
REMARKS ON FINITISM

W. W. TAIT†

The background of these remarks is that in 1967, in ‘’Constructive rea-
soning” [27], I sketched an argument that finitist arithmetic coincides with
primitive recursive arithmetic, PRA; and in 1981, in “Finitism” [28], I ex-
panded on the argument. But some recent discussions and some of the more
recent literature on the subject lead me to think that a few further remarks
would be useful.

The question “What is finitism?” is really two questions, which I did sep-
arate in 1981, but perhaps not sufficiently clearly. First, and, in truth, for
me most importantly, there is the conceptual problem of making sense of the
idea of a ‘finitist’ function or ‘finitist’ proof of a finitist arithmetic proposition
such as ∀xy[x + y = y + x], which seems to refer to the infinite totality of
numbers. And secondly, there is the historical question of what Hilbert—or
perhaps better, Hilbert and Bernays1—meant by “finitism”. The two ques-
tions are not entirely independent, of course, since it was Hilbert and Bernays
who originally marked out the conception of finitist mathematics. But, if we
take as the central issue the question of the ‘finite’ in finitism, we may be
led to reject some aspects of the Hilbert-Bernays account. Indeed, my analy-
sis rejects the Kantian element in their discussions. Their account of finitist
mathematics begins with the restriction to objects representable in intuition
or obtained by ‘intuitive abstraction’—‘formal objects’ as Bernays calls them
[12, 1]. For Bernays the finiteness of mathematical objects is a consequence
of their representability in intuition. (See [2, p. 40].) But our problem is,
of course, not the finiteness of a number, but the infinity of numbers. There
is, I think, a difficulty with Bernays’ notion of formal object, where this is
intended to extend to numbers so large as, not only to be beyond processing
by the human mind, but possibly to be beyond representablity in the physical
world. [2, p. 39]. This difficulty ought to be discussed more adequately then

†This paper is based on a talk that I was very pleased to give at the conference Reflections,
December 13-15, 1998, in honor of Solomon Feferman on his seventieth birthday. The choice
of topic is especially appropriate for the conference in view of recent discussions we had
had about finitism. I profited from the discussion following my talk and, in particular,
from the remarks of Richard Zach. I have since had the advantage of further discussions
with Zach and of reading his paper 1998; and I use his scholarship here shamelessly for my
own purposes. Finally, I want to thank the two anonymous referees of this paper, whose
comments have led to several changes in the final version.

1See [22, §3.4] for a discussion of Bernays contribution to the conception of finitism.
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I have sofar done; but I won’t take it up here. The point I want to emphasize
now is that I don’t see in this notion of formal object the means for reasoning
about the totality of numbers. My argument, which I don’t want to repeat or
expand upon here, is that the idea of iteration, which is of the essence of the
idea of number and, in particular, is the means by which numerical functions
are defined and numerical equations are proved, is not found or represented
in intuition but is a creature of reason. That we may define a function by
primitive recursion on a numerical variable is not a consequence of the repre-
sentability of numbers in intuition, but rather follows from what we mean by
(finite) iteration.

I attempted to answer the first, conceptual, question by taking seriously the
notion of an arbitrary or generic object X of a given finitist type, where a
finitist type of the first kind is a product N × · · · × N, N being the type of
the natural numbers, and a finitist type of the second kind is a product whose
factors are numerical equations m = n. An objct of the latter type, if there is
any, consists of a proof of each of the factors m = n from the axiom 0 = 0 using
the inference a = b ⇒ a′ = b′. My argument is that one can understand the
idea of an arbitrary object of a given finitist type independently of that of the
totality of objects of that type; and on its basis, we may proceed to construct
objects of possibly other finitist types, which may depend on X. Thus, when
X is of finitist type of the first kind, we may construct from it other objects
f(X) of types of the first kind. I claimed that, when we identify just what
means of construction from X are implicit in the idea of such an arbitrary
object, they turn out to be precisely those by means of which we define the
primitive recursive functions. Likewise, when we identify, for given finitist
functions f(X) and g(X), what constructions of a proof of f(X) = g(X) are
implicit in the idea of an arbitrary X, they turn out to yield proofs of exactly
those equations deducible in PRA.

Concerning the conceptual question, some doubts have been raised about
the identification of finitism with PRA. For example, Kreisel [20] takes finitism
to include quantifier-free induction up to any ordinal below ε0 and Ignjatović
[18, p. 323] writes that my analysis of finitistic reasoning is not beyond any
doubt. I have criticized Kreisel’s conception in [28]. In footnote 5 (p. 323)
Ignjatović writes: “Of course, one cannot rule out the possibility that any
basis sufficient to justify what is formalized in (PRA) and which satisfies some
necessary closure properties in order to be acceptable as an epistemologically
distinguished system of methods, is also sufficient to justify ε0-induction.” But
the basis on which [28] derived PRA is the finitist types; the claim is that, to
go beyond PRA requires the introduction of higher types, e.g. of numerical
functions and proofs. One would think that this restriction on the types of
objects admitted would satisfy the condition of being “an epistemologically
distinguished system of methods”.
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Regarding Gödel’s position(s) on the conceptual question, the evidence is
not entirely sraightforward. In [4, p. 198], he explicitly denies that his incom-
pleteness theorems undermine Hilbert’s attempt to obtain finitary consistency
proofs, and it seems reasonably clear that he is referring to the conceptual
rather than the historical question of the meaning of finitism.2 In view of this,
it would seem that he was open at that time to the possibility that finitism
extends beyond PRA. On the other hand, in his notes for lectures in 1933 [5]
and in 1938 [6], he explicitly attributes to Hilbert the aim of establishing con-
sistency in PRA. Moreover, in the first of these he refers to PRA as the first
in an ascending series of layers of intuitionistic or constructive mathematics
[11, p. 51] and, in the second, he refers to it as finitary number theory, the
lowest level of a hierarchy of finitist systems [11, p. 93]. In [7, p. 281], how-
ever, he refers to Hilbert’s definition of finitism as “the mathematics in which
evidence rests on what is intuitive” and so rejects as finitist in this sense the
higher levels of “finitist systems”, such as intuitionism and his own system T
of primitive recursive functions of finite type.

Kreisel [21, p. 506] accepts the identification of finitism (at least as it is
described in the beginning of [16]) with PRA, but doubts my argument for
it. He writes of [27] that “its central point seems to be that the evidence of
each proof has, in some essential way, a strictly finite character. As it stands
the analysis . . . is unconvincing since the understanding of any one rule goes
beyond this.” I would not like to talk about the evidence of a proof, but simply
of the proof (i.e. evidence for the proposition). The ‘some essential way’ in
which the proof f(X) has a finite character is that it appeals only to what is
implicit in the idea of an arbitrary object X of the given finitist type N×· · ·×N

and does not appeal to higher types of objects, such as numerical functions,
proofs, etc. Whether or not this gives the proof a strictly finite character, it
does seem to me to provide a sense in which we can say that certain numerical
functions or proofs of equations, which apply to an infinite number of objects,
are finite. It is certainly true that if we finitistically construct f(X) from an
arbitrary number X, then the construction applies to obtain f(0), f(1), etc.—
and, if we understand the former, then presumably we understand f(n) for
each given n. But that is not to say that the validity of the construction f(X)
or our understanding of it depends on the validity or our understanding of
each of the infinite number of instances of it.

Of course, an analysis of the notion of finitism cannot be presented as a
theorem. It is, rather, analogous to Turing’s analysis of the notion of a com-
putable real: at one end is an intuitive notion and at the other, its explication
in terms of a precise mathematical concept. There are however at least two
crucial differences between Turing’s analysis and the analysis of the notion of

2He writes of “Hilbert’s formalistic viewpoint”: “For this viewpoint presupposes only the
existence of a consistency proof in which nothing but finitary means of proof is used, and it
is conceivable that there exist finitary proofs that cannot be expressed in the formalism of
P (or M or A).”
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finiteness. The most prominent difference concerns the relative importance of
the notions; the other difference is that Turing’s analysis has stood up over a
long period of time.3 Far too little attention has been paid to the explication
of the idea of finitism for one to feel that my analysis is beyond doubt. But
sofar I have seen no serious discussion of it; and so I’m not going to discuss
this question further now.

Concerning the second, historical, sense of the question “What is finitism?”,
there has been some serious discussion: I mention in particular Zach’s paper
[31]. Hilbert nowhere gives a precise characterization of what he means by
this; and, indeed, in [16] the authors, in discussing the extent to which finitist
methods include the principles formalized in first-order arithmetic (PA), write

To be sure, even as we have formulated it, this question is not pre-
cise; for we have not introduced the expression “finit” as a sharply
delimited term, but only as a designation of a methodological guide-
line which, to be sure, enables us to definitively recognize certain
kinds of concept formations and inferences as finitist, certain others
as not finitist, but which provides no precise dividing line between
those which satisfy the demands of finitist methods and those which
do not. [16, p. 361]

However, there is general agreement, well supported by Hilbert’s own writings,
that he regarded the kinds of concept formation and inferences formalized in
primitive recursive arithmetic (PRA) as finitist.4 The substantive issue seems
to be whether he was committed to there being concepts and modes of inference
which are not formalizable in PRA. I will confine my attention to this question.

There are four sources of data relevant or at least thought to be relevant to
the issue: various passages in the two volumes of Grundlagen der Mathematik
[16, 17], the reference to Ackermann’s function in “Über das Unendliche” [12]
and Hilbert’s so-called ‘ω-rule’ in “Grundlegung der elementaren Zahlenlehre”
[14].

3This is true both in the sense that his analysis of human computation and his argument
that such computation can be carried out by a Turing machine has survived subsequent
analysis and in the sense that the class of Turing-computable functions has turned out to
contain all the functions that one might, from some other point of view, deem computable.
For a discussion of the first sense, see [25]

4See in particular [16, p. 325 (330)]. Niebergal and Schirn [23] argue that the conception
of finitism in [16] extends the original conception that Hilbert had in the 1920’s. This
view seems to be partly based on the view that finitism in the earlier period was concerned
only with metamathematics and so not with numbers. But, of course, for Hilbert the
numbers themselves were syntactic objects and so arithmetic was for him was a special case of
metamathematics. The authors also seem to believe that Hilbert’s finitism was restricted to
making statements about particular syntactical objects and admitted no general statements
(Π0

1 statements, as they refer to them). Aside from the fact that they are then unable to give
a convincing account of what the statement of consistency for a formal system such as PA
would be (see pp. 297-302), [13] explicitly states the ‘contentual’ principle of mathematical
induction as a finitist principle. One premise of this principle is surely a general proposition.
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Grundlagen I

Zach mentions one passage in §7 of Volume I which he takes as evidence for
the view that the authors took finitism to be more extensive than PRA.

We may, however, admit certain extensions of the schema of recur-
sion as well as of the induction schema, without taking away what
is characteristic of the method of recursive number theory. [p. 325
(p. 330)]5

The subsequent discussion is, first, of various forms of recursion and induc-
tion, e.g. simultaneous recursions, which reduce to the primitive forms. But
they then go on to introduce examples of nested double recursive definition,
namely the enumeration fx(y) of the primitive recursive functions of y and the
Ackermann function, which they point out are unlike the previous examples
in not being reducible to primitive recursion.6 Did they at that time regard
such nested double recursions, too, as partaking of what is characteristic of
the method of recursive number theory? And, if so, does that imply that they
thought at that time that such definitions are finitistically valid? Presumably
Zach believes that “what is characteristic of the method of recursive number
theory” refers to its finitistic character. But what immediately precedes the
above passage is

The distinction of recursive number theory from intuitive number
theory consists in its formal constraints; its only method of concept
formation, aside from explicit definition, is the schema of recursion,
and also the methods of deduction are strictly circumscribed.

In view of this, I am inclined to take “what is characteristic of” its method
to be the kind of definitions (recursion equations) and rules of inference (free-
variable induction principles) that are involved. Just preceding the above
passages, the authors state explicitly that recursive number theory, as it had
been developed up to that point, is finitistically valid. Insofar as they can
be reduced to PRA, this would then be so of what can be obtained by the
various principles of definition and proof that they subsequently introduce in
§7. However, nothing they write points clearly to an acceptance of the diagonal
function or the Ackermann function as finitist. On the other hand, they don’t
explicitly reject them as finitist, either.

Grundlagen II

There is no doubt that in Volume II there is evidence that the authors regarded
finitism as extending beyond PRA. Thus, Zach quotes a passage referring back
to the passage just quoted from Volume I, in which they write

5Page references to both volumes of Grundlagen der Mathematik are to the first edition,
with the corresponding page references to the second edition in parentheses.

6They prove that fx(x) + 1 is not primitive recursive.
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Certain methods of finitist mathematics which go beyond recursive
number theory (in the original sense) have been discussed already in
§7 [of [16]], namely the introduction of functions by nested recursion
and the more general induction schema. [17, p. 340 ( 354)]

But the question is whether or not this reflects their view of finitism in earlier
writings, up to the publication of Volume I, which were unaffected either by
Gödel’s incompleteness theorems or by the Gentzen’s success in proof theory
using methods that go beyond PRA. Already in his introduction to [16],
written in March 1934, after the completion of the text, in response to Gödel’s
incompleteness theorems, Hilbert spoke of the necessity for using the finitist
standpoint in a sharper (schärferen) way than was required for the treatment of
elementary formalisms. This would seem to indicate that he had in mind some
resource that he regarded to be already contained in the finitist conception,
rather than some more extensive conception, going beyond finitism. On the
other hand, in the Introduction to Volume II, Bernays, in reference to the new
methods needed to prove the consistency of less elementary formalisms such
as PA, speaks of an extension of the finitist standpoint. I don’t know whether
this form of expression constitutes a recognition that these new methods go
beyond finitism as originally conceived or whether, like Hilbert, he is refering
to new resources contained within the original conception.

Further complicating the issue, on p. 224 the authors write about “con-
tentual finite number theory, which”, they say, “indeed is formalized through
recursive number theory”; and here they refer back to Volume I. This would
seem to contradict the later statement, quoted above, that finitism has no
precise boundary; however they go on to write that

The original narrow concept of a finitist proposition in the field of
number theory admits as finitist number theoretic propositions only
those which can be expressed in the formalism of recursive number
theory [PRA], possibly including symbols for certain computable
functions . . . or which are capable of a stricter interpretation by a
proposition of this form. (My emphasis) [p. 348 (362)]

This would seem to leave the boundary of finitism, as conceived in Volume I,
indeterminate without commiting it to more than PRA.

But we also see here the expression “the original narrow concept of a finitist
proposition”, suggesting a wider conception that is still, on their view, finitist.
Indeed, they go on to discuss certain propositions (e.g. implications with
universal antecedents) the employment of which “appears not to be a violation
of the basic ideas of the methodology (methodischen Grundgedanken) of finitist
proof theory.” In fact, they suggest that, having taken this step, one can extend
the methods of finitist proof theory even further.

Certainly, from my own point of view, this amounts to a clear transgres-
sion of finitist mathematics, which admits as a limiting case, only, proofs of
statements (i.e. functions of type) ∀x[s(x) = t(x)]. The authors are now
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contemplating functions of types ∀xF (x) =⇒∀xG(x) which take functions (or
proofs) as arguments. At this stage, I don’t know what the authors mean by
“finitism”: I certainly can’t understand what it has to do with finite.

Zach does quote from a letter from Bernays to Gödel from 1970:
These nested recursions . . . appear to me to be finite in the same
sense as the primitive recursions, i.e., if one regards them as state-
ments of computation procedures where one can recognize that the
function defined by the respective process satisfies the recursion
equations (for every system of numerical values for the arguments).
Indeed, the computation of the value of a function according to a
nested recursion, when the numerical values of the arguments are
given, comes down to the application of several primitive recursions,
the number of which is determined by a numerical argument.

But one should note, certainly with admiration but also as a caution, that
Bernays wrote this in a letter when he was 82 years old. And, in any case, his
reasoning here is defective. To understand his point about the computation of
the Ackerman function f(x, y) amounting to the computation of x primitive
recursive functions of y, let f(x, y) instead be the enumeration fx(y) of the
primitive recursive functions of y mentioned above. Now, it is true that, for any
particular number m, we can construct fm[Y ] from arbitrary Y ; but how are
we to construct fX [Y ] from arbitrary X and Y ? On my analysis, a particular
primitive recursive function is finitist, but not an ‘arbitrary’ one fX . The
construction or computation of fX [Y ] from X and Y requires, not the arbitrary
iterations X and Y , but the transfinite iteration up to ωX×Y , which can make
no claim to finiteness.7

Über das Unendliche

My original foray into history concerned a reference to the Ackermann function
by Hilbert in [12], which Kreisel cites in [21, fn 42, p. 514] as evidence against
my thesis that finitism is PRA. I responded to this in [28]; but the matter
seems not to be entirely laid to rest. So let me expand on it and convince you
that this issue is not at all open!

In his paper, Hilbert wanted to sketch, as an application of his proof theory,
a proof of the continuum hypothesis CH, and a key to understanding what
he intends is to remember that his proof theory involved formalizationj in the
ε-calculus and then proving the eliminability of all ε-terms. He assumed that
a certain formal system Σ, in which CH can be formulated, is complete; and
so it sufficed to prove that ¬CH cannot be derived in Σ. Σ is a many-sorted
theory containing the types N of the second number class and Z of the first
number class. The negation of CH can be expressed by

7See [26] for the analysis of nested double recursions (i.e. nested recursions on ω2) or,
more generally, nested α-recursions.
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∀F : N =⇒ZZ∃g∀α[F (α) �= g]

(To improve readability, I am using arrows and exponentiation interchange-
ably.) Using ε-symbols, this takes the form

∀F : N =⇒ZZ∀α[F (α) �= t(F )]

where t = t(F ) is a term for a numerical function, built up by means of the
ε-operator from F . He now invokes his Lemma I, which he states to be a
conseqence of his general principle that every mathematical problem can be
solved:

If a proof of a proposition contradicting the continuum theorem
is given in a formalized version with the aid of functions defined
by means of the transfinite symbol ε . . . , then in this proof these
functions can always be replaced by functions defined, without the
use of the symbol ε, by means merely of ordinary and transfinite
recursion . . . .8

By ordinary and transfinite recursions, he means recursions on Z and on N ,
respectively. So now we may assume t to be defined by recursions on Z and
N and explicit definitions from F . The recursions involved cannot all be as-
sumed to be of the form of primitive recursions; but Hilbert believes that all
the recursions involved in the proof can be reduced to primitive recursions in
the impredicative sense, if we admit the transfinite hierarchy 〈Nα | α ∈ N〉 of
function types, where N0 = N . The Ackermann function is introduced at this
point as a simple example of a numerical function ‘defined by recursion’ but not
by predicative primitive recursion, and which can then be defined by impred-
icative primitive recursion on Z. Call the functions obtained by impredicative
primitive recursion relative to this hierarchy N − PR. So, t(F ) is an N − PR
function of F . Now we may define another hierarchy 〈Zα | α ∈ N〉, where
Z0 = Z, obtaining also the class of Z − PR functions.9 The class of Z − PR
functions has the power of N and so we can take F to be an enumeration of all
the Z −PR numerical functions, itself defined by recursion on N . So t = t(F )
is a N − PR numerical function. Hilbert gives an argument to show that any
N − PR numerical function and, in particular, t is Z − PR and hence in the
range of the enumeration F—a contradiction.

Hilbert goes on to say that, even aside from the holes in the argument that
need filling, the proof would require “a recasting strictly faithful to the finitist
attitude”. Clearly what he has in mind is the formalization Σ of the theory of
the second number class N , including the theories of the N −PR and Z −PR
functions, and the translation of the proof of ¬CH in the ε-calculus into a

8This assertion has of course never been proved. In [13] he asserts that it is dispensible
for his proof of CH; but it isn’t clear to me how he intended to establish this.

9This is Gödel’s hierarchy extended into the transfinite.
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proof in Σ of a contradiction. Since he presumably believed that a finitist
proof of the consistency of Σ could be obtained, he could conclude that there
can be no proof of ¬CH and, hence, by completeness, CH is true.

Hilbert’s so-called ω-Rule

There is also a prevailing confusion concerning Hilbert’s paper “Die Grundle-
gung der elementaren Zahlenlehre” [14], in which he proposes the following
“Schlussregel”:

If it is proved that the formula
A(z)

is a true numerical formula for each given numeral z, then the for-
mula

∀xA(x)
may be admitted as an initial formula.

Gödel reviewed this paper and, in the introductory note to the review in [9],
Feferman discusses the question of whether or not Hilbert was here reacting
to Gödel’s incompleteness theorems. But, more to the point, he notes that the
principle in question is mis-named the ω-rule. In the first place, the formula
A(x) is to be quantifier-free; in fact, it is to be the formalization of a finitisti-
cally meaningful property of numbers. But, secondly, in spite of Hilbert calling
it a “Schlussregel”, it is not even a restricted case of the ω-rule. Rather, it
provides a criterion under which the universal formula ∀xA(x) may be taken
as an initial formula—i.e. an axiom in a deduction. Hilbert is describing a
system Σ, which is obtained from the formal system of elementary number
theory, with definition by primitive recursion included, by admitting such ax-
ioms. Of course, Σ is not itself a formal system—unless we accept the thesis
that finitism = PRA or some other formal system. But it is misleading to
call it a quasi-formal system, at least as that term was introduced by Schütte
for deductions admitting the ω-rule. One might note also that it is precisely
this system Σ which Gentzen described in [3] and to which he applied his
consistency proof.

Conclusion

Sofar, on the evidence I have seen, I remain inclined towards the view that
there was no commitment to finitist principles that go beyond PRA in Volume
I or in earlier writings. In Volume II, by their own admission, the authors are
including more under the term “finitist” than was originally included. Perhaps
further evidence will settle the historical question decisively.10

10I confess that, up to the time of my talk at Feferfest and aside from noting the passage
from p. 224 quoted above and recalling in a general way that the authors had extended
the notion of finitism, I hadn’t really looked thoroughly at Volume II to see what light it
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