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1 Introduction

In their paper, “Invidious Comparisons: Ranking and Selection as Compound Decisions,” the authors, Gu

and Koenker, masterfully develop an empirical Bayes approach to the problem of choosing the “best” (or,

equivalently, “worst”) of n populations indexed by i = 1, . . . , n, where “best” is measured in terms of a feature

of interest that is denoted by θi. There is, of course, abundant motivation for considering this problem in

the economics literature. Two especially compelling examples are provided by recent interest in ranking

teachers according to measures of teacher value-added (Chetty et al., 2014a,b) and ranking neighborhoods

according to measures of intergenerational mobility (Chetty et al., 2014c; Chetty and Hendren, 2018a,b).

In this comment on their paper, we first briefly summarize in Section 2 the most general framework for

the problem that they consider. We then specialize their framework so as to highlight a connection (already

noted by the authors themselves) to the multiple testing literature. By doing so, we facilitate a comparison

in Section 3 with a closely related multiple testing problem considered in Mogstad et al. (2020). Throughout

our discussion, in addition to some key distinctions in the asymptotic framework employed in each paper, we

emphasize two additional differences: differences in the choice of error rate for each multiple testing problem

and differences in the way in which the θi are treated. In Section 4, we discuss the practical importance of

these differences. To further emphasize what we feel are important distinctions in the interpretation of the

results provided by the two methods, we cast this discussion in the context of the aforementioned teacher

value-added example. In short, we argue that it may be politically more palatable to make consequential

decisions, such as deciding which teachers lose their jobs, when employing a more stringent error rate

that holds for each value of θ = (θ1, . . . , θn) (rather than a more permissive error rate that only holds in

expectation over θ). By doing so, it is possible to defend these decisions with statements such as “with

high probability, no teachers were fired incorrectly.” Finally, in Section 5, we conclude with a comparison of

applications of their methodology and ours to data from Chetty et al. (2018). Motivated by the “Creating

Moves To Opportuntiy” experiment described in Bergman et al. (2020), we consider selecting the “best”

commuting zones in terms of a measure of intergenerational mobility, to which families may relocate.

2 Overview of Gu and Koenker (2021)

In the setting of Gu and Koenker (2021), the features of interest θi are, of course, unknown, but it is

assumed that for each population repeated measurements of the underlying θi are observed. More precisely,

the observed measurements are given by Yi,t = θi + σiεi,t with εi,t, i = 1, . . . , n, t = 1, . . . , Ti i.i.d. ∼ N(0, 1).

A key assumption underlying the empirical Bayes approach is that these signals are further related in some

way. For example, for part of their analysis, Gu and Koenker assume that θi, i = 1, . . . , n are i.i.d. ∼ G and

σ2
i is known, but later also consider the case where σ2

i is unknown and also modeled as being i.i.d. jointly

with θi. A population i is formally defined to be among the “best” if θi ≥ θα, where θα is the 1−α quantile of

the marginal distribution of θi according to G. Gu and Koenker use the following loss function to discipline

their decisions about which populations are in fact the “best”:

L(δ, θ) =
∑

1≤i≤n

I{θi ≥ θα}(1− δi) + τ1

 ∑
1≤i≤n

{I{θi < θα}δi − γδi}

 + τ2

 ∑
1≤i≤n

δi − αn

 ,
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where θ = (θ1, . . . , θn) and δ = (δ1, . . . , δn) indexes decisions about each population and δi = 1 if and only

if the ith population is selected as being among the “best.” Here, α, τ1, τ2 and γ are parameters of the loss

function to be specified by the researcher. The first term in the loss function disciplines false non-discoveries,

meaning failing to select a population when it is in fact among the “best”; the second term disciplines false

discoveries, meaning selecting a unit when it is in fact not among the “best”; and the third term disciplines

the overall number of selected populations. The authors then choose δ so as to minimize the risk given by

E[L(δ, θ)], where, importantly, the expectation is over both θi and σ2
i as well as the measurements themselves.

The decision rule obtained in this way is infeasible because it depends on G, which is unknown, but the

authors assume that it is suitably estimable in their asymptotic framework, in which n tends to infinity.

By replacing G with this estimate, a feasible decision rule is obtained, and, under certain assumptions, it

performs approximately as well as the infeasible rule when n is large.

For the purposes of our discussion, it is convenient to assume τ2 = 0. As noted by Gu and Koenker

(2021), when this is the case, for a suitably chosen value of τ1, the problem is closely related to testing the

family of null hypotheses

Hi : θi ≥ θα versus Ki : θi < θα (1)

in a suitable way. In particular, for an appropriately chosen value of τ1, the problem is equivalent to

testing this family of null hypotheses so as to minimize false non-discoveries as measured by the quantity

E[
∑

1≤i≤n I{θi ≥ θα}(1− δi)] subject to controlling the marginal false discovery rate, meaning mFDR ≤ γ,

where

mFDR =

∑
1≤i≤nE[I{θi < θα}δi]∑

1≤i≤nE[δi]
.

As shown by Genovese and Wasserman (2002), in the asymptotic framework considered by Gu and Koenker,

in which n tends to infinity, the marginal false discovery rate is approximately equal to the more familiar

false discovery rate, denoted by FDR and defined to be

FDR = E

[∑
1≤i≤n I{θi < θα}δi∑

1≤i≤n δi

]
. (2)

For later comparison, we reiterate one of our prior points: the expectations above are over both θi and σ2
i

as well as the measurements themselves.

3 Connection with Mogstad et al. (2020)

We now describe a way in which the above problem connects to one pursued in Mogstad et al. (2020). In

order to do so, it is helpful to highlight first some important differences in the frameworks employed by

both papers. Mogstad et al. (2020) treat the θi as fixed, unknown parameters, whereas Gu and Koenker

treat them as being random according to (the marginal distribution of) G; furthermore, Mogstad et al.

(2020) employ an asymptotic framework in which n remains fixed, whereas Gu and Koenker employ one

in which n tends to infinity in order to facilitate estimation of G. We note, however, that Mogstad et al.

(2020) rely upon suitably well behaved estimators of θi and σ2
i . For this purpose, the authors typically rely

upon an asymptotic framework in which min1≤i≤n Ti tends to infinity, whereas Gu and Koenker allow this

to remain fixed and instead require a normality assumption. As an estimator of θi, it is natural to employ
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Ȳi = 1
Ti

∑
1≤t≤Ti

Yi,t, which, under the assumptions of Gu and Koenker is distributed as N(θi, σ
2
i /Ti). To

aid our exposition below, it is convenient to assume that σ2
i is known, but we emphasize that this is not

required in general.

With these distinctions in mind, we note that the counterpart to the null hypothesis Hi in (1) is H̃i :

ri/n ≤ α, where

ri = 1 +
∑

1≤j≤n

I{θi > θj} (3)

is the “rank” of the ith population. Mogstad et al. (2020) develop methods for testing the family of null

hypotheses

H̃i : ri/n ≤ α versus K̃i : ri/n > α (4)

in a way that controls the familywise error rate, meaning FWERθ ≤ γ for all values of θ, where

FWERθ = P

 ∑
1≤i≤n

δiI{ri ≤ α} > 1

 . (5)

The subscripting by θ here is intended to emphasize that the probability in (5) treats θ as fixed. We also

note that the requirement that this holds for all values of θ is not innocuous: not only does the distribution

of the measurements change with θ, but so too does the set of null hypotheses that are true (or false), i.e.,

the identities of the populations i for which ri/n ≤ α. As explained, e.g., in Hall and Miller (2009), the

possibility of (near) ties among the θi raises particular challenges. While it is not presented in this way in

Mogstad et al. (2020), such a testing procedure can be obtained by constructing what the authors refer to as

a confidence set for the p-best of level 1−γ with p = bαnc and rejecting H̃i if and only if i is not contained in

the resulting confidence set. Such a confidence set contains the identities of all populations i with ri/n ≤ α
with probability at least 1− γ. It is important to draw attention to the fact that the probability calculation

in the definition of the familywise error rate involves uncertainty about only the measurements, not about

the θi, which are treated as fixed and unknown. We also note that in practice (e.g., when σ2
i is unknown)

control of the familywise error rate is only achieved asymptotically, but, under the assumptions maintained

here, it may be controlled in finite samples. See also Bazylik et al. (2021) for other instances in which

finite-sample validity may be achieved. Of course, it is possible to demand control of other error rates, such

as the false discovery rate, but a similar caveat would apply: the expectation involved in the calculation of

the false discovery rate would now only involve uncertainty about the measurements. Formally, one would

require FDRθ ≤ γ for all values of θ, where

FDRθ = E

[∑
1≤i≤n I{ri ≤ α}δi∑

1≤i≤n δi

]
. (6)

As before, the subscripting by θ is intended to emphasize that the expectation in (6) treats θ as fixed. Methods

for control of the false discovery rate remains an active area of research and is especially challenging when

one seeks to incorporate information about dependence across the statistics by which each null hypothesis

is being assessed. Such methods are especially salient here because ri defined in (3) depends not only on θi,

but also θj for j 6= i. Some relevant methodology is developed in Romano et al. (2008a).
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4 Discussion

We now turn our attention to the practical importance of two distinctions highlighted by the above discussion

– differences in the choice of which error rate to control as well as differences in the way in which the θi are

treated. To facilitate this discussion, it is helpful to consider a specific example, such as selecting the “best”

teachers in terms of teacher value-added. Here, θi is the value-added of the ith teacher and “best” means

being among the top α fraction of all teachers in terms of θi. Teachers who are deemed as not being among

the “best” may face consequences, including possibly losing their jobs (see, e.g., Hanushek (2011)).

Differences in the error rate: If one were to demand FWERθ ≤ γ for all θ as in Mogstad et al. (2020),

then one obtains decisions such that the probability of incorrectly classifying any teacher as not being

among the “best” is no more than γ. Informally, with probability at least 1− α, no teachers are fired

wrongly, regardless of the value of θ. Can an analogous statement be made if one were to demand

FDRθ ≤ γ for all θ, where FDRθ is defined in (6)? It is difficult to do so. To appreciate why, note

that FDRθ is the expected value of the fraction of total discoveries that are false – also known as the

false discovery proportion, denoted by FDPθ and defined to be

FDPθ =

∑
1≤i≤n I{ri ≤ α}δi∑

1≤i≤n δi
. (7)

Unfortunately, control of the expected value of the FDPθ does little to discipline its distribution. Some

restrictions can, however, be obtained. Markov’s inequality implies, e.g., that for any 0 < c < 1 ,

P {FDPθ > c} ≤ FDRθ
c

≤ γ

c
. (8)

Hence, the probability of incorrectly classifying more than a fraction c of teachers as not being among

the “best” is no more than γ/c. Informally, with probability at least 1− γ/c, the fraction of teachers

who are fired wrongly is at most c, regardless of the value of θ. For this statement to be meaningful,

however, we require that c is both small and large (relative to γ), which limits its practical importance.

In our view, it may therefore be politically more palatable to make decisions about which teachers

possibly lose their jobs when employing the familywise error rather than the false discovery rate. We

note, however, that it is possible to target the left-hand side of (8) directly, i.e., to demand control of the

tail probability of the false discovery proportion. By doing so, one may circumvent the shortcomings of

the false discovery rate suggested by the discussion above. For a description of some such methods, see

Lehmann and Romano (2005), Romano and Shaikh (2006a,b), Romano and Wolf (2007), Romano et al.

(2008b) and Guo et al. (2014). For an empirical Bayes approach to the same problem, see Basu et al.

(2021), who, by way of motivation for requiring control of the tail probability of the false discovery

proportion, further illustrate in a simulation study that false discovery rate-controlling procedures may

still permit a large fraction of total discoveries to be false quite frequently (see, in particular, their

Figure 1).

Differences in the treatment of θi: Recall that the decisions obtained by Gu and Koenker ensure (at

least approximately for large n) that FDR ≤ γ, where FDR is defined in (2). As mentioned previously,

an important aspect of this requirement is that the expectation in (2) is also over uncertainty in θi.

Using the law of iterated expectations, it is straightforward to see that such a restriction may impose
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little discipline on E[FDR|θ], which corresponds more closely to the FDRθ defined in (6). Needless

to say, in light of the discussion above, this implies even less discipline on P{FDP > c|θ}, where, by

analogy with the definition in (7),

FDP =

∑
1≤i≤n I{θi ≥ θα}δi∑

1≤i≤n δi
.

In our view, teachers may be more concerned with the behavior of these conditional quantities rather

than their unconditional counterparts, especially when the stakes are high. After all, teachers may

view their own θi as immutable and may view error rates that were only satisfied on average over

possible values of θi as being irrelevant (or, indeed, even invidious) if their own job is at risk.

5 Empirical Illustration

In this section, we present a brief illustration of the above discussion in the context of ranking commuting

zones (CZs) in the U.S. by a measure of intergenerational income mobility. The estimates of mobility and

their standard errors are the same as the “correlational” estimates that Mogstad et al. (2020) select from the

large dataset of Chetty et al. (2018). Suppose a family considers moving to one of the 100 most populous

CZs. From these, the family wants to select a CZ whose mobility is among the ten highest. To this end, the

family considers two approaches. First, it computes a confidence set for the 90-worst CZs at level 1 − γ as

in Mogstad et al. (2020).1 Then the family selects all CZs that are outside of this confidence set. Second,

it ranks CZs by their posterior tail probability as in Gu and Koenker (2021) using only the FDR constraint

(τ2 = 0), α = 0.1, and some value for γ.2 Table 1 shows the CZs selected by the two procedures, denoted by

“MRSW” and “GK”, for different values of γ.

Since controlling the FWERθ for all θ is more stringent than controlling the FDR, it is natural to

expect GK to select more CZs. We find that MRSW selects only five CZs whereas GK selects more than

the target of ten. Informally, the selection by MRSW guarantees that with probability approximately 1− γ,

none of the selected CZs (San Francisco, Salt Lake City, Honolulu, Boston and Minneapolis) can be among

the worst 90 CZs (where this probability is calculated over different realizations of the data, but holding the

mobility of each CZ fixed). Therefore, the family can be confident that a move to any of these CZs is indeed

a move to a CZ with among the highest mobility. In contrast, GK selects a significantly larger number of

CZs. Informally, their selection ensures that on average (where this average is over both different realizations

of the data as well as different realizations of mobility for each CZ from a common distribution) no more

than approximately γ fraction of the selected CZs are in fact among the worst. Therefore, the GK selection

does not offer guarantees for the specific CZs selected to indeed be of high mobility. By analogy with our

discussion in the preceding section, we believe families may view the MRSW selection as being more relevant

for their decision about to which CZ to move, especially to the extent that mobility is a fixed feature for

each CZ.

1The “DP” method described in Appendix F.2.
2As in Gu and Koenker (2021)’s empirical application, we consider the one-dimensional model in which θi ∼ G and σi are

treated as known. The procedure “KWs” from Gu and Koenker (2021, Section 7.1) with bandwidth 0.02 is used to estimate G.
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MRSW GK
rank commuting zone γ = 0.05 γ = 0.1 γ = 0.2 γ = 0.05 γ = 0.1 γ = 0.2

1 San Francisco × × × × × ×
2 Salt Lake City × × × × × ×
3 Honolulu × × × × × ×
4 Boston × × × × × ×
5 Minneapolis × × × × × ×
6 Toms River × × ×
7 Des Moines × × ×
8 San Jose × × ×
9 Scranton × × ×

10 Newark × × ×
11 Madison × × ×
12 Pittsburgh × ×
13 New York
14 Seattle
15 Reading
16 Manchester ×
17 Santa Barbara ×

Table 1: Selection of the “best” commuting zones in terms of intergenerational mobility among the 100
most populous commuting zones. MRSW selects commuting zones not in the level 1− γ confidence set for
the 90-worst; GK shows the commuting zones selected by the posterior tail probability with the mFDR
constrained at γ.
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