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Abstract This paper considers the problem of testing s null hypotheses simultane-
ously while controlling the false discovery rate (FDR). Benjamini and Hochberg
(J. R. Stat. Soc. Ser. B 57(1):289–300, 1995) provide a method for controlling the
FDR based on p-values for each of the null hypotheses under the assumption that
the p-values are independent. Subsequent research has since shown that this pro-
cedure is valid under weaker assumptions on the joint distribution of the p-values.
Related procedures that are valid under no assumptions on the joint distribution of
the p-values have also been developed. None of these procedures, however, incor-
porate information about the dependence structure of the test statistics. This paper
develops methods for control of the FDR under weak assumptions that incorporate
such information and, by doing so, are better able to detect false null hypotheses. We
illustrate this property via a simulation study and two empirical applications. In par-
ticular, the bootstrap method is competitive with methods that require independence
if independence holds, but it outperforms these methods under dependence.
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1 Introduction

Consider the problem of testing s null hypotheses simultaneously. A classical ap-
proach to dealing with the multiplicity problem is to restrict attention to procedures
that control the probability of one or more false rejections, which is called the fami-
lywise error rate (FWER). When s is large, however, the ability of such procedures
to detect false null hypotheses is limited. For this reason, it is often preferred in such
situations to relax control of the FWER in exchange for improved ability to detect
false null hypotheses.

To this end, several ways of relaxing the FWER have been proposed. Hommel and
Hoffman (1988) and Lehmann and Romano (2005a) consider control of the prob-
ability of k or more false rejections for some integer k ≥ 1, which is termed the
k-FWER. Obviously, controlling the 1-FWER is the same as controlling the usual
FWER. Lehmann and Romano (2005a) also consider control of the false discovery
proportion (FDP), defined to be the fraction of rejections that are false rejections
(with the fraction understood to be 0 in the case of no rejections). Given a user-
specified value of γ , control of the FDP means control of the probability that the
FDP is greater than γ . Note that when γ = 0, control of the FDP reduces to con-
trol of the usual FWER. Methods for control of the k-FWER and the FDP based on
p-values for each null hypothesis are discussed in Lehmann and Romano (2005a),
Romano and Shaikh (2006a), and Romano and Shaikh (2006b). These methods are
valid under weak or no assumptions on the dependence structure of the p-values, but
they do not attempt to incorporate information about the dependence structure of the
test statistics. Methods that incorporate such information and are thus better able to
detect false null hypotheses are described in Van der Laan et al. (2004), Romano and
Wolf (2007), and Romano et al. (2008).

A popular third alternative to control of the FWER is control of the false discov-
ery rate (FDR), defined to be the expected value of the FDP. Control of the FDR
has been suggested in a wide area of applications, such as educational evaluation
(Williams et al. 1999), clinical trials (Mehrotra and Heyse 2004), analysis of mi-
croarray data (Drigalenko and Elston 1997, and Reiner et al. 2003), model selection
(Abramovich and Benjamini 1996, and Abramovich et al. 2006), and plant breeding
(Basford and Tukey 1997). Benjamini and Hochberg (1995) provide a method for
controlling the FDR based on p-values for each null hypothesis under the assump-
tion that the p-values are independent. Subsequent research has since shown that this
procedure remains valid under weaker assumptions on the joint distribution of the
p-values. Related procedures that are valid under no assumptions on the joint distrib-
ution of the p-values have also been developed; see Benjamini and Yekutieli (2001).
Yet procedures for control of the FDR under weak assumptions that incorporate in-
formation about the dependence structure of the test statistics remain unavailable.
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This paper seeks to develop methods for control of the FDR that incorporate such
information and, by doing so, are better able to detect false null hypotheses.

The remainder of the paper is organized as follows. In Sect. 2 we describe our
notation and setup. Section 3 summarizes previous research on methods for control
of the FDR. In Sect. 4 we provide some motivation for our methods for control of the
FDR. A bootstrap-based method is then developed in Sect. 5. The asymptotic validity
of this approach relies upon an exchangeability assumption, but in Sect. 6 we develop
a subsampling-based approach whose asymptotic validity does not depend on such
an assumption. Section 7 sheds some light on the finite-sample performance of our
methods and some previous proposals via simulations. We also provide two empirical
applications in Sect. 8 to further compare the various methods. Section 9 concludes.

2 Setup and notation

A formal description of our setup is as follows. Suppose that data X = (X1, . . . ,Xn)

is available from some probability distribution P ∈ Ω . Note that we make no rigid re-
quirements for Ω ; it may be a parametric, semiparametric, or a nonparametric model.
A general hypothesis H may be viewed as a subset ω of Ω . In this paper we consider
the problem of simultaneously testing null hypotheses Hi : P ∈ ωi, i = 1, . . . , s, on
the basis of X. The alternative hypotheses are understood to be H ′

i : P �∈ ωi, i =
1, . . . , s.

We assume that test statistics Tn,i , i = 1, . . . , s, are available for testing Hi, i =
1, . . . , s. Large values of Tn,i are understood to indicate evidence against Hi . Note
that we may take Tn,i = −p̂n,i , where p̂n,i is a p-value for Hi . A p-value for Hi may
be exact, in which case p̂n,i satisfies

P {p̂n,i ≤ u} ≤ u for any u ∈ (0,1) and P ∈ ωi, (1)

or asymptotic, in which case

lim sup
n→∞

P {p̂n,i ≤ u} ≤ u for any u ∈ (0,1) and P ∈ ωi. (2)

In this article, we consider stepdown multiple testing procedures. Let

Tn,(1) ≤ · · · ≤ Tn,(s)

denote the ordered test statistics (from smallest to largest), and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Stepdown multiple testing procedures first
compare the most significant test statistic, Tn,(s), with a suitable critical value cs .
If Tn,(s) < cs , then the procedure rejects no null hypotheses; otherwise, the proce-
dure rejects H(s) and then ‘steps down’ to the second most significant null hypothe-
sis H(s−1). If Tn,(s−1) < cs−1, then the procedure rejects no further null hypotheses;
otherwise, the procedure rejects H(s−1) and then ‘steps down’ to the third most sig-
nificant null hypothesis H(s−2). The procedure continues in this fashion until either



420 J.P. Romano et al.

one rejects H(1) or one does not reject the null hypothesis under consideration. More
succinctly, a stepdown multiple testing procedure rejects

H(s), . . . ,H(s−j∗),

where j∗ is the largest integer j that satisfies

Tn,(s) ≥ cs, . . . , Tn,(s−j) ≥ cs−j ;
if no such j exits, the procedure does not reject any null hypotheses.

We will construct stepdown multiple testing procedures that control the false dis-
covery rate (FDR), which is defined to be the expected value of the false discovery
proportion (FDP). Denote by I (P ) the set of indices corresponding to true null hy-
potheses; that is,

I (P ) = {1 ≤ i ≤ s : P ∈ ωi}. (3)

For a given multiple testing procedure, let F denote the number of false rejections,
and let R denote the total number of rejections; that is,

F = ∣
∣
{

1 ≤ i ≤ s : Hi rejected and i ∈ I (P )
}∣
∣,

R = ∣
∣{1 ≤ i ≤ s : Hi rejected}∣∣.

Then, the false discovery proportion (FDP) is defined as follows:

FDP = F

max{R,1} .

Using this notation, the FDR is simply E[FDP]. A multiple testing procedure is said
to control the FDR at level α if

FDRP = EP [FDP] ≤ α for all P ∈ Ω.

A multiple testing procedure is said to control the FDR asymptotically at level α if

lim sup
n→∞

FDRP ≤ α for all P ∈ Ω. (4)

We will say that a procedure is asymptotically valid if it satisfies (4). Methods that
control the FDR can typically only be derived in special circumstances. In this paper,
we will instead pursue procedures that are asymptotically valid under weak assump-
tions.

3 Previous methods for control of the FDR

In this section, we summarize the existing literature on methods for control of the
FDR. The first known method proposed for control of the FDR is the stepwise proce-
dure of Benjamini and Hochberg (1995) based on p-values for each null hypothesis.
Let

p̂n,(1) ≤ · · · ≤ p̂n,(s)
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denote the ordered values of the p-values, and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Note that in this case the null hypotheses
are ordered from most significant to least significant, since small values of p̂n,i are
taken to indicate evidence against Hi . For 1 ≤ j ≤ s, let

αj = j

s
α. (5)

Then, the method of Benjamini and Hochberg (1995) rejects null hypotheses
H(1), . . . ,H(j∗), where j∗ is the largest j such that

p̂n,(j) ≤ αj .

Of course, if no such j exists, then the procedure rejects no null hypotheses.
Benjamini and Hochberg (1995) prove that their method controls the FDR at level

α if the p-values satisfy (1) and are independent. Benjamini and Yekutieli (2001)
show that independence can be replaced by a weaker condition known as positive
regression dependency; see their paper for the exact definition. It can also be shown
that the method of Benjamini and Hochberg (1995) provides asymptotic control of the
FDR at level α if the p-values satisfy (2) instead of (1) and this weaker dependence
condition holds.

On the other hand, the method of Benjamini and Hochberg (1995) fails to control
the FDR at level α when the p-values only satisfy (1). Benjamini and Yekutieli (2001)
show that control of the FDR can be achieved under only (1) if αj defined in (5) are
replaced by

αj = j

s

α

Cs

,

where Ck = ∑k
r=1

1
r
. Note that Cs ≈ log(s) + 0.5, so this method can have much

less power than the method of Benjamini and Hochberg (1995). For example, when
s = 1,000, then Cs = 7.49. As before, it can be shown that this procedure provides
asymptotic control of the FDR at level α if the p-values satisfy (2) instead of (1).

Even when sufficient conditions for the method of Benjamini and Hochberg (1995)
to control the FDR hold, it is conservative in the following sense. It can be shown that

FDRP ≤ s0

s
α,

where s0 = |I (P )|. So, unless s0 = s, the power of the procedure could be improved
by replacing the αj defined in (5) by

αj = j

s0
α.
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Of course, s0 is unknown in practice, but there exist several approaches in the litera-
ture to estimate s0. For example, Storey et al. (2004) suggest the following estimator:

ŝ0 = #{p̂n,j > λ} + 1

1 − λ
, (6)

where λ ∈ (0,1) is a user-specified parameter. The reasoning behind this estimator
is the following. As long as each test has reasonable power, then most of the “large”
p-values should correspond to true null hypotheses. Therefore, one would expect
about s0(1 − λ) of the p-values to lie in the interval (λ,1], assuming that the p-
values corresponding to the true null hypotheses have approximately a uniform [0,1]
distribution. Adding one in the numerator of (6) is a small-sample adjustment to
make the procedure slightly more conservative and to avoid an estimator of zero for
s0. Having estimated s0, one then applies the procedure of Benjamini and Hochberg
(1995) with the αj defined in (5) replaced by

α̂j = j

ŝ0
α.

Storey et al. (2004) prove that this adaptive procedure controls the FDR asymptoti-
cally whenever the p-values satisfy (2) and a weak dependence condition holds. This
condition includes independence, dependence within blocks, and mixing-type situ-
ations, but, unlike Benjamini and Yekutieli (2001), it does not allow for arbitrary
dependence among the p-values. It excludes, for example, the case in which there
is a constant correlation across all p-values. Related work is found in Genovese and
Wasserman (2004) and Benjamini and Hochberg (2000).

The adaptive procedure of Storey et al. (2004) can be quite liberal under positive
dependence, such as in a scenario with constant positive correlation. For this reason,
Benjamini et al. (2006) develop an alternative procedure, which works as follows:

Algorithm 3.1 (BKY Algorithm)

1. Apply the procedure of Benjamini and Hochberg (1995) at nominal level α∗ =
α/(1 +α). Let r be the number of rejected hypotheses. If r = 0, then do not reject
any hypothesis and stop; if r = s, then reject all s hypotheses and stop; otherwise
continue.

2. Apply the procedure of Benjamini and Hochberg (1995) with the αj defined in (5)
replaced by α̂j = j

ŝ0
α∗, where ŝ0 = s − r .

Benjamini et al. (2006) prove that this procedure controls the FDR whenever the
p-values satisfy (2) and are independent of each other. They also provide simula-
tions which suggest that this procedure continues to control the FDR under positive
dependence.

Benjamini and Liu (1999) provide a stepdown method for control of the FDR
based on p-values for each null hypothesis that satisfy (1) and are independent. Sarkar
(2002) extends the results of Benjamini and Hochberg (1995), Benjamini and Liu
(1999), and Benjamini and Yekutieli (2001) to generalized stepup–stepdown proce-
dures; yet the methods he considers, like those described above, do not incorporate
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the information about the dependence structure of the test statistics. In the following
sections, we develop multiple testing procedures for asymptotic control of the FDR
under weak assumptions that incorporate such information, and, by doing so, are bet-
ter able to detect false hypotheses. Our procedures build upon the work of Troendle
(2000), who suggests a procedure for asymptotic control of the FDR that incorpo-
rates information about the dependence structure of the test statistics, but relies upon
the restrictive parametric assumption that the joint distribution of the test statistics
is given by a symmetric multivariate t-distribution. Yekutieli and Benjamini (1999)
also provide a method for asymptotic control of the FDR that exploits information
about the dependence structure of the test statistics to improve the ability to detect
false null hypotheses, but their analysis requires subset pivotality and that the test sta-
tistics corresponding to true null hypotheses are independent of those corresponding
to false null hypotheses. Although our analysis will require neither of these restrictive
assumptions, the asymptotic validity of our bootstrap approach will rely upon an ex-
changeability assumption. The subsampling approach we will develop subsequently,
however, will not even require this restriction.

4 Motivation for methods

In order to motivate our procedures, first note that for any stepdown procedure based
on critical values c1, . . . cs , we have that

FDRP = EP

[
F

max{R,1}
]

=
∑

1≤r≤s

1

r
EP [F |R = r]P {R = r}

=
∑

1≤r≤s

1

r
E[F |R = r]

× P {Tn,(s) ≥ cs, . . . , Tn,(s−r+1) ≥ cs−r+1, Tn,(s−r) < cs−r},
where the event Tn,s−r < cs−r is understood to be vacuously true when r = s. As
before, let s0 = |I (P )| and assume without loss of generality that I (P ) = {1, . . . , s0}.
Under weak assumptions, we will show that all false hypotheses will be rejected
with probability tending to one. For the time being, assume that this is the case. Let
Tn,r:t denote the r th largest of the t test statistics Tn,1, . . . , Tn,t ; in particular, when
t = s0, Tn,r:s0 denotes the r th largest of the test statistics corresponding to the true
hypotheses. Then, with probability approaching one, we have that

FDRP =
∑

s−s0+1≤r≤s

r − s + s0

r

× P {Tn,s0:s0 ≥ cs0, . . . , Tn,s−r+1:s0 ≥ cs−r+1, Tn,s−r:s0 < cs−r}, (7)

where the event Tn,s−r:s0 < cs−r is again understood to be vacuously true when r = s.
Our goal is to ensure that (7) is bounded above by α for any P , at least asymp-

totically. To this end, first consider any P such that s0 = |I (P )| = 1. Then, (7) is
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simply

FDRP = 1

s
P {Tn,1:1 ≥ c1}. (8)

A suitable choice of c1 is thus the smallest value for which (8) is bounded above by
α; that is,

c1 = inf

{

x ∈ R : 1

s
P {Tn,1:1 ≥ x} ≤ α

}

.

Note that if sα ≥ 1, then c1 so defined is equal to −∞.
Having determined c1, now consider any P such that s0 = 2. Then, (7) is simply

1

s − 1
P {Tn,2:2 ≥ c2, Tn,1:2 < c1} + 2

s
P {Tn,2:2 ≥ c2, Tn,1:2 ≥ c1}. (9)

A suitable choice of c2 is therefore the smallest value for which (9) is bounded above
by α.

In general, having determined c1, . . . , cj−1, the j th critical value may be deter-
mined by considering P such that s0 = j . In this case, (7) is simply

FDRP =
∑

s−j+1≤r≤s

r − s + j

r

× P {Tn,j :j ≥ cj , . . . , Tn,s−r+1:j ≥ cs−r+1, Tn,s−r:j < cs−r}. (10)

An appropriate choice of cj is thus the smallest value for which (10) is bounded
above by α. Note that when j = s, (10) simplifies to

P {Tn,s:s ≥ cs},
so equivalently

cs = inf
{

x ∈ R : P {Tn,s:s ≥ x} ≤ α
}

.

Of course, the above choice of critical values is infeasible since it depends on
the unknown P through the distribution of the test statistics. We therefore focus on
feasible constructions of the critical values based on the bootstrap and subsampling.

5 A bootstrap approach

In this section, we specialize our framework to the case in which interest focuses on
a parameter vector

θ(P ) = (

θ1(P ), . . . , θs(P )
)

.

The null hypotheses may be one-sided, in which case

Hj : θj ≤ θ0,j vs. H ′
j : θj > θ0,j , (11)
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or the null hypotheses may be two-sided, in which case

Hj : θj = θ0,j vs. H ′
j : θj �= θ0,j . (12)

In the next section, however, we will return to more general null hypotheses. Test
statistics will be based on an estimate θ̂n = (θ̂n,1, . . . , θ̂n,s) of θ(P ) computed using
the data X. We will consider the ‘studentized’ test statistics

Tn,j = √
n(θ̂n,j − θ0,j )/σ̂n,j (13)

for the one-sided case (11) or

Tn,j = √
n|θ̂n,j − θ0,j |/σ̂n,j (14)

for the two-sided case (12). Note that σ̂n,j may either be identically equal to 1 or
an estimate of the standard deviation of

√
n(θ̂n,j − θ0,j ). This is done to keep the

notation compact; the latter is preferable from our point of view but may not always
be available in practice.

Recall that the construction of critical values in the preceding section was infeasi-
ble because of its dependence on the unknown P . For the bootstrap construction, we
therefore simply replace the unknown P with a suitable estimate P̂n. To this end, let
X∗ = (X∗

1, . . . ,X∗
n) be distributed according to P̂n and denote by T ∗

n,j , j = 1, . . . , s,
test statistics computed from X∗. For example, if Tn,j is defined by (13) or (14), then

T ∗
n,j = √

n
(

θ̂∗
n,j − θj (P̂n)

)

/σ̂ ∗
n,j (15)

or
T ∗

n,j = √
n
∣
∣θ̂∗

n,j − θj (P̂n)
∣
∣/σ̂ ∗

n,j , (16)

respectively, where θ̂∗
n,j is an estimate of θj computed from X∗ and σ̂ ∗

n,j is either

identically equal to 1 or an estimate of the standard deviation of
√

n(θ̂∗
n,j − θj (P̂n))

computed from X∗. For the validity of this approach, we require that the distribution
of T ∗

n,j provides a good approximation to the distribution of Tn,j whenever the cor-
responding null hypothesis Hj is true, but, unlike Westfall and Young (1993), we do
not require subset pivotality. The exact choice of P̂n will, of course, depend on the
nature of the data. If the data X = (X1, . . . ,Xn) are i.i.d., then a suitable choice of P̂n

is the empirical distribution, as in Efron (1979). If, on the other hand, the data consti-
tute a time series, then P̂n should be estimated using a suitable time series bootstrap
method; see Lahiri (2003) for details.

Given a choice of P̂n, define the critical values recursively as follows: having
determined ĉn,1, . . . , ĉn,j−1, compute ĉn,j according to the rule

ĉn,j = inf

{

c ∈ R :
∑

s−j+1≤r≤s

r − s + j

r

× P̂n{T ∗
n,j :j ≥ c, . . . , T ∗

n,s−r+1:j ≥ ĉn,s−r+1, T
∗
n,s−r:j < ĉn,s−r} ≤ α

}

.

(17)
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Remark 1 It is important to be clear about the meaning of the notation T ∗
n,r:t , with

r ≤ t , in (17). By analogy to the “real” world, it should denote the r th smallest of the
observations corresponding to the first t true null hypotheses. However, the ordering
of the true null hypotheses in the bootstrap world is not 1,2, . . . , s, but it is instead
determined by the ordering H(1), . . . ,H(s) from the real world. So if the permutation
{k1, . . . , ks} of {1, . . . , s} is defined such that Hk1 = H(1), . . . ,Hks = H(s), then T ∗

n,r:t
is the r th smallest of the observations T ∗

n,k1
, . . . , T ∗

n,kt
.

Remark 2 Note that typically it will not be possible to compute closed form ex-
pressions for the probabilities under P̂n required in (17). In such cases, the required
probabilities may instead be computed using simulation to any desired degree of ac-
curacy.

We now provide conditions under which the stepdown procedure with critical val-
ues defined by (17) satisfies (4). The following result applies to the case of two-sided
null hypotheses, but the one-sided case can be handled using a similar argument. In
order to state the result, we will require some further notation. For K ⊆ {1, . . . , s}, let
Jn,K(P ) denote the joint distribution of

(√
n
(

θ̂n,j − θj (P )
)

/σ̂n,j : j ∈ K
)

.

It will also be useful to define the quantile function corresponding to a c.d.f. G(·) on
R as G−1(α) = inf{x ∈ R : G(x) ≥ α}.

Theorem 1 Consider the problem of testing the null hypotheses Hi, i = 1, . . . , s,
given by (12) using test statistics Tn,i , i = 1, . . . , s, defined by (14). Suppose that
Jn,{1,...,s}(P ) converges weakly to a limit law J{1,...,s}(P ), so that Jn,I (P )(P ) con-
verges weakly to a limit law JI (P )(P ). Suppose further that JI (P )(P )

(i) Has continuous one-dimensional marginal distributions
(ii) Has connected support, which is denoted by supp(JI (P )(P ))

(iii) Is exchangeable

Also, assume that

σ̂n,j
P→ σj (P ),

where σj (P ) > 0 is nonrandom. Let P̂n be an estimate of P such that

ρ
(

Jn,{1,...,s}(P ), Jn,{1,...,s}(P̂n)
) P→ 0, (18)

where ρ is any metric metrizing weak convergence in R
s .

Then, for the stepdown method with critical values defined by (17),

lim sup
n→∞

FDRP ≤ α.

We will make use of the following lemma in our proof of the preceding theorem:
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Lemma 1 Let X be a random vector on R
s with distribution P . Define f : R

s → R

by the rule f (x) = x(k) for some fixed 1 ≤ k ≤ s, where

x(1) ≤ · · · ≤ x(s).

Suppose that (i) the one-dimensional marginal distributions of P have continuous
c.d.f.s and (ii) supp(X) is connected. Then, f (X) has a continuous and strictly in-
creasing c.d.f.

Proof To see that the c.d.f. of f (X) is continuous, simply note that

P
{

f (X) = x
} ≤

∑

1≤i≤s

P {Xi = x} = 0,

where the final equality follows from assumption (i). To see that the c.d.f. of f (X) is
strictly increasing, suppose by way of contradiction that there exists a < b such that
P {f (X) ∈ (a, b)} = 0, but P {f (X) ≤ a} > 0 and P {f (X) ≥ b} > 0. Thus, there ex-
ists x ∈ supp(X) such that f (x) ≤ a and x′ ∈ supp(X) such that f (x′) ≥ b. Consider
the set

Aa,b = {

x ∈ supp(X) : a < f (x) < b
}

.

By the continuity of f (x) and assumption (ii), Aa,b is nonempty. Moreover, again by
the continuity of f (x), Aa,b must contain an open subset of supp(X) (relative to the
topology on supp(X)). It therefore follows by the definition of supp(X) that

P {X ∈ Aa,b} = P
{

f (X) ∈ (a, b)
}

> 0,

which yields the desired contradiction. �

Remark 3 An important special case of Lemma 1 is the case in which X is distributed
as a multivariate normal random vector with mean μ and covariance matrix Σ . In this
case, assumptions (i)–(ii) of the lemma are implied by the very mild restriction that
Σi,i > 0 for 1 ≤ i ≤ s. In particular, it is not even necessary to assume that Σ is
nonsingular.

Remark 4 Note that even in the case in which s = 1, so f (x) = x, both assumptions
(i) and (ii) in Lemma 1 are necessary to conclude that the distribution of f (X) is
continuous and strictly increasing. Therefore, the assumptions used in Lemma 1 seem
as weak as possible.

Proof of Theorem 1 Without loss of generality, suppose that H1, . . . ,Hs0 are all true
and the remainder false.

In order to illustrate better the main ideas of the proof, we first consider the case
in which P is such that the number of true hypotheses is s0 = 1. The initial step in
our argument is to show that all false null hypotheses are rejected with probability
tending to 1. Since θj (P ) �= θ0,j for j ≥ 2, it follows that

Tn,j = n1/2|θ̂n,j − θ0,j |/σ̂n,j
P→ ∞
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for j ≥ 2. On the other hand, for j = 1, we have that

Tn,j = OP (1).

Therefore, to show that all false hypotheses are rejected with probability tending to
one, it suffices to show that the critical values ĉn,j are all uniformly bounded above
in probability for j ≥ 2.

Recall that ĉn,j is defined as follows: having determined ĉn,1, . . . , ĉn,j−1, ĉn,j is
the infimum over all c ∈ R for which

∑

s−j+1≤r≤s

r − s + j

r
P̂n{T ∗

n,j :j ≥ c, . . . , T ∗
n,s−r+1:j ≥ ĉn,s−r+1, T

∗
n,s−r:j < ĉn,s−r}

(19)
is bounded above by α. Note that (19) can be bounded above by

jP̂n{T ∗
n,j :j ≥ c},

which can in turn be bounded above by

sP̂n{T ∗
n,s:s ≥ c}. (20)

It follows that the set of c ∈ R for which (20) is bounded above by α is a subset of the
set of c ∈ R for which (19) is bounded above by α. Therefore, ĉn,j is bounded above
by the 1−α/s quantile of the (centered) bootstrap distribution of the maximum of all
s variables. In order to describe the asymptotic behavior of this bootstrap quantity, let

Mn(x,P ) = P
{

max
1≤j≤s

{

n1/2|θ̂n,j − θj |/σ̂n,j

} ≤ x
}

,

and let M̂n(x) denote the corresponding bootstrap c.d.f. given by

P̂n

{

max
1≤j≤s

{

n1/2
∣
∣θ̂∗

n,j − θj (P̂n)
∣
∣/σ̂ ∗

n,j

} ≤ x
}

.

In this notation, the previously derived bound for ĉn,j may be restated as

ĉn,j ≤ M̂−1
n

(

1 − α

s

)

.

By the Continuous Mapping Theorem, Mn(·,P ) converges in distribution to a
limit distribution M(·,P ), and the assumptions imply that this limiting distribution
is continuous. Choose 0 < ε < α

s
so that M(·,P ) is strictly increasing at

M−1(1 − α
s

+ ε,P ). For such an ε,

M̂−1
n

(

1 − α

s
+ ε

)

P→ M−1
(

1 − α

s
+ ε,P

)

.

Therefore, ĉn,j is with probability tending to one less than M−1(1 − α
s

+ ε,P ). The
claim that ĉn,j is bounded above in probability is thus verified.
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It now follows that, in the case s0 = 1,

FDRP = 1

s
P {Tn,1 ≥ ĉn,1} + oP (1).

The critical value ĉn,1 is the 1 − αs quantile of the distribution of T ∗
n,1 under P̂n. If

1 − αs ≤ 0, then ĉn,1 is defined to be −∞, in which case,

FDRP = 1

s
+ oP (1) ≤ α + oP (1).

The desired conclusion thus holds. If, on the other hand, 1 − αs > 0, then we argue
as follows. Note that by assumption (18) and the triangle inequality, we have that

ρ
(

J{1}(P ), Jn,{1}(P̂n)
) P→ 0.

Note further that by Lemma 1, J{1}(·,P ) is strictly increasing at J−1
{1} (1 − sα,P ).

Thus,

ĉn,1
P→ J−1

{1} (1 − sα,P ).

To establish the desired result, it now suffices to use Slutsky’s Theorem.
We now proceed to the general case. First, the same argument as in the case s0 = 1

shows that hypotheses Hs0+1, . . . ,Hs are rejected with probability tending to one. It
follows that with probability tending to one, the FDRP is equal to

∑

s−s0+1≤r≤s

r − s + s0

r

× P {Tn,s0:s0 ≥ ĉn,s0, . . . , Tn,s−r+1:s0 ≥ ĉn,s−r+1, Tn,s−r:j < ĉn,s−r },
where the event Tn,s−r:j < ĉn,s−r is understood to be vacuously true when r = s.

In the definition of the critical values given by (17), recall that T ∗
n,r:t is defined to

be the r th smallest of the bootstrap test statistics among those corresponding to the
smallest t original test statistics. Define T ′

n,r:t to be the r th smallest of the bootstrap
test statistics among those corresponding to the first t original test statistics. Define
c′
n,j to be the critical values defined in the same way as ĉn,j except T ∗

n,r:t in (17) is
replaced with T ′

n,r:t . Recall that we have assumed that null hypotheses H1, . . . ,Hs0

are true and the remainder false. Since the indices of the set of s0 true hypotheses are
identical to the indices corresponding to the smallest s0 test statistics with probability
tending to one, ĉn,j equals c′

n,i with probability tending to 1 for j ≤ s0. It follows
that with probability tending to one, the FDRP is equal to

∑

s−s0+1≤r≤s

r − s + s0

r

× P {Tn,s0:s0 ≥ c′
n,s0

, . . . , Tn,s−r+1:s0 ≥ c′
n,s−r+1, Tn,s−r:j < c′

n,s−r },
where, as before, the event Tn,s−r:j < c′

n,s−r is understood to be vacuously true when
r = s.
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In order to describe the asymptotic behavior of these critical values, let
(T1, . . . , Ts0) be a random vector with distribution JI (P )(P ) and define Tr:t to be
the r th smallest of T1, . . . , Tt . Define c1, . . . , cs0 recursively as follows: having deter-
mined c1, . . . , cj−1, compute cj according to the rule

cj = inf

{

c ∈ R :
∑

1≤k≤j

k

s − j + k

× P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k} ≤ α

}

,

where, as before, the event Tj−k:s0 < cj−k is understood to be vacuously true when
k = j . We claim for 1 ≤ j ≤ s0 that

c′
n,j

P→ cj . (21)

To see this, we argue inductively as follows. Suppose that the result is true for
c′
n,1, . . . , c

′
n,j−1. Using assumption (18) and the triangle inequality, we have that

ρ
(

J{1,...,j}(P ), Jn,{1,...,j}(P̂n)
) P→ 0.

Importantly, by the assumption of exchangeability, we have that J{1,...,j}(P ) = JK(P )

for any K ⊆ {1, . . . , s0} such that |K| = j . Next note that
∑

1≤k≤j

P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k} = P {Tj :s0 ≥ c}. (22)

The right-hand side of (22) is strictly increasing in c by Lemma 1. As a result, at least
one of the terms on the left-hand side of (22) is strictly increasing at c = cj . It follows
that

∑

1≤k≤j

k

s − j + k
P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k}

is strictly increasing at c = cj . The conclusion (21) thus follows. To complete the
proof, it now suffices to use Slutsky’s Theorem. �

Remark 5 In the definitions of T ∗
n,j given by (15) or (16) used in our bootstrap method

to generate the critical values, one can typically replace θj (P̂n) by θ̂n,j . Of course,
the two are the same under the following conditions: (1) θ̂n,j is a linear statistic;
(2) θj (P ) = E(θ̂n,j ); and (3) P̂n is based on Efron’s bootstrap, the circular blocks
bootstrap, or the stationary bootstrap in Politis and Romano (1994). Even if condi-
tions (1) and (2) are met, the estimators θ̂n,j and θj (P̂n) are not the same if P̂n is
based on the moving blocks bootstrap due to “edge effects.” On the other hand, the
substitution of θ̂n,j for θj (P̂n) does not in general affect the asymptotic validity of
the bootstrap approximation, and Theorem 1 continues to hold. Lahiri (1992) dis-
cusses this point for the special case of time series data and the sample mean. Still



Control of the false discovery rate under dependence using 431

another possible substitute is E[θ̂∗
n,j |P̂n], but generally these are all first-order as-

ymptotically equivalent. In the simulations of Sect. 7 and the empirical application
of Sect. 8, conditions (1)–(3) always hold, and so we can simply use θ̂n,j for the
centering throughout.

6 A subsampling approach

In this section, we describe a subsampling-based construction of critical values for
use in a stepdown procedure that provides asymptotic control of the FDR. Here, we
will no longer be assuming that interest focuses on null hypotheses about a parameter
vector θ(P ), but we will instead return to considering more general null hypotheses.
Moreover, we will no longer require that the limiting joint distribution of the test
statistics corresponding to true null hypotheses be exchangeable. Finally, as is usual
with arguments based on subsampling, we only require a limiting distribution under
the true distribution of the observed data, unlike the bootstrap, which requires (18).

In order to describe our approach, we will use the following notation. For b < n,
let Nn = (

n
b

)

, and let Tn,b,i,j denote the statistic Tn,j evaluated at the ith subset of
data of size b. Let Tn,b,i,r:t denote the t th largest of the test statistics

Tn,b,i,1, . . . , Tn,b,i,t .

Finally, define critical values ĉn,1, . . . , ĉn,s recursively as follows: having determined
ĉn,1, . . . , ĉn,j−1, compute ĉn,j according to the rule

ĉn,j = inf

{

c ∈ R : 1

Nn

∑

1≤i≤Nn

∑

1≤k≤j

k

s − j + k

× I {Tn,b,i,j :s ≥ c, . . . , Tn,b,i,j−k+1:s

≥ ĉn,j−k+1, Tn,b,i,j−k:s < ĉn,j−k} ≤ α

}

, (23)

where the event Tn,b,i,j−k:s < ĉn,j−k is understood to be vacuously true when k = j .
We now provide conditions under which the stepdown procedure with this choice of
critical values is asymptotically valid.

Theorem 2 Suppose that the data X = (X1, . . .Xn) is an i.i.d. sequence of random
variables with distribution P . Consider testing null hypotheses Hj : P ∈ ωj , j =
1, . . . , s, with test statistics Tn,j , j = 1, . . . , s. Suppose that Jn,I (P )(P ), the joint
distribution of (Tn,j : j ∈ I (P )), converges weakly to a limit law JI (P )(P ) for which

(i) The one-dimensional marginal distributions of JI (P )(P ) have continuous c.d.f.s
(ii) supp(JI (P )(P )) is connected

Suppose further that Tn,j = τntn,j and tn,j
P→ tj (P ), where tj (P ) > 0 if P ∈ ωj and

tj (P ) = 0 otherwise. Let b = bn < n be a nondecreasing sequence of positive integers
such that b/n → 0 and τb/τn → 0. Then, the stepdown procedure with critical values
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defined by (23) satisfies

lim sup
n→∞

FDRP ≤ α.

Proof We first argue that all false null hypotheses are rejected with probability tend-
ing to one. Let s0 = |I (P )| and, without loss of generality, order the test statistics so
that Tn,1, . . . , Tn,s0 correspond to the true null hypotheses. Suppose that there is at
least one false null hypothesis, for otherwise there is nothing to show, and note that

I {Tn,b,i,j :s ≥ c, . . . , Tn,b,i,j−k+1:s ≥ ĉn,j−k+1, Tn,b,i,j−k:s < ĉn,j−k}
≤ I {Tn,b,i,j :s ≥ c}.

Since k
s−j+k

≤ 1, it follows that

ĉn,j ≤ inf

{

c ∈ R : 1

Nn

∑

1≤i≤Nn

jI {Tn,b,i,j :s ≥ c} ≤ α

}

,

which may in turn be bounded by

inf

{

c ∈ R : 1

Nn

∑

1≤i≤Nn

sI {Tn,b,i,s:s ≥ c} ≤ α

}

= τb inf

{

c ∈ R : 1

Nn

∑

1≤i≤Nn

I {tn,b,i,s:s ≥ c} ≤ α

s

}

,

where tn,b,i,r:t is defined analogously to Tn,b,i,r:t . Following the proof of Theo-
rem 2.6.1 in Politis et al. (1999), we have that

inf

{

c ∈ R : 1

Nn

∑

1≤i≤Nn

I {tn,b,i,s:s ≥ c} ≤ α

s

}

P→ max
1≤j≤s

tj (P ) > 0,

where the final inequality follows from the assumption that there is at least one false
null hypothesis. Now, consider any Tn,j corresponding to a false null hypothesis.

Since tn,j
P→ tj (P ) > 0 and τb/τn → 0, it follows that

Tn,j = τntn,j > τb inf

{

c ∈ R : 1

Nn

∑

1≤i≤Nn

I {tn,b,i,s:s ≥ c} ≤ α

s

}

,

and thus exceeds all critical values, with probability approaching 1. The desired result
is therefore established.

It follows that with probability approaching 1, we have that

FDRP =
∑

1≤k≤s0

k

s − s0 + k

× P {Tn,s0:s0 ≥ ĉn,s0, . . . , Tn,s0−k+1:s0 ≥ ĉn,s0−k+1, Tn,s0−k:s0 < ĉn,s0−k},



Control of the false discovery rate under dependence using 433

where the event Tn,s0−k:s0 < ĉn,s0−k is again understood to be vacuously true
when k = s0. In order to describe the asymptotic behavior of this expression, let
(T1, . . . , Ts0) be a random vector with distribution JI (P )(P ) and define Tr:t to be the
r th largest of T1, . . . , Tt . Define c1, . . . , cs0 recursively according to the rule

cj = inf

{

c ∈ R :
∑

1≤k≤j

k

s − j + k

× P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k} ≤ α

}

,

where, as before, the event Tj−k:s0 < cj−k is understood to be vacuously true when
k = j . By the same argument used in the proof of Theorem 1, we have by Lemma 1
that

∑

1≤k≤j

k

s − j + k
P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k}

is continuous and strictly increasing at c = cj . We may therefore argue inductively
that for 1 ≤ j ≤ s0, we have that

ĉn,j
P→ cj .

An appeal to Slutsky’s theorem completes the argument. �

Remark 6 At the expense of a much more involved argument, it is in fact possible to
remove the assumption that supp(JI (P )(P )) is connected. However, we know of no
example where this mild assumption fails.

Remark 7 The above approach can be extended to dependent data as well. For exam-
ple, if the data X = (X1, . . . ,Xn) form a stationary sequence, we would only consider
the n − b + 1 subsamples of the form (Xi,Xi+1, . . . ,Xi+b−1). Generalizations for
nonstationary time series, random fields, and point processes are further discussed in
Politis et al. (1999).

Remark 8 Interestingly, even under the exchangeability assumption and the setup of
Sect. 5, where both the bootstrap and subsampling are asymptotically valid, the two
procedures are not asymptotically equivalent. To see this, suppose that s = s0 = 2
and that the joint limiting distribution of the test statistics is (T1, T2), where Ti ∼
N(0, σ 2

i ), σ1 = σ2, and T1 is independent of T2. Then, the bootstrap critical value
ĉn,1 tends in probability to z1−α , while the corresponding subsampling critical value
tends in probability to the 1 − α quantile of min{T1, T2}, which will be strictly less
than z1−α .

If the exchangeability assumption fails, i.e., σ1 �= σ2, then the subsampling critical
value still tends in probability to the 1 − α quantile of min{T1, T2}. The bootstrap
critical value, however, does not even settle down asymptotically. Indeed, in this case,
it tends in probability to z1−ασ1 with probability P {T1 < T2} and to z1−ασ2 with
probability P {T1 ≥ T2}.
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7 Simulations

Since the proof of the validity of our stepdown procedure relies on asymptotic ar-
guments, it is important to shed some light on finite sample performance via some
simulations. Therefore, this section presents a small simulation study in the context
of testing population means.

7.1 Comparison of FDR control and power

We generate random vectors X1, . . . ,Xn from an s-dimensional multivariate normal
distribution with mean vector θ = (θ1, . . . , θs), where n = 100 and s = 50. The null
hypotheses are Hj : θj ≤ 0, and the alternative hypotheses are H ′

j : θj > 0. The test

statistics are Tn,j = √
nθ̂n,j /σ̂n,j , where

θ̂n,j = 1

n

n
∑

i=1

Xi,j and σ̂ 2
n,j = 1

n − 1

n
∑

i=1

(Xi,j − θ̂n,j )
2,

that is, we employ the usual t-statistics.
We consider three models for the covariance matrix Σ having (i, j) component

σi,j . The models share the feature σi,i = 1 for all i; so we are left to specify σi,j for
i �= j .

– Common correlation: σi,j = ρ, where ρ = 0,0.5, or 0.9.
– Power structure: σi,j = ρ|i−j |, where ρ = 0.95.
– Two-class structure: the variables are grouped in two classes of equal size s/2.

Within each class, there is a common correlation of ρ = 0.5; and across classes,
there is a common correlation of ρ = −0.5. Formulated mathematically, for i �= j ,

σi,j =
{

0.5 if both i, j ∈ {1, . . . , s/2} or both i, j ∈ {s/2 + 1, . . . , s},
−0.5 otherwise.

We consider four scenarios for the mean vector θ = (θ1, . . . , θs).

– All θj = 0.
– Every fifth θj = 0.2, and the remaining θj = 0, so there are ten θj = 0.2.
– Every other θj = 0.2, and the remaining θj = 0, so there are twenty five θj = 0.2.
– All θj = 0.2

We include the following FDR controlling procedures in the study.

– (BH) The procedure of Benjamini and Hochberg (1995).
– (STS) The adaptive BH procedure by Storey et al. (2004). Analogously to their

simulation study, we use λ = 0.5 for the estimation of s0.
– (BKY) The adaptive BH procedure of Benjamini et al. (2006) detailed in Algo-

rithm 3.1. Among all the adaptive procedures employed in the simulations of Ben-
jamini et al. (2006), this is the only one that controls the FDR under positive de-
pendence.
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Table 1 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

All θj = 0

Control 10.0 10.3 9.1 10.0 6.4 16.5 6.0 9.9 4.8 32.8 4.4 9.8

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 7.6 9.5 7.3 7.3 6.4 16.9 7.5 9.3 5.0 26.5 5.8 10.0

Rejected 3.4 3.8 3.4 3.4 3.5 4.2 3.5 4.1 3.7 4.5 3.7 6.0

Twenty five θj = 0.2

Control 5.0 9.5 6.2 6.7 4.3 13.9 7.4 8.9 3.9 18.3 7.1 9.5

Rejected 13.2 17.4 14.5 14.9 12.3 15.1 13.1 14.1 12.6 14.2 12.7 16.6

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 34.8 49.7 44.9 48.2 31.9 46.9 36.4 39.1 32.1 47.3 32.1 36.4

– (Boot) The bootstrap procedure of Sect. 5. Since the data are i.i.d., we use Efron’s
(1979) bootstrap with B = 500 resamples.

The p-values for use in BH, STS, and BKY are computed as p̂n,j = 1 − 
99(Tn,j ),
where 
k(·) denotes the c.d.f. of the t-distribution with k degrees of freedom.

We also experimented with the subsampling procedure of Section 6, but the results
were not very satisfactory. Apparently, sample sizes larger than n = 100 are needed
for the subsampling procedure to be employed.

The performance criteria are (1) the empirical FDR compared to the nominal level
α = 0.1; and (2) the empirical power (measured as the average number of false hy-
potheses rejected). The results are presented in Table 1 (for common correlation) and
Table 2 (for power structure and two-class structure). They can be summarized as
follows.

– BH, BKY, and Boot provide satisfactory control of the FDR in all scenarios. On
the other hand, STS is liberal under positive constant correlation and for the power
structure scenario.

– For the five scenarios with ten θj = 0.2, BKY is as powerful as BH, while in all
other scenarios it is more powerful. In return, for the single scenario with ten θj =
0.2 under independence, Boot is as powerful as BKY, while in all other scenarios
it is more powerful.

– In the majority of scenarios, the empirical FDR of Boot is closest to the nominal
level α = 0.1.

– STS is often more powerful than Boot, but some of those comparisons are not
meaningful, namely when Boot provides FDR control while STS does not.
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Table 2 Empirical FDRs
expressed as percentages (in the
rows “Control”) and average
number of false hypotheses
rejected (in the rows “Rejected”)
for various methods, with
n = 100 and s = 50. The
nominal level is α = 10%. The
number of repetitions is 5,000
per scenario and the number of
bootstrap resamples is B = 500

Power structure Two-class structure

BH STS BKY Boot BH STS BKY Boot

All θj = 0

Control 5.4 16.5 4.9 10.2 8.1 7.9 7.5 10.1

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 6.5 17.0 7.4 9.8 6.8 8.0 6.9 8.3

Rejected 3.5 4.2 3.5 4.7 3.2 3.7 3.2 3.6

Twenty five θj = 0.2

Control 4.3 13.9 7.4 9.1 5.0 9.3 6.3 7.4

Rejected 12.3 15.0 13.1 14.8 13.1 17.5 14.3 15.3

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 32.0 47.1 36.0 38.7 35.2 48.8 44.5 47.3

7.2 Robustness of FDR control against random correlations

In the previous subsection, we used three models for the covariance matrix: constant
correlation, power structure, and two-class structure. In all cases, BH, BKY, and Boot
provided satisfactory control of the FDR in finite samples.

The goal of this subsection is to study whether FDR control is maintained for
‘general’ covariance matrices. Since it is impossible to employ all possible covari-
ance matrices in a simulation study, our approach is to employ a large, albeit random,
‘representative’ subset of covariance matrices. To this end, we generate 1,000 random
correlation matrices uniformly from the space of positive definite correlation matri-
ces. Joe (2006) recently introduced a new method which accomplishes this. Compu-
tationally more efficient variants are provided by Lewandowski et al. (2007), and we
use their programming code which Prof. Joe has graciously shared with us.) We then
simulate the FDR for each resulting covariance matrix, taking all standard deviations
to be equal to one. However, we reduce the dimension from s = 50 to s = 4 to counter
the curse of dimensionality. Note that an s-dimensional correlation matrix lives in a
space of dimension (s −1)s/2. Since we can only consider a finite number of random
correlation matrices, we ‘cover’ this space more thoroughly when a smaller value of
s is chosen. As far as the mean vector is concerned, two scenarios are considered:
one θj = 0.2 and one θj = 20. The latter scenario results in perfect power for all four
methods.

The resulting 1,000 simulated FDRs for each method and each mean scenario
are displayed via boxplots in Fig. 1. Again, BH, BKY, and Boot provide satisfactory
control of the FDR throughout, while STS is generally liberal. In addition, Boot tends
to provide FDR control closest to the nominal level α = 0.1, followed by BKY and
BH.
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Fig. 1 Boxplots of the simulated FDRs described in Sect. 7.2. The horizontal dashed lines indicate the
nominal level α = 0.1

We also experimented with a larger value of s and different fractions of false null
hypotheses. The results (not reported) were qualitatively similar. In particular, we
could not find a constellation where any of BH, BKY, or Boot were liberal.
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Table 3 Number of
outperforming funds identified Procedure α = 0.05 α = 0.1

BH 58 101

STS 173 203

BKY 72 142

Boot 81 129

8 Empirical applications

8.1 Hedge fund evaluation

We revisit the data set of Romano et al. (2008) concerning the evaluation of hedge
funds. There are s = 209 hedge funds with a return history of n = 120 months com-
pared to the risk-free rate as a common benchmark. The parameters of interest are
θj = μj − μB , where μj is the expected return of the j th hedge fund, and μB is the
expected return of the benchmark. Since the goal is to identify the funds that outper-
form the benchmark, we are in the one-sided case (11) with θ0,j = 0, for j = 1, . . . , s.

Naturally, the estimator of θj is given by

θ̂n,j = 1

n

n
∑

i=1

Xi,j − 1

n

n
∑

i=1

Xi,B,

that is, by the difference of the corresponding sample averages. It is well known that
hedge fund returns, unlike mutual fund returns, tend to exhibit non-negligible serial
correlations; see, for example, Lo (2002) and Kat (2003). Accordingly, one has to ac-
count for this time series nature in order to obtain valid inference. The standard errors
for the original data, σ̂n,j , use a kernel variance estimator based on the prewhitened
QS kernel and the corresponding automatic choice of bandwidth of Andrews and
Monahan (1992). The bootstrap data are generated using the circular block bootstrap
of Politis and Romano (1992), based on B = 5,000 repetitions. The standard errors
in the bootstrap world, σ̂ ∗

n,j , use the corresponding ‘natural’ variance estimator; for
details, see Götze and Künsch (1996) or Romano and Wolf (2006). The choice of the
block sizes for the circular bootstrap is detailed in Romano et al. (2008).

The number of outperforming funds identified by various procedures and for two
nominal levels α are presented in Table 3. Both BKY and Boot results in more rejec-
tions than BH, with the comparison between BKY and Boot depending on the level.
The numbers for STS appear unreasonably high. Apparently, this is due to the fact
that the weak dependence (across test statistics) assumption for the application of this
method is clearly violated. The median absolute correlation across funds is 0.32; also
see Fig. 2.

8.2 Pairwise fitness correlations

We consider Example 6.5 of Westfall and Young (1993), where the pairwise corre-
lations of seven numeric ‘fitness’ variables, collected from n = 31 individuals, are
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Fig. 2 Histogram of the
208 · 209/2 = 21,736 cross
correlations between the excess
returns of the 209 hedge funds.
Since it is not true that the
majority of these correlations
are close to zero, the weak
dependence assumption of
Storey et al. (2004) is clearly
violated

analyzed. Denote the s = (7
2

) = 21 pairwise population correlations, ordered in any

fashion, by θj for j = 1, . . . , s, and let θ̂n,j , j = 1, . . . , s, denote the corresponding
Pearson’s sample correlations. Since the goal is to identify the nonzero population
correlations, we are in the two-sided case (12) with θ0,j = 0 for j = 1, . . . , s.

Westfall and Young (1993) provide two sets of individual p-values: asymptotic
p-values based on the assumption of a bivariate normal distribution and bootstrap
p-values. As can be seen from their Fig. 6.4, the two are always very close to each
other. However, as pointed out by Westfall and Young (1993, p. 194), both sets of
p-values are actually for the stronger null hypotheses of independence rather than
zero correlation. Obviously, independence and zero correlation are the same thing for
multivariate normal data, but we do not wish to make this parametric assumption.

Instead, we use Efron’s bootstrap to both compute individual p-values and to carry
out our bootstrap FDR procedure. (Of course, the same set of bootstrap resamples is
used for both purposes.) The details are as follows. The standard errors for the orig-
inal data, σ̂n,j , are obtained using the delta method because, again, we do not want
to assume multivariate normality; see Example 11.2.10 of Lehmann and Romano
(2005b). This results in test statistics Tn,j = |θ̂n,j |/σ̂n,j . The bootstrap data are gen-
erated using Efron’s (1979) bootstrap, based on B = 5,000 repetitions. The standard



440 J.P. Romano et al.

Table 4 Number of nonzero
correlations identified Procedure α = 0.05 α = 0.1

BH 2 4

STS 10 20

BYK 2 4

Boot 2 7

errors for the bootstrap data, σ̂ ∗
n,j , are computed in exactly the same fashion as for the

original data. This results in bootstrap statistics T ∗
n,j = |θ̂∗

n,j − θ̂n,j |/σ̂ ∗
n,j . The indi-

vidual p-values are then derived according to (4.11) of Davison and Hinkley (1997):

p̂n,j = 1 + #{T ∗
n,j ≥ Tn,j }

B + 1
. (24)

The number of nonzero correlations identified by various procedures and for two
nominal levels α are presented in Table 4. BKY results in the same number of rejec-
tions as BH for both nominal levels. Boot results in the same number of rejections
for α = 0.05 but yields three additional rejections for α = 0.1. The numbers for STS
again appear unreasonably high.

An alternative way of testing Hj : θj = 0 is to reparametrize θj by

ϑj = arctanh(θj ) = 1

2
log

(
1 + θj

1 − θj

)

.

This transformation is known as Fisher’s z-transformation, which under normal-
ity is variance stabilizing; see Example 11.2.10 of Lehmann and Romano (2005b).
Obviously, θj = 0 if and only if ϑj = 0. The natural estimator of ϑj is given by
ϑ̂n,j = arctanh(θ̂n,j ). Using the fact that arctanh′(x) = 1/(1 − x2), the delta method
implies the corresponding standard error σ̃n,j = σ̂n,j /(1 − θ̂2

n,j ). This results in test

statistics Tn,j = |ϑ̂n,j |/σ̃n,j . Some motivation for bootstrapping the z-transformed
sample correlation rather than the ‘raw’ sample correlation is given in Efron and
Tibshirani (1993, Sect. 12.6). Again, the bootstrap data are obtained using Efron’s
1979 bootstrap, based on B = 5,000 repetitions. The standard errors for the boot-
strap data, σ̃ ∗

n,j , are computed as σ̃ ∗
n,j = σ̂ ∗

n,j /(1 − θ̂∗
n,j )

2. This results in bootstrap

statistics T ∗
n,j = |ϑ̂∗

n,j − ϑ̂n,j |/σ̃ ∗
n,j . The individual p-values are derived as in (24)

again.
The number of nonzero correlations identified by various procedures and for two

nominal levels α are also presented in Table 4. While making inference for the ϑj

does not necessarily lead to the same results as making inference for the θj , in par-
ticular when the sample size n is not large, for this particular data set, none of the
numbers of rejections change.
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9 Conclusion

In this article, we have developed two methods which provide asymptotic control of
the false discovery rate. The first method is based on the bootstrap, and the second is
based on subsampling. Asymptotic validity of the bootstrap holds under fairly weak
assumptions, but we require an exchangeability assumption for the joint limiting dis-
tribution of the test statistics corresponding to true null hypotheses. The method based
on subsampling can be justified without such an assumption. However, simulations
support the use of the bootstrap method under a wide range of dependence. Even un-
der independence, our bootstrap method is competitive with that of Benjamini et al.
(2006) and outperforms it under dependence.

The bootstrap method succeeds in generalizing Troendle (2000) to allow for non-
normality. However, it would be useful to also consider an asymptotic framework
where the number of hypotheses is large relative to the sample size. Future work will
address this.

Acknowledgements We are grateful to Harry Joe for providing R routines to generate random correla-
tion matrices.
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