Singular Count Pseudopartitives

Julian Grove
University of Chicago

Sinn und Bedeutung 19
Georg August University at Göttingen
September 15, 2014
Inversion constructions and (pseudo)partitives

“degree-inversion”:

(1) too friendly (of) a linguist

“(nominal-internal) predicate-inversion”:

(2) a jerk of a linguist

“(pseudo)pseudopartitives”??:

(3) three pounds of (the) cheese/cherries

Do these share a common syntax and/or semantics?
A common syntax/semantics?

Most of the literature: No.
(Possible exceptions: Abney (1987), Corver (1998), and Kay and Sag (2012).)

Inversion constructions
\[\{ \text{a jerk/too nice} \} \text{ of a linguist} \]

\[
\begin{array}{c}
\text{NP}_i \\
\text{a jerk/too nice}
\end{array}
\]

\[
\begin{array}{c}
\text{NP} \\
\text{F'}
\end{array}
\]

\[
\begin{array}{c}
\text{F} \\
\text{of-aj}
\end{array}
\]

\[
\begin{array}{c}
\text{NP} \\
\text{XP}
\end{array}
\]

\[
\begin{array}{c}
\text{linguist} \\
t_i \\
t_i
\end{array}
\]

(Troseth, 2009; Bennis et al., 1998, a.o.)

Pseudopartitivites
\[\text{three pounds of cheese/cherries} \]

\[
\begin{array}{c}
\text{XP} \\
\text{MP}
\end{array}
\]

\[
\begin{array}{c}
\text{three pounds}
\end{array}
\]

\[
\begin{array}{c}
\text{X} \\
\text{NP}
\end{array}
\]

\[
\begin{array}{c}
\text{of} \\
\text{cheese/cherries}
\end{array}
\]

(Schwarzschild, 2006, a.o.)

\[
\begin{array}{c}
\text{XP} \\
\text{DegP}_i
\end{array}
\]

\[
\begin{array}{c}
\text{too nice}
\end{array}
\]

\[
\begin{array}{c}
\text{X'} \\
\text{YP}
\end{array}
\]

\[
\begin{array}{c}
\text{X} \\
\text{of-aj}
\end{array}
\]

\[
\begin{array}{c}
\text{t} \\
\text{a}
\end{array}
\]

\[
\begin{array}{c}
\text{t}_i \\
\text{Y'}
\end{array}
\]

\[
\begin{array}{c}
\text{Y'} \\
\text{a}
\end{array}
\]

\[
\begin{array}{c}
\text{Y'} \\
\text{t}_i \\
\text{guy}
\end{array}
\]

(Kennedy and Merchant, 2000)
(Matushansky, 2002, a.o.)

(Landman, 2004, “container” psdp)
A common syntax/semantics?

General consensus: in “inversion” constructions, the inverted phrase moves. In pseudopartitives, the measure phrase is base-generated in a dedicated projection.
In both construction types, both constituents appear to be predicative (Corver, 1998).

\[x \text{ is a jerk of a linguist} \rightarrow \]
(a) \(x \) is a jerk
(b) \(x \) is a linguist

\[x \text{ is three gallons of water} \rightarrow \]
(a) \(x \) is three gallons
(b) \(x \) is water
A common syntax/semantics?

The linking element

A surface similarity (noted in Corver (1998)).

a jerk of a linguist
three pounds of cheese
A common syntax/semantics?

The linking element

A surface similarity (noted in Corver (1998)).

<table>
<thead>
<tr>
<th>English</th>
<th>Dutch</th>
<th>German</th>
<th>Hebrew</th>
</tr>
</thead>
<tbody>
<tr>
<td>a jerk of a linguist</td>
<td>een etter van een jongen</td>
<td>ein alter Schelm von Lohnbedien</td>
<td>yofi šel sefer</td>
</tr>
<tr>
<td>three pounds of cheese</td>
<td>een doos van uw heerlijke koekjes</td>
<td>eine Dose von diesen leckeren Kekse</td>
<td>shvey kilo (šel) tapuxim</td>
</tr>
<tr>
<td></td>
<td>‘a jerk of a boy’</td>
<td>‘an old villain of waged servant’</td>
<td>‘a beauty of a book’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘a box of your delicious cookies’</td>
<td>‘two kilos of apples’</td>
</tr>
</tbody>
</table>
A common syntax/semantics?
The linking element (contd.)

A surface similarity (noted in Corver (1998)).

- **a jerk of a linguist**
 - **three pounds of cheese**
 - **il tuo cretino di fratello**
 - "your cretin of a brother"
 - **una maravilla de niño**
 - "a marvel of a child"
 - **cet idiot de Jean**
 - "that idiot of Jean"

Italian (pseudopartitive) — (pseudopartitive)

Spanish (pseudopartitive) — (pseudopartitive)

French (pseudopartitive) — (pseudopartitive)

Note: Corver (1998) provides examples of similar constructions in different languages.
Plan: to explore the potential deeper similarity suggested by the surface similarity between inversion constructions and (pseudo)partitives.

- Some background on (pseudo)partitives: syntax and semantics
- Give an analysis of (pseudo)partitives
- Extend the analysis to inversion constructions
- Some predictions
Many measure phrases are ambiguous between a “container” and “substance” interpretation.

(4) a. Three bottles of wine broke (container)
 b. Three bottles of wine spilled (substance)

Any claims here apply at least to substance (pseudo)partitives.
(Pseudo)partitives: some background

Monotonicity

There is a semantic restriction on the measure phrase: the "monotonicity" constraint.

(5) a. sixty gallons of water
 b. *sixty degrees Fahrenheit of water
(Pseudo)partitives: some background

Monotonicity

Constraint on measure phrases (Schwarzschild, 2002, 2006):

Monotonicity: If α is type $\langle d, \langle e, t \rangle \rangle$, then α is “monotonic” if, for all $d, d' \in D_d$ and $x, x' \in D_e$, where $\alpha(d)(x)$ and $\alpha(d')(x')$, $d \geq_{D_d} d'$ if $x \geq_{D_e} x'$.

The relation between x and x' is the part-of relation holding among merelogical sums—masses or pluralities (Link, 1983).
(Pseudo)partitives: some background

Monotonicity

\[
\llbracket \text{gallons} \rrbracket = \lambda n_d. \lambda x_e. \text{gallons}(\text{VOLUME}(x)) = n
\]

More water \rightarrow more gallons.

\[
\llbracket \text{degrees Fahrenheit} \rrbracket = \lambda n_d. \lambda x_e. \text{F}(\text{TEMPERATURE}(x)) = n
\]

More water $\not\rightarrow$ higher temperature.
In Schwarzschild (2006), the monotonicity of measure phrases is enforced with a head (‘Mon’) in the nominal extended projection.

\[
\begin{array}{c}
\text{MonP} \\
\downarrow \\
\text{DP} \quad \text{Mon'} \\
\text{three pounds} \quad \text{Mon} \quad \text{NP} \\
\text{|} \\
\text{cheese}
\end{array}
\]

\[
\mathbb{L} [P(\text{three pounds of cheese})] = \exists x_e \exists \text{DIM} [\text{cheese}(x) \land 30z(\text{DIM}(x)) \land \text{MON(DIM, cheese)} \land [P](x)]
\]
In Schwarzschild (2002), composition proceeds after assigning the appropriate semantics to the measure phrase itself.

\[
\text{Pseudopartitive} = \lambda P_{(e, t)} \cdot \lambda x e \cdot P(x) \land \llbracket \text{Measure phrase} \rrbracket(\mu(x)) \land \mu \text{ is monotonic on } P
\]

where the measure phrase denotes a property of intervals of degrees.
Problem:

(1) How could an analysis of (pseudo)partitives be extended to inversion constructions if measure phrases have a semantics based on degree?

(2) How could the monotonicity of (pseudo)partitive measure phrases be analyzed if their semantics is *not* based on degree?

Empirical support: gender and number agreement in Romanian.

(6) (Cei) doi litri de apă
(The.masc.pl) two.masc liter.masc.pl of water.fem.sg
erău vărsatī / *eră vărsată
were spilled.masc.pl / *was spilled.fem.sg

(Brasoveanu, 2007, p. 5)

(Other empirical support: agreement of anaphora)

Agreement indicates head status. If measure-phrases are syntactically heads, then they are semantically properties.
The type shift is constrained by “individuation-by-measure”. Measure phrases are allowed to denote properties only if the property is informative about quantity.
Alternative: implement monotonicity compositionally in the syntax, but make measure phrases denote properties.

Following Schwarzschild (2002), but where \([\text{Measure phrase}]\) is a property of individuals:

\[
\begin{aligned}
\left[\text{Measure phrase}\right]_{\text{Pseudopartitive}} = \\
\lambda P_{\langle e, t \rangle}. \lambda x_e. P(x) & \& \left[\text{Measure phrase}\right](x) & \& \exists Q_{\langle d, \langle e, t \rangle \rangle} \left[\exists d \left[Q \text{ is monotonic } & \& \left[\text{Measure phrase}\right] = Q(d) \right]\right]
\end{aligned}
\]
(Pseudo)partitives: an analysis
Measure phrase = predicate

Alternative: implement monotonicity compositionally in the syntax, but make measure phrases denote properties.

Following Schwarzschild (2002), but where \llbracketMeasure phrase\rrbracket is a property of individuals:

\llbracketMeasure phrase$\rrbracket_{\text{Pseudopartitive}} =$

$\lambda P_{\langle e, t \rangle} \cdot \lambda x_e . P(x) \& \llbracket$Measure phrase$\rrbracket(x) \& \exists Q_{\langle d, \langle e, t \rangle \rangle} [\exists d_d [Q \text{ is monotonic} \& \llbracket$Measure phrase$\rrbracket = Q(d)]]$

That’s way too complicated!
A proxy for monotonicity: quantization (Krifka, 1989)

An \(\langle \alpha, t \rangle \)-type predicate \(P \) has quantized reference (\text{QUA}(P)) iff
\[
\forall x_\alpha [\forall y_\alpha [[P(x) \land P(y)] \rightarrow \neg y <_{De} x]]
\]

An updated proposal for Schwarzschild’s Mon:

(1) Measure phrases denote properties

(2) \[\text{[Mon]} = \lambda_{P(e, t)} \cdot \lambda_{Q(e, t)}: \text{QUA}(Q) \cdot \lambda_{x} P(x) \& Q(x) \\]
(Pseudo)partitives: an analysis

Measure phrase = predicate

An updated proposal for Schwarzschild’s Mon:

(1) Measure phrases denote properties

(2) $[[\text{Mon}]] = \lambda P_{<e, t>}. \lambda Q_{<e, t>} : \text{QUA}(Q). \lambda x_e. P(x) \land Q(x)$

$[[\text{three gallons Mon water}]] = \lambda x_e. [[\text{water}]](x) \land [[\text{three gallons}]](x)$

$[[\text{sixty degrees Fahrenheit Mon cheese}]] = \text{undefined}$

(Proper subparts of things measuring 60$^\circ$ also measure 60$^\circ$.)
An $\langle \alpha, t \rangle$-type predicate P has quantized reference ($\text{QUA}(P)$) iff
$$\forall x_\alpha [\forall y_\alpha [[P(x) \& P(y)] \rightarrow \neg y <_{D_e} x]]$$
What does quantized reference do for (pseudo)partitives?

(i) Ensures that measure phrases are monotonic

(ii) Correctly predicts that measure phrases are quantified...

(7) a. Three gallons of water were in the tub
 b. As many gallons of water as were in the sink were in the tub
 c. *Gallons of water were in the tub
(Pseudo)partitives: an analysis
Measure phrase = predicate

Problem: at first glance, quantization incorrectly rules out the following.

(8) a. Too many gallons of water were in the tub
 b. More than/at least three gallons of water were in the tub
 c. An ungodly amount of water was in the tub

If too many gallons, more than/at least three gallons, and an ungodly amount are predicates, they are not quantized. E.g., if twenty gallons is too many gallons, then so is twenty-one gallons,...
One solution: scope the quantifiers out of the measure phrase.

Let’s say $\llbracket t_i \text{ many pounds} \rrbracket^g = \lambda x_e. [\text{many}]^g(g(i))(x) \land [\text{pounds}]^g(x) = \lambda x_e.3\text{-pounds}(x)$.

That’s quantized.
One solution: scope the quantifiers out of the measure phrase.

Let’s say $[t_i \text{ many pounds}]^g = \lambda x.e.[many]^g(g(i))(x) \& [\text{pounds}]^g(x) = \lambda x.e.3\text{-pounds}(x)$.

That’s quantized.

But, then everything has to be quantificational.
Better solution: weaken quantization to non-divisiveness (Krifka, 1989).

An \(\langle \alpha, t \rangle \)-type predicate \(P \) has non-divisive reference (\(\neg \text{DIV}(P) \)) iff

\[
\neg \forall x_\alpha[\forall y_\alpha[[P(x) \& y \leq_{\text{D}} x] \to P(y)]]
\]

equivalently...

\[
\exists x_\alpha[\exists y_\alpha[P(x) \& y \leq_{\text{D}} x \& \neg P(y)]]
\]

Still makes the right cut between monotonic and non-monotonic measure phrases and rules out bare measure nouns.
Interim summary

- Pseudopartitives can be properly analyzed as containing two predicates of individuals.

- Non-divisiveness can serve as a proxy for the monotonicity constraint in (pseudo)partitives: it rules out non-monotonic measure phrases.

Next: extend the analysis to inversion constructions, but analyze them as properties of states.
Inversion constructions
Stative properties

Claim of this section: inversion constructions, examples repeated in (9), have a syntax and semantics parallel to that of pseudopartitives.

(9)
a. too friendly (of) a linguist
b. a jerk of a linguist

But they denote properties of states.
Inversion constructions

Stative properties

States (type s) are eventualities that are in a relation with individuals who hold or are in them (see Davidson, 1967; Parsons, 1990, a.o.).

Claim, to be motivated: inversion constructions have a syntax and semantics like what follows.

\[\lambda s. s \text{ is a jerk-state } \& s \text{ is a linguist-state}\]
Inversion constructions

Stative properties

Since we are talking about states, the semantics for Mon will have to be changed.

\[
\text{[Mon]} = \lambda P_{\langle s, t \rangle}. \lambda Q_{\langle s, t \rangle}: \neg \text{DIV}(Q). \lambda s. P(s) \land Q(s)
\]

\[\neg \text{DIV}(P) \text{ iff } \exists s_0 \exists s_0' [P(s_0) \land s_0' \leq_{D_s} s_0 \land \neg P(s_0')]].\]

What does it mean for \(s_0' \leq_{D_s} s_0 \)?
Wellwood (2012) argues that states, like individuals (Link, 1983) and events (Bach, 1986), may be ordered by a linguistically-accessible relation.

If s and s' are tall-states, then $s \succ_D s'$ if holding s makes you taller than holding s' does.

Moreover, only those properties of states whose domains are ordered are gradable properties.

Result: the predicate of whose denotation $\neg \text{DIV}$ is presupposed is expected to denote a non-divisive property of states.
Inversion constructions
Stative orderings: Wellwood (2012)

Wellwood (2012) argues that states, like individuals (Link, 1983) and events (Bach, 1986), may be ordered by a linguistically-accessible relation.

If s and s' are *tall*-states, then $s >_{D_s} s'$ if holding s makes you taller than holding s' does.

Moreover, only those properties of states whose domains are ordered are gradable properties.

Result: the predicate of whose denotation $\neg DIV$ is presupposed is expected to denote a non-divisive property of states.

Another way of looking at it: the relevant noun or adjective should be gradable.
Inversion constructions

Predictions of the analysis: gradability

```
 too friendly
    |       |
    v       v
 Mon  Mon'  Mon  Mon'  Mon  Mon'  Mon  Mon'
     |       |        |       |
     v       v        v       v
   DP    Mon    DP    Mon    a linguist    a linguist

too friendly should be non-divisive
→ friendly should be gradable

a jerk should be non-divisive
→ a jerk should be gradable
```

Hard to test for adjectives (e.g., too nice) in English, because degree-inversion requires a degree modifier necessitating gradability anyway.

(10) *friendly of a linguist
Inversion constructions

Predictions of the analysis: gradability

Possible to test the general case for nouns, though.
Inversion constructions

Predictions of the analysis: gradability

Possible to test the general case for nouns, though.

✓ a marvel of a guy
✓ a sweetheart of a kid
✓ an idiot of a student
✓ an asshole of a librarian
✓ a jerk of a linguist
Inversion constructions
Predictions of the analysis: gradability

Possible to test the general case for nouns, though.

✓ a marvel of a guy
✓ a sweetheart of a kid
✓ an idiot of a student
✓ an asshole of a librarian
✓ a jerk of a linguist

* a guy of a marvel
* a kid of a sweetheart
* a student of an idiot
* a librarian of an asshole
* a linguist of a jerk

The first nouns in the left column gradable by tests in Morzycki (2009). Those in the right column fail the same tests.

Compare an utter {marvel, sweetheart, idiot, asshole, jerk} with
an utter {guy, kid, student, librarian, linguist}.
Inversion constructions
Predictions of the analysis: gradability

To test the same prediction for adjectives, there would have to be a language that doesn’t require inverted adjectives to occur with degree modifiers.
To test the same prediction for adjectives, there would have to be a language that doesn’t require inverted adjectives to occur with degree modifiers. Norwegian provides such a case.

(11) Attributive adjectives
a. en høy mann
 a tall man
b. en lykkelig mann
 a happy man

(12) Inverted adjectives
a. høy en mann
 tall a man
b. lykkelig en mann
 happy a man
As predicted, non-gradable adjectives are ruled out when inverted.

(13) **Attributive adjectives: non-gradable**

a. en mann død
 a man dead

b. en Italiensk mann
 a Italian man

c. en digital klokke
 a digital watch

(14) **Inverted adjectives: non-gradable**

a. *død en mann
 dead a man

b. *Italiensk en mann
 Italian a man

c. *digital en klokke
 digital a watch

Inversion constructions
Predictions of the analysis: gradability

On the other hand, not all gradable adjectives appear to be acceptable in inverted position.

(15) Attributive adjectives
 a. en humpete vei
 a bumpy road
 b. en bøyd stang
 a bent rod

(16) Inverted adjectives
 a. *humpete en vei
 bumpy a road
 b. *bøyd en stang
 bent a rod
Inversion constructions

Predictions of the analysis: gradability

The two adjectives in (16) that cannot invert: *humpete* (‘bumpy’) and *bøyd* (‘bent’). The English counterparts of these two are minimum-standard adjectives, and so are true of individuals relating to any degree at all on their respective scales (Kennedy and McNally, 2005; Kennedy, 2007, a.o.).
The two adjectives in (16) that cannot invert: *humpete* (‘bumpy’) and *bøyd* (‘bent’). The English counterparts of these two are minimum-standard adjectives, and so are true of individuals relating to any degree at all on their respective scales (Kennedy and McNally, 2005; Kennedy, 2007, a.o.).

It is just minimum-standard adjectives, however that are predicted to denote divisive properties of states (see Husband (2012) for relevant discussion).
The two adjectives in (16) that cannot invert: *humpete* (‘bumpy’) and *bøyd* (‘bent’). The English counterparts of these two are minimum-standard adjectives, and so are true of individuals relating to any degree at all on their respective scales (Kennedy and McNally, 2005; Kennedy, 2007, a.o.).

It is just minimum-standard adjectives, however that are predicted to denote divisive properties of states (see Husband (2012) for relevant discussion).

Prediction: adding a degree modifier which makes the property non-divisive should render (16) acceptable.
Inversion constructions

Predictions of the analysis: gradability

This prediction appears to be borne out.

(17) Inverted adjectives: no modifier
 a. *humpete en vei
 bumpy a road
 b. *bøyd en stang
 bent a rod

(18) Inverted adjectives: with modifier
 a. så humpete en vei
 so bumpy a road
 b. så bøyd en stang
 so bent a rod
Inversion constructions

Predictions of the analysis: stativity

Is there a way to independently test for the presence of a state argument in inversion constructions?

Conjecture: in English (though, not necessarily in other languages), only singular count nouns can denote properties of states. Mass and plural nouns must be individual/kind-denoting.

(19) a. Mary is an utter jerk
 b. Those guys are utter jerks
 c. This paper is utter nonsense

(20) a. How much of a jerk is Mary?
 b. *How much (of) jerks are those guys?
 (cf. How many jerks...)
 c. How much (*of) nonsense is this paper?
 (extensive interpretation only)
Inversion constructions
Predictions of the analysis: stativity

Schwarzschild (2006) argues that quantity adjectives like *much* occupy a functional projection higher than other adjectives (like *utter*).

It appears that the state argument of mass and plural nouns is closed off by the time the relevant functional structure comes in.

(21) a. Mary is an *utter* jerk
 b. Those guys are *utter* jerks
 c. This paper is *utter* nonsense

(22) a. How *much* of a jerk is Mary?
 b. *How *much* (of) jerks are those guys?
 (cf. *How many jerks...*)
 c. How *much* (*of*) nonsense is this paper?
 (extensive interpretation only)
Inversion constructions

Predictions of the analysis: stativity

A second diagnostic for the availability of a state argument: depictive secondary predication.

(23) He entered the room *annoyed*

The depictive secondary predicate contributes the entailment that there is a state of the relevant kind that overlaps temporally with the event described by the verb.

A semantics for a depictive head, taken from Pylkkänen (2002):

\[
\lbracket dep \rbracket = \lambda f_{\langle e, \langle s, t \rangle \rangle} . \lambda e . \lambda v . \exists s [f(x)(s) \& e \circ s]
\]
Inversion constructions

Predictions of the analysis: stativity

A second diagnostic for the availability of a state argument: depictive secondary predication.

(23) He entered the room annoyed

The depictive secondary predicate contributes the entailment that there is a state of the relevant kind that overlaps temporally with the event described by the verb.

A semantics for a depictive head, taken from Pylkkänen (2002):

\[
\llbracket \text{dep} \rrbracket = \lambda f_{\langle e, \langle s, t \rangle \rangle} \cdot \lambda x \cdot \lambda e_v \cdot \exists s[f(x)(s) \land e \circ s]
\]

Prediction, given the last diagnostic: only singular count nouns should occur as secondary predicates.
Inversion constructions

Predictions of the analysis: stativity

This prediction appears to be verified, with individual variation in judgments.

(24)
 a. The dough ball came out of the oven a pizza
 b. ??The dough ball came out of the oven pizza
 c. ??The doughballs came out of the oven pizzas

(25)
 a. The batter will come out of the oven a cake
 b. ??The batter will come out of the oven cake
 c. ??The cups of batter will come out of the oven cakes
Inversion constructions

Predictions of the analysis: stativity

Summary: there is some evidence that only singular count nouns may denote stative properties in English.
Inversion constructions

Predictions of the analysis: stativity

Summary: there is some evidence that only singular count nouns may denote stative properties in English.

Prediction: only singular count nouns should occur in inversion constructions.

(26) a. too friendly (of) a linguist
 b. *too friendly (of) linguists
 c. *too tasty (of) cake

(27) a. a jerk (of) a linguist
 b. *a jerk (of) linguists
 c. *a disaster (of) cake
One last thing...

Because of their stative semantics, inversion constructions should prohibit occurrence with regular property-denoting modifiers, e.g., relative clauses.

(28) a. I read a long book that Camilla recommended
 b. ??I read too long of a book that Camilla recommended

(29) a. Mary is a linguist that everyone admires
 b. Mary is [a jerk of [a linguist] that everyone admires]

(29-b) seems to require attachment of the RC so that a jerk is in its scope, though not sure how to show that....
Things to fax home about...

(i) It is possible to give (pseudo)partitives a compositional analysis that involves intersecting two properties of individuals.

(ii) It is possible to give a parallel analysis of inversion constructions that reflects their observable similarities with pseudo(partitives).

(iii) If the analysis is on the right track, it shows that nouns, like adjectives and some verbs, can denote stative properties.
(i) How are inversion constructions interpreted as properties of individuals? (E.g., a type shift, some functional head,...)

(ii) What gets to “invert” in a given language? (Compare, e.g., English and Norwegian.) On the current account syntactic category may play a role, so that for example, while English allows only DegP, Norwegian also allows AP.

(iii) Why can only singular count nouns denote stative properties in English?
Thank you!

