=1} and assume that 0 < Pr{D = 0} < 1.

Let Q be a random variable on the unit interval with density w.r.t.
Lebesgue measure. Denote by g1(q) the density of Q conditional on
D = 1 and by g0(q) the density of Q conditional on D = 0. Then,

g1(q) = α
q

1 − q
g0(q) (6)

for all q ∈ supp(Q ) such that 0 < q < 1 if and only if

E[D − Q |Q = q] = 0 (7)

for all q ∈ supp(Q ) such that 0 < q < 1.

Proof. First consider necessity. Consider q ∈ supp(Q ) such that
0 < q < 1. The restriction (7) is equivalent to

Pr{D = 1|Q = q} = E[D|Q = q] = q.

For such q, we therefore have by Bayes’ Theorem that

g1(q) Pr{D = 1} = Pr{D = 1|Q = q}g(q) = qg(q) > 0,

where g(q) is the density of Q . Similarly, we have that

g0(q) Pr{D = 0} = (1 − q)g(q) > 0.
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Combining these two implications, we have that

g1(q)
g0(q)

= α
q

1 − q
,

from which the asserted conclusion follows.
Now consider sufficiency. Consider q ∈ supp(Q ) such that

0 < q < 1. For such q, we have by Bayes’ Theorem that the
restriction (6) implies that

E[D|Q = q] = g1(q) Pr{D = 1}
Pr{D = 0}g0(q) + Pr{D = 1}g1(q)

= q,

where the last equality follows from plugging in g1(q) = α
× q

1−q g0(q). It follows that E[D − Q |Q = q] = q, as desired. !

It is important to observe that this characterization of the re-
striction only involves low dimensional conditional expectations.
We will show in the following section that a consequence of this
fact is that, unlike more conventional nonparametric tests for
correct specification of the propensity score, our test will not suf-
fer from a curse of dimensionality and will therefore have much
greater power in finite samples against many alternatives. The
principal drawback of this approach is that there will be certain
alternatives for which we will not have power. To examine this
issue further, consider the following example. Suppose X =
(X1, X2), and E[D|X1, X2] '= E[D|X1]. Let Q (X) = E[D|X1]. Thus,
Q (X) '= P(X), and yet Q (X) will satisfy E[D − Q (X)|Q (X)] = 0.
More generally, this restriction will not be able to detect the omis-
sion of covariates provided that the conditional expectation of D
given the included covariates is correctly specified. Of course, this
example is rather exceptional, since Q (X) is in this case correctly
specified for a subvector of X .

Remark 3.1. By integrating (1), we have immediately that for any
appropriate functions g : [0, 1] → R,

E [g(P)|D = 1] = αE
[

P
1 − P

g(P)|D = 0
]

,

which implies further that

E
[
g(P)D − g(P)

P
1 − P

(1 − D)

]
= 0.

In particular, we have

E[Pk(1 − P)D − Pk+1(1 − D)] = 0

for k = 0, 1, 2, . . .. As before, to the extent that the parametric
model for P(X) is correctly specified, we would expect these
restrictions to hold approximately when estimated. One could, of
course, develop a formal test based on these restrictions instead of
(7), but we do not pursue that idea here. !

4. Formal test

In this section we develop a formal test based on the restriction
(7) in Lemma 3.2. We adapt the test proposed by Zheng (1996)
for testing whether the parametric model for the conditional
expectation is correctly specified. The advantages of this approach
include the following: (i) the resulting test statistic has an
asymptotically normal distribution under the null hypothesis, so
the test is easy to implement; (ii) the power of the resulting
test under local alternatives is easy to analyze; (iii) the test
does not impose strong smoothness conditions on the alternative
conditional expectation function; and (iv) the test does not require
homoskedasticity of the generalized residual of the regression
function.We could also have followed the analysis of Horowitz and
Spokoiny (2001), which would result in a test with some desirable

theoretical properties, but it would bemore difficult to implement.
On the other hand,we could not have followed the analysis of Hong
andWhite (1995), since their analysis requires that the generalized
residuals are homoskedastic or multiplicatively heteroskedastic,
which rules out the case of a binary dependent variable. See Hart
(2007) for a survey of these and other alternative approaches for
testing a parametric null versus a nonparametric alternative.

Under the null hypothesis of Zheng (1996), the conditional
expectation E[Y |X] is assumed to belong to a parametric family
of real valued functions Q (X, θ) on Rk × Θ , where Θ ⊆ Rd.
Concretely, his null and alternative hypotheses are given by

H0: ∃ θ0 ∈ Θ s.t. Pr{E[Y |X] = Q (X, θ0)} = 1.
H1: Pr{E[Y |X] = Q (X, θ)} < 1 ∀ θ ∈ Θ .

Note that any θ0 satisfying the null hypothesis also solves
minθ∈Θ E[(Y − Q (X, θ))2].

Zheng (1996) proposes a test of the above null hypothesis based
on the following idea. Let ε = Y −Q (X, θ0) and let fX (·) denote the
density of X . Then, under the null hypothesis,

E[εE[ε|X]fX (X)] = 0, (8)

while under the alternative hypothesis,

E[εE[ε|X]fX (X)] = E[[E[ε|X]]2fX (X)] > 0.

The last inequality follows because under the alternative hypoth-
esis (E[ε|X])2 > 0 with positive probability. On the basis of this
observation, he uses the sample analogue of the left-hand side of
(8) to form his test. The test statistic is given by

1
n(n − 1)

n∑

i=1

∑

j'=i

1
hk K

(
Xi − Xj

h

)
ε̂iε̂j,

where ε̂i := Yi − Q (Xi, θ̂n), θ̂n is a
√
n-consistent estimator of

argminθ∈Θ E[(Y−Q (X, θ))2], h is a smoothing parameter, andK(·)
is a kernel.

We would like to test whether there exists θ0 ∈ Θ such
that E[D|Q (X, θ0)] = Q (X, θ0) with probability 1. Our null and
alternative hypotheses are therefore given by

H0: ∃ θ0 ∈ Θ s.t. Pr{E[D|Q (X, θ0)] = Q (X, θ0)} = 1.
H1: Pr{E[D|Q (X, θ)] = Q (X, θ)} < 1 ∀θ ∈ Θ .

Note that this differs from the framework of Zheng (1996) in
that the variable that is conditioned on is not observed. By analogy
with the test statistic in Zheng (1996), we consider testing based
upon

V̂n = 1
n(n − 1)

n∑

i=1

∑

j'=i

1
h
K

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

ε̂iε̂j (9)

where ε̂i = Di−Q (Xi, θ̂n) and ε̂i, θ̂n, h andK(·) are as defined above.
Unfortunately, the analysis of Zheng (1996) does not apply directly
to this case, and thus we now extend his analysis. We will impose
the following conditions:

Assumption 4.1. (Di, Xi), i = 1, . . . , n, is an i.i.d. sequence of
random variables on {0, 1} × Rk.

Assumption 4.2. Θ is a compact subset of Rd.

Assumption 4.3. Q : supp(Xi) × Θ → [0, 1] satisfies:
(a) Q (Xi, θ) has a continuous density f (x, θ) w.r.t. Lebesgue

measure for all θ in a neighborhood of θ0, where

θ0 = argmin
θ∈Θ

E[(Di − Q (Xi, θ))2].
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(b) Q (x, θ) is Lipschitz continuous w.r.t. θ in the sense that for all
θ ∈ Θ and θ ′ ∈ Θ

|Q (x, θ) − Q (x, θ ′)| ≤ G(x)‖θ − θ ′‖,
where E[G4+δ(Xi)] < ∞ for some δ > 0.

Assumption 4.4. K : R → R is bounded, Lipschitz continuous,
symmetric and satisfies:
(a)

∫
K(u)du = 1.

(b)
∫

|K(u)|du < ∞.
(c)

∫
|uK(u)|du < ∞.

(d)
∫

|u2K(u)|du < ∞.

Assumption 4.5. θ̂n satisfies

‖θ̂n − θ0‖ = OP

(
1√
n

)
.

Assumption 4.6. The bandwidth sequence satisfies 0 < h =
hn → 0 and nh4 → ∞.

The following extension of Zheng’s analysis describes the
behavior of our test statistic under the null hypothesis.

Theorem 4.1. Suppose Assumptions 4.1–4.6. If E[Di|Xi] = Q (Xi, θ0)

with probability 1, then V̂n defined by (9) satisfies

n
√
hV̂n → N(0, Σ),

where

Σ = 2
∫∫

q21(1 − q1)2K 2(u)f 2(q1)dudq1.

Moreover, Σ may be consistently estimated by

Σ̂n =
∑

1≤i,j≤n:i'=j

2ε̂2
i ε̂

2
j

n(n − 1)h
K 2

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

. (10)

Proof. See Appendix. !
The following theorem shows that our test is consistent against

any fixed alternative.

Theorem 4.2. Suppose Assumptions 4.1–4.6. If E[Di|Xi] = Q (Xi, θ0)

with probability strictly less than 1, then V̂n and Σ̂n defined by (9) and
(10), respectively, satisfy

V̂n
P→

∫
(r(q1) − q1)2f 2(q1)dq1 > 0

Σ̂n
P→ 2

∫
(r(q1) − 2r(q1)q1 + q21)

2K(u)f 2(q1)dq1.

Proof. See Appendix. !
Finally, in the following theorem, we investigate the power of

our test under local alternatives of the form
Hn

1: Pr{E[D|Q (X, θ0)] = Q (X, θ0) + 1√
nh1/4 *(Q (X, θ0))} = 1

for some function * : [0, 1] → R.

Theorem 4.3. Suppose Assumptions 4.1–4.6. Let * : [0, 1] → R be
a continuous function and r(q) = E[Di|Q (Xi, θ0) = q]. If

E[Di|Xi] = Q (Xi, θ0) + 1√
nh1/4

*(Q (Xi, θ0))

with probability 1, then V̂n defined by (9) satisfies

n
√
hV̂n → N

(∫
*2(q1)f 2(q1)dq1, Σ

)
,

where

Σ = 2
∫∫

r(q1)2(1 − r(q1))2K 2(u)f 2(q1)dudq1. (11)

Proof. See Appendix. !

Remark 4.1. Assumption 4.4(a) is exploited in the proofs of
Theorems 4.2 and 4.3, but is not exploited in the proof of
Theorem 4.1. Thus, the stated behavior of our test statistic under
the null hypothesis will continue to hold if the kernel does not
integrate to 1. Likewise, Assumption 4.3(b) is exploited in the
proofs of Theorems 4.1 and 4.3, but the proof of Theorem 4.2 only
requires the weaker restriction that E[G(Xi)] < ∞. !

5. Simulation study

As noted earlier, there are alternatives against which the test
of Zheng (1996) has power tending to one, but our test does
not. Zheng (1996), however, requires estimation of expectations
conditional on X , which in practice is high dimensional. Our
procedure only requires estimation of expectations conditional on
Q (X, θ0) and thereby avoids this difficulty. As a result, we expect
our test to performnoticeably better in finite samples againstmany
alternatives of interest.

We now shed some light on the finite sample properties of
our testing procedure via a simulation study. Our setup will
follow Zheng (1996) closely. As before, let X1 and X2 be given by
(2a) and (2b). We define now several different data generating
processes for D∗ that will be used at different points in our
simulation study.

D∗ = 1 + X1 + X2 − ε, ε ∼ N(0, σ 2) (12)

D∗ = 1 + X1 + X2 + X1X2 − ε, ε ∼ N(0, σ 2) (13)

D∗ = (1 + X1 + X2)
2 − ε, ε ∼ N(0, σ 2) (14)

D∗ = 1 + X1 + X2 − ε, ε ∼ χ2
1 (15)

D∗ = 1 + X1 + X2 − ε, ε ∼ U(−1, 1). (16)

For each of these data generating processes, D = I{D∗ > 0} and
ε!(X1, X2).

Throughout the simulations presented below, we use the
normal kernel given by

K(u) = 1√
2π

exp
(−u2

2

)
.

The bandwidth h is chosen to be equal to cn−1/8 for c equal to 0.05,
0.10, and 0.15. We consider samples sizes n equal to 100, 200, 400,
500, 800, and 1000. The number of replications for each simulation
is always 1000. Note that the bandwidth satisfies the requirements
from Theorem 4.1.

We first examine the size of our test. The data is generated
according to (12). The null and alternative hypotheses are as
described in Section 4 with Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2). These
results are summarized in Table 1. We find that the actual finite
sample size of the test in our Monte Carlo simulations is close to
but slightly smaller than the nominal size, so the test is slightly
conservative.

We now go on to consider the power of our test against
certain misspecifications of the model for the propensity score.
In Tables 2–5, we consider four different scenarios in which the
true data generating process is given by (13)–(16), respectively. For
each scenario, the null and alternative hypotheses are as before.
The test performs admirablywhen the true data generating process
is given by (13)–(15), showing high power for even moderately
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Table 1
Size.
n Proportion of rejections

1% level 5% level 10% level

c = 0.05

100 0.010 0.500 0.113
200 0.008 0.042 0.104
400 0.005 0.032 0.081
500 0.005 0.033 0.080
800 0.010 0.037 0.086

1000 0.007 0.039 0.089

c = 0.10

100 0.008 0.026 0.081
200 0.005 0.012 0.059
400 0.005 0.017 0.052
500 0.005 0.013 0.055
800 0.005 0.011 0.060

1000 0.008 0.020 0.078

c = 0.15

100 0.006 0.010 0.044
200 0.001 0.008 0.026
400 0.003 0.012 0.033
500 0.002 0.011 0.026
800 0.002 0.003 0.021

1000 0.006 0.014 0.045

DGP: D∗ = 1 + X1 + X2 − εi , ε ∼ N(0, σ 2),
estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2).

Table 2
Power.
n Proportion of rejections

1% level 5% level 10% level

c = 0.05

100 0.078 0.151 0.216
200 0.354 0.496 0.586
400 0.879 0.929 0.960
500 0.966 0.983 0.989
800 1.000 1.000 1.000

1000 1.000 1.000 1.000

c = 0.10

100 0.108 0.186 0.253
200 0.458 0.592 0.664
400 0.936 0.973 0.978
500 0.987 0.993 0.995
800 1.000 1.000 1.000

1000 1.000 1.000 1.000

c = 0.15

100 0.097 0.168 0.211
200 0.449 0.593 0.658
400 0.947 0.972 0.984
500 0.990 0.993 0.995
800 1.000 1.000 1.000

1000 1.000 1.000 1.000

DGP: D∗ = 1 + X1 + X2 + X1X2 − εi , ε ∼ N(0, σ 2),
estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2).

sized samples. Recall that (13) is precisely that of our heuristic from
Lemma 3.1 presented in Fig. 1. Given the noticeable departure of
the two graphs in Fig. 1, it is not surprising that our test performs
well. The test performs less well, however, when the true data
generating process is given by (16), which is again consonant with
our earlier findings in Fig. 2.

Finally, we compare our test with the test proposed by Zheng
(1996). First, we consider the same setup of Table 2, where
the data generating process is given by (13). The results are
presented in Table 6. As noted earlier, the competing test requires
estimation of expectations conditional on X , which in practice is
high dimensional, and so we might expect that our test would
perform better in finite samples for many alternatives. Indeed,

Table 3
Power.
n Proportion of rejections

1% level 5% level 10% level

c = 0.05

100 0.357 0.468 0.538
200 0.813 0.868 0.890
400 0.992 0.995 0.996
500 1.000 1.000 1.000
800 1.000 1.000 1.000

1000 1.000 1.000 1.000

c = 0.10

100 0.204 0.308 0.371
200 0.712 0.801 0.844
400 0.989 0.993 0.997
500 1.000 1.000 1.000
800 1.000 1.000 1.000

1000 1.000 1.000 1.000

c = 0.15

100 0.081 0.133 0.179
200 0.455 0.574 0.639
400 0.960 0.983 0.988
500 0.996 0.999 0.999
800 1.000 1.000 1.000

1000 1.000 1.000 1.000

DGP: D∗ = (1 + X1 + X2)
2 − εi , ε ∼ N(0, σ 2),

estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2).

Table 4
Power.
n Proportion of rejections

1% level 5% level 10% level

c = 0.05

100 0.029 0.075 0.144
200 0.110 0.208 0.279
400 0.369 0.569 0.651
500 0.570 0.741 0.796
800 0.924 0.967 0.976

1000 0.986 0.994 0.996

c = 0.10

100 0.038 0.077 0.129
200 0.162 0.269 0.330
400 0.528 0.683 0.756
500 0.713 0.806 0.851
800 0.968 0.982 0.988

1000 0.993 0.996 0.998

c = 0.15

100 0.041 0.068 0.111
200 0.171 0.269 0.338
400 0.546 0.702 0.756
500 0.721 0.813 0.860
800 0.967 0.982 0.989

1000 0.994 0.997 0.999

DGP:D∗ = 1+X1+X2−εi , ε ∼ ξ 2
1 , estimatedmodel:Q (X, θ) = Φ(θ0+θ1X1+θ2X2).

this feature is borne out by our simulation: our test rejects the
null hypothesis much more frequently for nearly all sample sizes.
To investigate the severity of this problem, we consider a further
model which includes an additional covariate. Define

X3 = Z1 + Z3√
2

,

where Z3 is a standard normal random variable independent of
Z1 and Z2. The data generating process for D∗ in this instance is
given by
D∗ = 1 + X1 + X2 + X1X2 + X3 − ε, ε ∼ N(0, σ 2),

where ε!(X1, X2, X3). The null and alternative hypotheses are as
before, but withQ (X, θ) = Φ(θ0+θ1X1+θ2X2+θ3X3). The results
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Table 5
Power.
n Proportion of rejections

1% level 5% level 10% level

c = 0.05

100 0.001 0.060 0.114
200 0.007 0.030 0.075
400 0.006 0.041 0.085
500 0.009 0.034 0.072
800 0.031 0.078 0.126

1000 0.047 0.109 0.177

c = 0.10

100 0.007 0.040 0.106
200 0.007 0.021 0.057
400 0.009 0.034 0.066
500 0.013 0.034 0.070
800 0.037 0.079 0.125

1000 0.054 0.113 0.170

c = 0.15

100 0.003 0.023 0.062
200 0.005 0.016 0.038
400 0.008 0.026 0.050
500 0.013 0.034 0.059
800 0.028 0.072 0.105

1000 0.055 0.106 0.152

DGP: D∗ = 1 + X1 + X2 − εi , ε ∼ U(−1, 1),
estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2).

Table 6
Power, Zheng (1996).

n Proportion of rejections
1% level 5% level 10% level

c = 0.05

100 0.002 0.031 0.075
200 0.001 0.034 0.097
400 0.007 0.048 0.102
500 0.014 0.069 0.125
800 0.031 0.108 0.172

1000 0.035 0.128 0.214

c = 0.10

100 0.003 0.040 0.108
200 0.008 0.061 0.115
400 0.038 0.112 0.188
500 0.049 0.152 0.245
800 0.139 0.315 0.423

1000 0.220 0.455 0.572

c = 0.15

100 0.006 0.047 0.105
200 0.018 0.081 0.144
400 0.090 0.199 0.282
500 0.121 0.291 0.396
800 0.360 0.547 0.663

1000 0.547 0.744 0.822

DGP: D∗ = 1 + X1 + X2 + X1X2 − εi , ε ∼ N(0, σ 2),
estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2).

of this comparison are presented in Tables 7 and 8. In this case,
with the additional covariate, we find that our test retains high
power at all sample sizes, but the highest power of the competing
test is approximately 20% and often much lower. Thus, we believe
that our test will be of great use in practice, especially when X is
high dimensional. Of course, it should be emphasized again that
this advantage of our test comes at the expense of power against
certain alternatives.

6. Empirical illustration

In this section, we provide an empirical illustration of our
testing procedure. Specifically, we model the probability of

Table 7
Power.
n Proportion of rejections

1% level 5% level 10% level

c = 0.05

100 0.036 0.104 0.149
200 0.160 0.266 0.342
400 0.494 0.627 0.695
500 0.670 0.780 0.829
800 0.922 0.962 0.979

1000 0.980 0.991 0.995

c = 0.10

100 0.063 0.118 0.158
200 0.252 0.379 0.437
400 0.628 0.743 0.807
500 0.784 0.870 0.908
800 0.973 0.991 0.994

1000 0.994 0.996 0.998

c = 0.15

100 0.068 0.110 0.153
200 0.279 0.402 0.449
400 0.682 0.791 0.831
500 0.821 0.894 0.922
800 0.987 0.994 0.998

1000 0.996 0.996 1.000

DGP: D∗ = 1 + X1 + X2 + X1X2 + X3 − εi , ε ∼ N(0, σ 2),
estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2 + θ3X3).

Table 8
Power, Zheng (1996).

n Proportion of rejections
1% level 5% level 10% level

c = 0.05

100 0.001 0.002 0.003
200 0.000 0.004 0.017
400 0.001 0.010 0.050
500 0.001 0.008 0.054
800 0.003 0.024 0.081

1000 0.001 0.033 0.104

c = 0.10

100 0.000 0.008 0.042
200 0.002 0.021 0.073
400 0.004 0.037 0.096
500 0.005 0.038 0.089
800 0.004 0.051 0.110

1000 0.019 0.072 0.135

c = 0.15

100 0.001 0.020 0.067
200 0.006 0.041 0.096
400 0.010 0.048 0.107
500 0.008 0.065 0.113
800 0.019 0.081 0.165

1000 0.044 0.143 0.220

DGP: D∗ = 1 + X1 + X2 + X1X2 + X3 − εi , ε ∼ N(0, σ 2),
estimated model: Q (X, θ) = Φ(θ0 + θ1X1 + θ2X2 + θ3X3).

motherhood in a subsample of the Danish population and test for
misspecification. Simonsen and Skipper (2006) use this as an input
into a matching analysis of the effects of motherhood on wages.

The available data set contains information on a representative
sample of 5% of all Danish individuals in the 15–74 age bracket.
Information stems from several registers all maintained by
Statistics Denmark. The registers include variables describing
socio-economic status on a yearly basis. In the empirical analysis
below, we use a 1997 cross-sectional subsample of about 29,000
women aged 20–40 years, who are employed more than 200
hours per year, who are not self-employed, and not undertaking
education.
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Table 9
Descriptive statistics, selected variables.

Variables Women
All Mothers Non-mothers

Log wages 4.80 4.81 4.79
(0.28) (0.26) (0.30)

Age (years) 29.72 32.87 25.88
(5.80) (4.20) (5.13)

Length of completed education (years) 12.23 12.20 12.26
(2.45) (2.42) (2.48)

Type of highest completed education:
General (0/1) 0.22 0.19 0.26
Business (0/1) 0.34 0.33 0.35
Industry (0/1) 0.01 0.01 0.01
Construction (0/1) 0.01 0.01 0.01
Graphical (0/1) 0.01 0.01 0.01
Services (0/1) 0.02 0.02 0.02
Food and beverages (0/1) 0.04 0.04 0.03
Agricultural (0/1) 0.01 0.01 0.01
Transportation (0/1) 0.00 0.00 0.00
Health 0.12 0.15 0.07
Pedagogic (0/1) 0.06 0.09 0.04
Humanistic (0/1) 0.03 0.03 0.03
Musical (0/1) 0.00 0.00 0.00
Social (0/1) 0.04 0.03 0.05
Technical (0/1) 0.02 0.01 0.02
Public security (0/1) 0.00 0.00 0.00
Unknown (0/1) 0.08 0.07 0.09

Province (0/1) 0.63 0.68 0.57
# observations 29,006 15,958 13,048

Table 9 shows selected descriptive statistics for the sample used
in our analysis along with descriptive statistics of mothers and
non-mothers. We classify women as mothers if they have given
birth to a child. 54.8% of thewomen in our sample weremothers in
1996. It is clear that mothers differ significantly from non-mothers
in terms of observables: mothers are on average seven years older
and are more likely to have an education directed towards the
health care sector or the schooling system. Furthermore, they are
more often settled outside Greater Copenhagen.

We model the propensity score by a standard probit and
consider two specifications:

Specification 1: X includes age dummies (20 or below, 20–22,
22–24, 24–26, 26–28, 28–30, 30–32, 32–34, 34–36, 36–38,
above 38), type of education, length of education given type,
nine regional dummies indicating place of habitation, and
interaction terms between age and type of education. This is the
specification used in Simonsen and Skipper (2006).
Specification 2: X is defined as in Specification 1 but interaction
terms between age and type of education are excluded.

For both of these specifications, we again test the null and
alternative hypotheses described in Section 4 with Q (X, θ) =
Φ(Xθ). Table 10 shows the test results.

It is worthwhile to point out that the heuristic from Section 3 is
not helpful in this case in the sense that the estimate α̂n

p
1−p f̂0,n(p)

closely resembles f̂1,n(p) regardless of the specification. For this
reason, we must rely upon the formal methodology developed in
Section 4. At the 5% significance level, we see that Specification
1 cannot be rejected, whereas Specifications 2 is clearly rejected
in most cases. It is reassuring that these conclusions are largely
insensitive to the choice of bandwidth, c .

7. Conclusion

In this paper, we have shown that the commonly computed
estimates of the densities of the propensity score conditional
on participation provide a means of examining whether the
parametric model for the propensity score is correctly specified.

In particular, correct specification of the propensity score implies
that a certain restriction between the estimated conditional
densities must hold. We have shown further that this restriction
is equivalent to an orthogonality restriction, which can be used as
the basis of a formal test for correct specification. While our test
does not have power against all forms of misspecification of the
propensity score, we argue that for a large class of alternatives our
test will perform better in finite samples than existing tests that
have power against all forms of misspecification. Our simulation
study of the finite sample behavior of our test corroborates this
claim. Since our test is also easily implemented, it is our hope that
this workwill persuade researchers to examine the specification of
their model for the propensity score, as its validity is essential for
consistency of their estimators.

Appendix

Throughout the following, we will use the notation a 0 b to
indicate that a ≤ cb for some constant c > 0.

A.1. Proof of Theorem 4.1

Let

εi = Di − Q (Xi, θ0)

and let f (x) = f (x, θ0). Note that

V̂n = V1,n − 2V2,n + V3,n + V4,n + V5,n,

where

V1,n =
∑

1≤i,j≤n:i'=j

εiεj

n(n − 1)h
K

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
(17)

V2,n =
∑

1≤i,j≤n:i'=j

εi(Q (Xj, θ̂n) − Q (Xj, θ0))

n(n − 1)h

× K

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

(18)

V3,n =
∑

1≤i,j≤n:i'=j

(Q (Xi, θ̂n) − Q (Xi, θ0))(Q (Xj, θ̂n) − Q (Xj, θ0))

n(n − 1)h

× K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
(19)

V4,n =
∑

1≤i,j≤n:i'=j

εiεj

n(n − 1)h

[
K
(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]
(20)

V5,n =
∑

1≤i,j≤n:i'=j

(Q (Xi, θ̂n) − Q (Xi, θ0))(Q (Xj, θ̂n) − Q (Xj, θ0))

n(n − 1)h

×
[

K

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]

.

(21)

We now analyze each of these terms separately.
Analysis of V1,n:

Let Zi = (εi, Xi) and note that V1,n may be written as a U-
statistic with kernel

Hn(Zi, Zj) = εiεj

h
K

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.
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Table 10
Results from specification tests.

Bandwidth c = 0.05 Bandwidth c = 0.10 Bandwidth c = 0.15 Share of correct predictions Pseudo-R2

Test statistic P-value Test statistic P-value Test statistic P-value

1. Full model 1.73 0.08 1.58 0.11 1.24 0.21 0.80 0.36
2. No cross-terms 3.61 0.00 4.58 0.00 5.34 0.00 0.80 0.35

In order to establish the asymptotic properties of V1,n, we
apply Lemma 3.2 of Zheng (1996). To this end, first note that
E[Hn(Zi, Zj)|Zi] = 0. Note further that

E[H2
n (Zi, Zj)] 0

∫∫
1
h2 K

2
(
q1 − q2

h

)
f (q1)f (q2)dq1dq2

0
∫∫

1
h
|K(u)|f (q)f (q − uh)dqdu

0
∫∫

1
h
|K(u)|f (q)dqdu = O

(
1
h

)

where the first inequality follows from the boundedness of εi, the
second follows from the boundedness of K(·), and the third follows
from the boundedness of f (·). Similarly, we have that

E[H4
n (Zi, Zj)] = O

(
1
h3

)
.

Let

Gn(Zi, Zj) = E[Hn(Zk, Zi)Hn(Zk, Zj)|Zi, Zj].
Note that

E[G2
n(Zi, Zj)] 0 E

[
E

[
1
h2

∣∣∣∣K
(
Q (Xk, θ0) − Q (Xi, θ0)

h

)∣∣∣∣

×
∣∣∣∣K

(
Q (Xk, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

∣∣∣∣ Zi, Zj
]2]

=
∫∫ [∫

1
h2

∣∣∣∣K
(
q3 − q1

h

)∣∣∣∣

∣∣∣∣K
(
q3 − q2

h

)∣∣∣∣ f (q3)dq3
]2

× f (q1)f (q2)dq1dq2

= 1
h

∫∫ [∫
|K(u)||K(u + v)|f (q1 + uh)du

]2

× f (q1 − vh)f (q1)dvdq1

0 1
h

∫∫ [∫
|K(u)||K(u + v)|du

]2

f (q1)dvdq1,

where the first inequality follows from the boundedness of εi and
the second inequality follows from the boundedness of f (·). Note
further that
∫ [∫

|K(u)||K(u + v)|du
]2

dv ≤
∫∫

K 2(u)K 2(u + v)dvdu

0
∫

|K(u)|
[∫

|K(u + v)|dv
]
du

≤
∫

|K(u)|
[∫

|K(z)|dz
]
du < ∞

where the first inequality follows from Jensen’s inequality and
Tonelli’s Theorem and the second inequality follows from the
boundedness of K(·). Thus,

E[G2
n(Zi, Zj)] = O

(
1
h

)
.

It follows that
E[G2

n(Zi, Zj)] + E[H4
n (Zi, Zj)]/n

E[H2
n (Zi, Zj)]2

→ 0,

so by Lemma 3.2 of Zheng (1996),

n
√
hV1,n

d→ N(0, Σ),

where

Σ = lim
n→∞

2hE[H2
n (Z1, Z2)].

Note that

2hE[H2
n (Zi, Zj)] = 2

∫∫
q1(1 − q1)q2(1 − q2)

h
K 2

(
q1 − q2

h

)

× f (q1)f (q2)dq1dq2

= 2
∫∫

q1(1 − q1)(q1 − uh)(1 − q1 + uh)K 2(u)f (q1)

× f (q1 − uh)dudq1

= 2
∫∫

q21(1 − q1)2K 2(u)f (q1)f (q1 − uh)dudq1

− h
∫∫

q1(1 − q1)(1 − 2q1)uK 2(u)f (q1)f (q1 − uh)dudq1

− h2
∫∫

q1(1 − q1)u2K 2(u)f (q1)f (q1 − uh)dudq1.

We may apply the Dominated Convergence Theorem to conclude
that

lim
n→∞

2hE[H2
n (Zi, Zj)] = 2

∫∫
q21(1 − q1)2K 2(u)f 2(q1)dudq1.

Analysis of V2,n:
Let

gn(Zi, Zj, θ) = εi(Q (Xj, θ) − Q (Xj, θ0)) + εj(Q (Xi, θ) − Q (Xi, θ0))

2(n − 1)
√
h

× K
(
Q (Xi, θ) − Q (Xj, θ)

h

)
.

Using this notation, we may write

n
√
hV2,n =

∑

1≤i,j≤n:i'=j

ψ1,n(Zi, Zj, θ̂n) +
∑

1≤i≤n

ψ2,n(Zi, θ̂n), (22)

where
ψ1,n(Zi, Zj, θ) = gn(Zi, Zj, θ) − E[gn(Zi, Zj, θ)|Zi]

− E[gn(Zi, Zj, θ)|Zj]
ψ2,n(Zi, θ) = E[2(n − 1)gn(Zi, Zj, θ)|Zi].
Note that the sums in (22) are degenerate U-statistics of degree 2
and degree 1, respectively. We will use Lemma 3 of Heckman et al.
(1998b) to show that both of these sums tend to zero in probability.
To this end, let 0 < δn → ∞, but so slowly that

√
hδ2

n → 0. Define

Ψ1,n = {ψ1,n(Zi, Zj, θ) : θ ∈ Θn}
Ψ2,n = {ψ2,n(Zi, θ) : θ ∈ Θn},
where

Θn = {θ ∈ Θ : √
n‖θ − θ0‖ ≤ δn}.

In order to apply the lemma to the first sum, first note that for
θ ∈ Θn and θ ′ ∈ Θn
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|ψ1,n(Zi, Zj, θ) − ψ1,n(Zi, Zj, θ ′)| 0 ‖θ − θ ′‖
(n − 1)

√
h
(G(Xi) + G(Xj) + 1)

≤ δn

(n − 1)
√
nh

(G(Xi) + G(Xj) + 1) = F1,n(Zi, Zj), (23)

where the first inequality follows from the boundedness of εi, the
boundedness of K(·), and the Lipschitz continuity of Q (x, θ) w.r.t.
θ and the final equality is a definition. Hence,

∑

1≤i,j≤n:i'=j

E[F1,n(Zi, Zj)2] 0 δ2
n

(n − 1)h
= o(1),

where the inequality follows from the assumption on themoments
of G(Xi). Next, note that the required condition on the covering
numbers of Ψ1,n follows from (23) and Theorem 2.7.11 of van der
Vaart and Wellner (1996). Finally, note that

E[(ψ1,n(Zi, Zj, θ) − ψ1,n(Zi, Zj, θ ′))2] 0 δ2
n

(n − 1)2nh
= o(1).

Since θ̂n ∈ Θn with probability tending to one, it follows from the
lemma that the first sum in (22) tends to zero in probability.

In order to apply the lemma to the second sum, let p = 4 and
q = 4/3 and note that for θ ∈ Θn and θ ′ ∈ Θn

|ψ2,n(Zi, θ) − ψ2,n(Zi, θ ′)| 0 ‖θ − θ ′‖√
h

× E
[
G(Xj)

∣∣∣∣K
(
Q (Xi, θ) − Q (Xj, θ)

h

)∣∣∣∣ Zi
]

≤ ‖θ − θ ′‖√
h

E[G(Xj)
p|Zi]1/pE

[∣∣∣∣K
(
Q (Xi, θ) − Q (Xj, θ)

h

)∣∣∣∣
q∣∣∣∣ Zi

]1/q

0 ‖θ − θ ′‖h1/4

≤ δnh1/4
√
n

= F2,n(Zi), (24)

where the first inequality follows from the boundedness of εi and
the Lipschitz continuity of Q (x, θ) w.r.t. θ , the second inequality
follows from Holder’s inequality, the third inequality follows from
the assumptions on the moments of G(Xi) and earlier arguments,
and the equality is a definition. Hence,
∑

1≤i≤n

E[F2,n(Zi)2] =
√
hδ2

n = o(1).

Next, note that the required condition on the covering numbers of
Ψ2,n follows from (24) and Theorem 2.7.11 of van der Vaart and
Wellner (1996). Finally, note that

E[(ψ2,n(Zi, θ) − ψ2,n(Zi, θ ′))2] 0
√
hδ2

n

n
= o(1).

Since θ̂n ∈ Θn with probability tending to one, it follows from the
lemma that the second sum in (22) tends to zero in probability.
Analysis of V3,n:

Note that

n
√
h|V3,n| 0 n‖θ̂n − θ0‖2Sn,

where

Sn =
∑

1≤i,j≤n:i'=j

G(Xi)G(Xj)

n(n − 1)
√
h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣ .

Let p = (4 + δ)/2 and 1/q = 1 − 1/p and note that

E[Sn] = E
[
G(Xi)G(Xj)√

h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

]

≤ 1√
h
E[Gp(Xi)Gp(Xj)]1/pE

[∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣
q]1/q

≤ h1/q
√
h
E[G2p(Xi)]1/(2p)E[G2p(Xj)]1/(2p)

× E
[
1
h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣
q]1/q

0 h1/q
√
h

where the first inequality follows from Holder’s inequality, the
second inequality follows from the Cauchy–Schwartz inequality,
and the third inequality follows from the assumptions on the
moments of G(Xi) and earlier arguments. Thus, by Markov’s
inequality, Sn = OP(h1/q/

√
h) = oP(1). Hence,

n
√
h|V3,n| = oP(1).

Analysis of V4,n:
Write

n
√
hV4,n =

∑

1≤i,j≤n:i'=j

ψn(Zi, Zj, θ̂n),

where

ψn(Zi, Zj, θ) = εiεj

(n − 1)
√
h

[
K

(
Q (Xi, θ) − Q (Xj, θ)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]
.

This is a degenerate U-statistic of degree 2. We will use Lemma
3 of Heckman et al. (1998b) to show that this sum tends to zero
in probability. To this end, let 0 < δn → ∞, but so slowly that
δ2
n/(nh

3) → 0. Define
Ψn = {ψn(Zi, Zj, θ) : θ ∈ Θn},
where
Θn = {θ ∈ Θ : √

n‖θ − θ0‖ ≤ δn}.
In order to apply the lemma, first note that for θ ∈ Θn and

θ ′ ∈ Θn

|ψn(Zi, Zj, θ) − ψn(Zi, Zj, θ ′)| 0 ‖θ − θ ′‖
(n − 1)h3/2 (G(Xi) + G(Xj))

≤ δn

(n − 1)
√
nh3

(G(Xi) + G(Xj)) = Fn(Zi, Zj), (25)

where the first inequality follows from the boundedness of εi, the
Lipschitz continuity of K(·) and the Lipschitz continuity of Q (x, θ)
w.r.t. θ and the final equality is a definition. Hence,

∑

1≤i,j≤n:i'=j

E[Fn(Zi, Zj)2] 0 δ2
n

(n − 1)h3 = o(1),

where the first inequality follows from the assumption on the
moments of G(Xi). Next, note that the required condition on the
covering numbers of Ψn follows from (25) and Theorem 2.7.11
of van der Vaart and Wellner (1996). Finally, note that

E[(ψn(Zi, Zjθ) − ψn(Zi, Zj, θ ′))2] 0 δ2
n

(n − 1)2nh3 = o(1).

Since θ̂n ∈ Θn with probability tending to one, it follows from the
lemma that the sum tends to zero in probability.
Analysis of V5,n:

Note that∣∣∣∣∣K

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣∣

0 ‖θ̂n − θ0‖
h

(G(Xi) + G(Xj)).

Hence,
|V5,n| ≤‖ θ̂n − θ0‖3Sn,
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where

Sn =
∑

i'=j

G(Xi)G(Xj)(G(Xi) + G(Xj))

n(n − 1)h2 .

Note that

E[Sn] = E
[
G(Xi)G(Xj)(G(Xi) + G(Xj))

h2

]
= O

(
1
h2

)
,

where the second equality follows from the Cauchy–Schwartz
inequality. Hence, by Markov’s inequality,

n
√
h|V5,n| = OP

(
1√
nh3

)
= oP(1).

Consistency of Σ̂n:
We now argue that

Σ̂n
P→ Σ.

To this end, let

Σn,0 =
∑

1≤i,j≤n:i'=j

2ε2
i ε

2
j

n(n − 1)h
K 2

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)

and note that

|Σ̂n − Σn,0| ≤ S1,n + S2,n,

where

S1,n =
∑

1≤i,j≤n:i'=j

∣∣∣∣∣
2(ε̂2

i ε̂
2
j − ε2

i ε
2
j )

n(n − 1)h
K 2

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)∣∣∣∣∣

S2,n =
∑

1≤i,j≤n:i'=j

∣∣∣∣∣
2ε2

i ε
2
j

n(n − 1)h

[
K 2

(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K 2
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]∣∣∣∣ .

We will now argue that both of these sums tend to zero in
probability.

Consider first S1,n. Note that

ε̂iε̂j − εiεj = (Q (Xi, θ0) − Q (Xi, θ̂n))εj + (Q (Xj, θ0)

−Q (Xj, θ̂n))ε̂i. (26)

Hence,

S1,n 0 ‖θ̂n − θ0‖
h

∑

1≤i,j≤n:i'=j

G(Xi) + G(Xj)

n(n − 1)
.

Note that

‖θ̂n − θ0‖
h

= OP

(
1√
nh

)
= oP(1).

Since

E

[
∑

1≤i,j≤n:i'=j

G(Xi) + G(Xj)

n(n − 1)

]

< ∞,

it follows by Markov’s inequality that
∑

1≤i,j≤n:i'=j

G(Xi) + G(Xj)

n(n − 1)
= OP(1).

Thus, S1,n = oP(1).
Now consider S2,n. Note that

S2,n 0 ‖θ̂n − θ0‖
h2

∑

1≤i,j≤n:i'=j

G(Xi) + G(Xj)

n(n − 1)
.

Since

‖θ̂n − θ0‖
h2 = OP

(
1√
nh2

)
= oP(1),

we have as before that S2,n = oP(1).
Hence,

Σ̂n = Σn,0 + oP(1).

We now analyze the asymptotic behavior of Σn,0. Note that Σn,0
may be written as a U-statistic with kernel

Hn(Zi, Zj) =
2ε2

i ε
2
j

h
K 2

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

Moreover,

E[‖Hn(Zi, Zj)‖2] 0 E
[
1
h2 K

4
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]
= O

(
1
h

)
.

Hence, by Lemma 3.1 of Powell et al. (1989), we have that

Σn,0 = E[Hn(Zi, Zj)] + 2
n

∑

1≤i≤n

(E[Hn(Zi, Zj)|Zi]

− E[Hn(Zi, Zj)]) + oP
(

1√
n

)
.

Since

|E[Hn(Zi, Zj)|Zi]| 0 E
[
1
h
K 2

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]
< ∞,

we have by Chebychev’s inequality that

Σn,0 = E[Hn(Zi, Zj)] + oP(1).

Wemay rewrite E[Hn(Zi, Zj)] as
∫∫

2q1(1 − q1)q2(1 − q2)
h

K 2
(
q1 − q2

h

)
f (q1)f (q2)dq1dq2

=
∫∫

2q1(1 − q1)(q1 − uh)(1 − q1 + uh)K 2(u)

× f (q1)f (q1 − uh)dq1du

=
∫∫

2q21(1 − q1)2K 2(u)f (q1)f (q1 − uh)dq1du

+ h
∫∫

2q1(1 − q1)(1 − 2q1)uK 2(u)f (q1)f (q1 − uh)dq1du

+ h2
∫∫

2q1(1 − q1)u2K 2(u)f (q1)f (q1 − uh)dq1du.

We may apply the Dominated Convergence Theorem to conclude
that

lim
n→∞

E[Hn(Zi, Zj)] = 2
∫∫

q21(1 − q1)2K 2(u)f 2(q1)dq1du = Σ,

as desired.

A.2. Proof of Theorem 4.2

Consider first V̂n. Let Zi = (εi, Xi) and

εi = Di − Q (Xi, θ0).

Define

Vn,0 =
∑

1≤i,j≤n:i'=j

εiεj

n(n − 1)h
K

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

Using arguments similar to those used to establish consistency of
Σ̂n in the proof of Theorem 4.1, we can show that

V̂n = Vn,0 + oP(1)
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and, using Lemma 3.1 of Powell et al. (1989), we can show that
Vn,0 = E[H1,n(Zi, Zj)] + oP(1),
where

H1,n(Zi, Zj) = εiεj

h
K

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

Wemay rewrite E[H1,n(Zi, Zj)] as∫∫
(r(q1) − q1)(r(q2) − q2)

h
K

(
q1 − q2

h

)
f (q1)f (q2)dq1dq2

=
∫∫

(r(q1) − q1)(r(q1 − uh) − q1 + uh)K(u)

× f (q1)f (q1 − uh)dq1du

=
∫∫

(r(q1) − q1)(r(q1 − uh) − q1)K(u)f (q1)f (q1 − uh)dq1du

+ h
∫∫

(r(q1) − q1)uK(u)f (q1)f (q1 − uh)dq1du.

We may apply the Dominated Convergence Theorem to conclude
that

lim
n→∞

E[H1,n(Zi, Zj)] =
∫

(h(q1) − q1)2f 2(q1)dq1 > 0,

where the final inequality follows from the assumption that
E[Di|Q (Xi, θ0)] = Q (Xi, θ0) with probability strictly less than 1.

Now consider Σ̂n. Let

Σn,0 =
∑

1≤i,j≤n:i'=j

2ε2
i ε

2
j

n(n − 1)h
(E[Di|Q (Xi, θ0)] − 2E[Di|Q (Xi, θ0)]

+Q (Xi, θ0)
2).

Using arguments similar to those used to establish consistency of
Σ̂n in the proof of Theorem 4.1, we can show that
Σ̂n = Σn,0 + oP(1)
and, using Lemma 3.1 of Powell et al. (1989), that
Σn,0 = E[H2,n(Zi, Zj)] + oP(1),
where

H2,n(Zi, Zj) =
2ε2

i ε
2
j

h
K 2

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

Wemay rewrite E[H2,n(Zi, Zj)] as
∫∫

2(r(q1) − 2r(q1)q1 + q21)(r(q2) − 2r(q2)q2 + q22)
h

× K 2
(
q1 − q2

h

)
f (q1)f (q2)dq1dq2

=
∫∫

2(r(q1) − 2r(q1)q1 + q21)(r(q1 − uh) − 2r(q1 − uh)

× (q1 − uh) + (q1 − uh)2)K 2(u)f (q1)f (q1 − uh)dq1du

=
∫∫

2(r(q1) − 2r(q1)q1 + q21)(r(q1 − uh)

− 2r(q1 − uh)q1 + q21)K
2(u)f (q1)f (q1 − uh)dq1du

− h
∫∫

4(r(q1) − 2r(q1)q1 + q21)(r(q1 − uh) − q1)uK 2(u)

× f (q1)f (q1 − uh)dq1du − h2
∫∫

2(r(q1)

− 2r(q1)q1 + q21)u
2K 2(u)f (q1)f (q1 − uh)dq1du.

We may apply the Dominated Convergence Theorem to conclude
that

lim
n→∞

E[H2,n(Zi, Zj)] = 2
∫

(h(q1) − 2h(q1)q1 + q21)
2f 2(q1)dq1,

as desired.

A.3. Proof of Theorem 4.3

Let

εi = Di − Q (Xi, θ0)

and let f (x) = f (x, θ0). As in the proof of Theorem 4.1, we may
write

V̂n = V1,n − 2V2,n + V3,n + V4,n + V5,n,

where V1,n, . . . , V5,n are defined by (17)–(21). We now analyze
each of these terms separately.
Analysis of V1,n:

Let αn = 1/(
√
nh1/4) and define

ui = εi − αn*(Q (Xi, θ0)) = Di − E[Di|Q (Xi, θ0)].
Using this notation, we may write

V1,n = VA
1,n + αnV B

2,n + α2
nV

C
3,n,

where

VA
1,n =

∑

1≤i,j≤n:i'=j

uiuj

n(n − 1)h
K

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)

VB
2,n =

∑

1≤i,j≤n:i'=j

ui*(Q (Xj, θ0)) + uj*(Q (Xi, θ0))

n(n − 1)h

× K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)

VC
3,n =

∑

1≤i,j≤n:i'=j

*(Q (Xj, θ0))*(Q (Xi, θ0))

n(n − 1)h

× K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

It follows from the analysis of V1,n in the proof of Theorem 4.1 that

n
√
hVA

1,n
d→ N(0, Σ),

where Σ is given by (11). We now analyze the remaining two
terms.

Consider first VB
1,n. We may write VB

2,n as a U-statistic with
kernel

H1,n(Zi, Zj) = ui*(Q (Xj, θ0)) + uj*(Q (Xi, θ0))

h

× K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
,

where Zi = (ui, Xi). Note that

E[‖H1,n(Zi, Zj)‖2] 0 E
[
1
h2

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

]

= O
(
1
h

)
= o(n),

where the inequality follows from the boundedness of ui and
*(Q (Xi, θ0)). Hence, by Lemma 3.1 of Powell et al. (1989), we have
that
√
nVB

1,n = √
nE[H1,n(Zi, Zj)] + 1√

n

∑

1≤i≤n

(E[H1,n(Zi, Zj)|Zi]

− E[H1,n(Zi, Zj)]) + oP(1).

Since E[H1,n(Zi, Zj)] = 0 and

|E[H1,n(Zi, Zj)|Zi]| 0 E
[
1
h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

]
< ∞,

we have by Chebychev’s inequality that
√
nVB

1,n = OP(1).
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It follows that

n
√
hαnV B

2,n = h1/4√nVB
1,n = oP(1).

Now consider VC
1,n. We may write n

√
hα2

nV
C
1,n = VC

1,n as a
U-statistic with kernel

H2,n(Zi, Zj) = *(Q (Xj, θ0))*(Q (Xi, θ0))

h
K

(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

Since

E[‖H1,n(Zi, Zj)‖2] 0 E
[
1
h2

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

]

= O
(
1
h

)
= o(n),

we have by Lemma 3.1 of Powell et al. (1989) that

VC
1,n = E[H2,n(Zi, Zj)] + 1

n

∑

1≤i≤n

(E[H2,n(Zi, Zj)|Zi]

− E[H2,n(Zi, Zj)]) + oP
(

1√
n

)
.

Since

|E[H2,n(Zi, Zj)|Zi]| 0 E
[
1
h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

]
< ∞,

we have by Chebychev’s inequality that

VC
1,n = E[H2,n(Zi, Zj)] + oP(1).

To complete the argument note that

E[H2,n(Zi, Zj)] =
∫∫

*(q1)*(q2)
h

K
(
q1 − q2

h

)
f (q1)f (q2)dq1dq2

=
∫∫

*(q1)*(q1 − uh)K(u)f (q1)f (q1 − uh)dq1du.

We may apply the Dominated Convergence Theorem to conclude
that

lim
n→∞

E[H2,n(Zi, Zj)] =
∫

*2(q1)f 2(q1)dq1.

It follows that

n
√
hV1,n

d→ N
(∫

*2(q1)f 2(q1)dq1, Σ

)
.

Analysis of V2,n:
We may write

V2,n = VA
2,n + αnV B

2,n,

where

VA
2,n =

∑

1≤i,j≤n:i'=j

ui(Q (Xj, θ̂n) − Q (Xj, θ0))

n(n − 1)h

× K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)

VB
2,n =

∑

1≤i,j≤n:i'=j

*(Q (Xi, θ0))(Q (Xj, θ̂n) − Q (Xj, θ0))

n(n − 1)h

× K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)
.

It follows from the analysis of V2,n in the proof of Theorem 4.1 that

n
√
hVA

2,n = oP(1).

We now analyze the remaining term.

Note that

|n
√
hαnV B

2,n| ≤ √
n‖θ̂n − θ0‖h1/4Sn,

where

Sn =
∑

1≤i,j≤n:i'=j

G(Xj)

n(n − 1)h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣ .

Furthermore,

E[Sn] = E
[
G(Xj)

h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

]

= E
[
G(Xj)E

[
1
h

∣∣∣∣K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)∣∣∣∣

∣∣∣∣ Zj
]]

0 E[G(Xj)] < ∞.

Thus, by Markov’s inequality, Sn = OP(1), which implies that

n
√
hαnV B

2,n = oP(1).

Analysis of V3,n:
SinceV3,n does not dependon εi, the proof of Theorem4.1 shows

that

n
√
hV3,n = oP(1).

Analysis of V4,n:
We may write

V4,n = VA
4,n + αnV B

4,n + α2
nV

C
4,n,

where

VA
4,n =

∑

1≤i,j≤n:i'=j

uiuj

n(n − 1)h

[
K
(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)
.

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]

VB
4,n =

∑

1≤i,j≤n:i'=j

ui*(Q (Xj, θ0)) + uj*(Q (Xi, θ0))

n(n − 1)h

×
[
K
(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]

VC
4,n =

∑

1≤i,j≤n:i'=j

*(Q (Xj, θ0))*(Q (Xi, θ0))

n(n − 1)h

×
[
K
(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]
.

It follows from the analysis of V4,n in the proof of Theorem 4.1 that

n
√
hVA

4,n = oP(1).

We now analyze the remaining two terms.
Consider first VB

4,n. Let

gn(Zi, Zj, θ) = αn
ui*(Q (Xj, θ0)) + uj*(Q (Xi, θ0))

(n − 1)
√
h

×
[
K
(
Q (Xi, θ̂n) − Q (Xj, θ̂n)

h

)

− K
(
Q (Xi, θ0) − Q (Xj, θ0)

h

)]
.
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Using this notation, we may write

n
√
hαnV B

4,n =
∑

1≤i,j≤n:i'=j

ψ1,n(Zi, Zj, θ̂n) +
∑

1≤i≤n

ψ2,n(Zi, θ̂n) , (27)

where
ψ1,n(Zi, Zj, θ) = gn(Zi, Zj, θ) − E[gn(Zi, Zj, θ)|Zi]

− E[gn(Zi, Zj, θ)|Zj]
ψ2,n(Zi, θ) = E[2(n − 1)gn(Zi, Zj, θ)|Zi].
Note that the sums in (27) are degenerate U-statistics of degree 2
and degree 1, respectively. We will use Lemma 3 of Heckman et al.
(1998b) to show that both of these sums tend to zero in probability.
To this end, let 0 < δn → ∞, but so slowly that

√
hδ2

n → 0. Define

Ψ1,n = {ψ1,n(Zi, Zj, θ) : θ ∈ Θn}
Ψ2,n = {ψ2,n(Zi, θ) : θ ∈ Θn},
where

Θn = {θ ∈ Θ : √
n‖θ − θ0‖ ≤ δn}.

In order to apply the lemma to the first sum, first note that for
θ ∈ Θn and θ ′ ∈ Θn

|ψ1,n(Zi, Zj, θ) − ψ1,n(Zi, Zj, θ ′)| 0 αn‖θ − θ ′‖
(n − 1)h3/2 (G(Xi) + G(Xj))

≤ αnδn√
n(n − 1)h3/2

(G(Xi) + G(Xj)) = F1,n(Zi, Zj), (28)

where the first inequality follows from the boundedness of ui, the
Lipschitz continuity of K(·), and the Lipschitz continuity of Q (x, θ)
w.r.t. θ and the final equality is a definition. Hence,

∑

1≤i,j≤n:i'=j

E[F1,n(Zi, Zj)2] 0 δ2
n

n(n − 1)h7/2 = o(1),

where the inequality follows from the assumption on themoments
of G(Xi). Next, note that the required condition on the covering
numbers of Ψ1,n follows from (28) and Theorem 2.7.11 of van der
Vaart and Wellner (1996). Finally, note that

E[(ψ1,n(Zi, Zj, θ) − ψ1,n(Zi, Zj, θ ′))2] 0 δ2
n

n2(n − 1)2h7/2 = o(1).

Since θ̂n ∈ Θn with probability tending to one, it follows from the
lemma that the first sum in (27) tends to zero in probability.

In order to apply the lemma to the second sum, note that for
θ ∈ Θn and θ ′ ∈ Θn

|ψ2,n(Zi, θ) − ψ2,n(Zi, θ ′)| 0 αn‖θ − θ ′‖
h3/2 (G(Xi) + 1)

≤ αnδn√
nh3/2

= F2,n(Zi), (29)

where the first inequality follows from the boundedness of ui, the
Lipschitz continuity of K(·), and the Lipschitz continuity of Q (x, θ)
w.r.t. θ , and the equality is a definition. Hence,
∑

1≤i≤n

E[F2,n(Zi)2] = δ2
n

nh2 = o(1).

Next, note that the required condition on the covering numbers of
Ψ2,n follows from (29) and Theorem 2.7.11 of van der Vaart and
Wellner (1996). Finally, note that

E[(ψ2,n(Zi, θ) − ψ2,n(Zi, θ ′))2] 0 δ2
n

n2h2 = o(1).

Since θ̂n ∈ Θn with probability tending to one, it follows from the
lemma that the second sum in (27) tends to zero in probability.

Now consider VC
4,n. Note that

n
√
hα2

nV
C
4,n = VC

4,n 0 ‖θ̂n − θ0‖
h2 Sn,

where

Sn =
∑

1≤i,j≤n:i'=j

G(Xi) + G(Xj)

n(n − 1)
.

Since

E[Sn] < ∞,

we have by Markov’s inequality that

Sn = OP(1) .

Hence,

n
√
hα2

nV
C
4,n = OP

(
1√
nh2

)
= oP(1).

Analysis of V5,n:
SinceV5,n does not dependon εi, the proof of Theorem4.1 shows

that

n
√
hV5,n = oP(1),

which completes the proof.
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