1. **Blind Implicatures**

Certain implicatures appear to be computed even when world knowledge should be sufficient to block them (Magri (2009,2011); Singh (2009)).

1. a. #Some Italians come from a warm country.
   b. #Not all Italians come from a warm country.

2. **Context**: Prof. Smith assigned the same grade to all of his students.
   a. #Smith assigned an A to some of his students.
   b. #Smith assigned an A to all of his students.

**Blindness Hypothesis** (Magri): Implicatures are computed without access to contextual information.

2. **Asymmetry in DE contexts**


1. a. Every blond student passed.
   b. Every student with blond hair passed.
   c. Every student who is blond passed.
   d. #Not every student passed.

(4) shows that these implicatures are also computed blindly: world knowledge does not block implicature calculation, and # results.

1. a. #Every carcinogen is harmful that will be eliminated by this product.
   b. #Not every carcinogen will be eliminated by this product.

The problem: nouns modified by nonrestrictive adjectives do not give rise to corresponding implicatures—(5)/(4b), hence no #.

2. a. #Every carcinogen is harmful that will be eliminated by this product.
   b. #Not every carcinogen will be eliminated by this product.

**Goal**: to explain the asymmetry between nonrestrictive adjectives and other kinds of nominal modifiers.

**Main Claim**: the contrast between (4a) and (5) is due to an interaction between the syntax/semantics of NR modification and general principles of implicature calculation.

3. **Summary of Analysis**

1. **NAS introduct the presupposition that the elements in the extension of the noun have the property denoted by the adjective.**

   a. Sentences like (5) are not asymmetrically entailed by their modifierless alternatives, and so do not trigger implicatures.
   b. Sentences like (4a) are asymmetrically entailed by their modifierless alternatives, and therefore trigger implicatures.

4. **NAS as Presuppositional**

NAS license a generic/universal inference regardless of the semantics of the determiner.

6. a. Cigarettes contain several/few/many/most/a lot of/no harmful carcinogens.
   b. #Carcinogens are harmful.

Presupposition-like projection (7): patterns unlike appositives w.r.t. information status (8-9), cf. “CI”-based accounts of NR modification such as Morzycki (2008; Solt 2009).

7. a. There’s no way every harmful carcinogen will be eliminated—lots of carcinogens will remain. b. Can this rid my body of every harmful carcinogen?

8. a. John is tall and I know John is tall.
   b. #John is tall and John, who is tall, ...

9. a. Flowers are beautiful, and I would like some beautiful flowers.
   b. #Flowers are beautiful, and I would like some beautiful flowers, which are beautiful.

(6-9) suggest that the universal/generic inference licensed by NAS is a presupposition.

The distribution of NR readings mirrors that of other “direct modification adjectives” (Larson (1998,2000); Larson & Marušić (2004); Cinque (2010)). The nonrestrictive head introduces a phonological presupposition (see handout more for details/motivation).

4. **Explaining the Restr./NR Contrast**

There are logically possible worlds (incompatible with common knowledge) where carcinogens are not generally harmful, so there will be worlds such as w1 below where the presupposition of (5) ("=ps") is not satisfied; and hence where (5) is neither true nor false.

(13) entails (4a) (13) does not entail (5)

5. **Implicature calculation**

**Structural alternatives** (Katzir 2007) are required to guarantee that, e.g. (13) is an alternative to (4a) but not vice versa.

14. a. ¥ is an alternative to ¥ ¥ ∈ Alt(¥) iff ¥ can be obtained from ¥ by a series of deletions, contractions, and substitutions of terminal elements.
   b. ¥ strictly better than ¥ ¥ < ¥ iff

15. a. ¥ ∈ Alt(¥) and ¥ entails ¥; and either
   b. ¥ ¥ ∉ Alt(¥) or ¥ does not entail ¥

16. An utterance of ¥ implicates that for all ¥ ¥ ∈ Alt(¥) s.t. ¥ < ¥, ¥ is unassertable, false, or irrelevant (depending on context).

**Blindness Hypothesis** (Magri 2009) is required to guarantee the patterns observed in, e.g. (1-2), (4): The definition of “entailment” for computing implicatures is **logical entailment** (= (17a)), not contextual entailment (= (17b)).

17. a. ¥ logically entails ¥ iff [¥] ¥ ∈ [¥]
   b. ¥ contextually entails ¥ iff ([¥] C) C ∈ [¥], where C is the Context Set.

6. **Explaining the Restr./NR Contrast**

There are logically possible worlds (incompatible with common knowledge) where carcinogens are not generally harmful, so there will be worlds such as w1 below where the presupposition of (5) ("=ps") is not satisfied; and hence where (5) is neither true nor false.

(13) entails (4a) (13) does not entail (5)

7. **Conclusions**

1. The grammatical/presuppositional approach to NASs has syntactic and semantic motivation.

2. A difference in observed implicatures has been attributed to a difference in presupposition. Possible implications for Singh’s (2009) reduction of Maximize Presuppositional to the theory of SI.

***References and acknowledgments on handout***