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It is a pleasure for me to contribute a paper in honor of Grisha Mints. In
view of his interesting work involving the epsilon-substitution method, I am
returning to some work I did on that topic in 1960-1. I was primarily trying
to understand the concept behind Ackermann’s consistency proof for first-order
number theory (1940), which for me was too heavy on syntax and too light on
ideas. I found a satisfactory treatment the basic idea of which, I think, could
have been behind Ackermann’s approach.1 But, aside from presenting my work
on this topic in a lecture at the Eighth Logic Colloquium held at Oxford in 1963,
I put it aside in favor of trying to extend it to full second-order number theory,
a project that came to an abrupt halt in the winter of 1961-2. The work on the
epsilon-calculus for first-order systems of arithmetic and predicate logic finally
appeared in 1965 in two somewhat bloated papers (Tait 1965a, Tait 1965b). I
am happy to have this occasion to present a leaner and cleaner exposition of
that work. I will end with a brief discussion of why I believed that the method
I have applied for first-order number theory would not extend to second-order
number theory.

1 Preliminaries

Let
x, y1, y2, . . .

be a fixed list of distinct individual variables.

Definition A matrix and in particular an n-matrix is a quantifier-free formula
A(x, y1, . . . , yn) in a first-order language, with n ≥ 0, whose free variables are
x, y1, . . . , yn and such that for each i

• Every term in A other than y1, . . . , yn contains x.

• yi has exactly one occurrence in A.

• The occurrence of yi is to the left of yi+1 for (i < n). 2

1On the other hand, Mints himself has lectured on an approach to eliminating epsilon-terms
in PA which he seems to have extended to the theory of one elementary inductive definition.
This method has some claim to be the development of the intuition behind Hilbert’s original
belief that epsilon-terms could be eliminated.
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Every quantifier-free formula B(x) of a first-order theory is uniquely of the
form B(x) = A(x, t), where A(x,y) is a matrix, y = y1, . . . , yn, and the t =
t1, . . . , tn do not contain x.

Let T be classical first-order number theory. For simplicity, we take the
non-logical axioms of T to be the axioms of primitive recursive arithmetic PRA.
These include the axioms for the predecessor function pred

pred 0 = 0 pred(x+ 1) = x

The logical axioms are those for the propositional connectives and existential
quantifier introduction

A(t)→ ∃xA(x)

The logical rules of inference are modus ponens and the rule of existential quan-
tifier elimination

B(x)→ C

∃xB(x)→ C

where x is not in C. Finally, there is the rule of mathematical induction:

B(0) B(x)→ B(x+ 1)

B(s)

Definition. For each k < ω, the theory T k is defined by induction.

T 0 = T .

T k+1 results from adding for each n-matrix A = A(x,y) of T k (0 ≤ n) but not
of T m for any m < k

• To the language of T k a distinct new n-ary function constant fA. fA is
called the Skolem function constant for A. (0-ary function constants are
just individual constants.)

• To the axioms of T k all substitution instances of

A(x,y)→ A(fAy,y)

called the axioms of the first kind for fA.

• In the case of arithmetic, we also add all substitution instances of

A(x,y)→ fAy 6= x+ 1

called the axioms of the second kind for fA.

• If A(x) is an axiom of T k and s is a term of T k+1, then A(s) is an axiom
of T k+1. 2
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Set
T ∗ =

⋃
k

T k.

Note that the axioms of each T k and hence those of T ∗ are closed under sub-
stitutions. T ∗ is sometimes called the “ε-calculus” and the substitution method
the “ε-substitution method” because Hilbert wrote εxB(x) for fAt when A is a
matrix and B(x) = A(x, t).

Definition. The rank of a Skolem function constant fA in T ∗ is the least n
such that fA is in T n+1.

Thus, if fA is of rank n, then all of the Skolem function constants in the
matrix A are of rank < n. If, for every matrix A(x,y) in T ∗, we abbreviate

∃xA(x, t) := A(fAt, t)

then every axiom
B(s)→ ∃xB(x)

transforms into an axiom of the first kind

B(s)→ B(fAt)

for a suitable Skolem function fA and each inference

B(x)→ C

∃xB(x)→ C

where x is not in C, becomes the substitution

B(x)→ C

B(fA(t))→ C

Thus, we may consider T ∗ to be a quantifier-free system.

Consider now instances of the rule of mathematical induction

B(0) B(x)→ B(x+ 1)

B(s)

From ¬B(s) we can infer ¬B(fAt), where ¬B(x) = A(x, t), by an axiom of the
first kind. So it follows from the first premise of the induction that fAt 6= 0
and so fAt = pred(fAt) + 1. By the second premise of the induction then,
¬B(pred(fAt)), which contradicts an axiom of the second kind for fA. Thus we
deduce B(s).

In this way, given a deduction in T of a formula C, we obtain a deduction
of C in the quantifier-free system T ∗ which contains, along with the logical and
non-logical axioms T , closed under substitution of the new terms of T ∗, only
the new axioms of the first and second kind for the Skolem functions. The only
rule of inference is modus ponens.
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2 Eliminating Skolem Functions in First-Order
Number Theory

Let D be a deduction in T ∗ of a formula C. We can assume that all of the free
variables in D are in C, since all others can be replaced throughout by 0. Let z
be a list of the free variables in C. All of the axioms in D other than the axioms
for Skolem functions are obtained from axioms of T by substituting terms of
the form fAt for variables. Let

fA1 , . . . , fAm

be all of the distinct Skolem constants occurring in D, listed in order of non-
decreasing rank, so that fAj occurs in the matrix Ai(x,yi) only if i > j. The
axioms occurring in D for Skolem functions are of course finite in number. We
shall call these axioms the critical formulas of D.

We will show that, for a certain extension T + of the quantifier-free part
PRA of T , for each finite set of axioms for Skolem functions

fA1 , . . . , fAm

we can define numerical-valued functions

φ1, . . . , φm

of z such that the result of replacing each term fiti by φizti for i = 1, . . . ,m
transforms each of the given axioms for Skolem functions into a theorem of T +.
It will follow that the result of this substitution in C is a theorem of T +.
T + is the quantifier-free system PRA2

ε0 of second-order primitive recursive
arithmetic with definition by recursion on each ordinal α < ε0. We give a brief
description of this system; but our construction below of the required φi will
not include a detailed formalization in T +.
T + contains variables of types ωn → ω for n ≥ 0. (When n = 0, these

are the numerical variables.) Functions of one or more variables ranging over
these types, whose values are of one of these types, are introduced by explicit
definition, primitive recursion and by recursion on some α < ε0. The order type
ε0 is represented in some standard way by a primitive recursive ordering ≺ of ω
with least element 0. I will use lower case Greek letters to denote ‘ordinals’, i.e.
natural numbers in their role as ordinals < ε0. Corresponding to the addition
of the ordinal numbers represented by α and β, there is the primitive recursive
function α⊕β and, corresponding to raising the ordinal represented by α to the
power 2 is the primitive recursive function Eα. Define

[x, y] =

{
x if x ≺ y
0 otherwise

Then definition by recursion on a limit ordinal α < ε0 has the form

Φg0 = Ψg
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and for 0 ≺ x ≺ α
Φgx = Ξgx(Φg[Θgx, x])

and for α � x
Φgx = 0τ .

Here g is a list of distinct variables of arbitrary types. Φgx,Ψg, Ξgxu are all of
the same type τ = ωk → ω (k ≥ 0) when u is a variable of type τ . Θgx is of type
ω and 0τ is some standard object of type τ , say the function with constant value
0. The formulas of T + are built up from equations between terms of the same
type by means of the propositional connectives. The axioms of T + are those
of identity, zero and successor, the defining equations of the function constants
of each type and the axioms of propositional logic. The rules of inference are
modus ponens, the rule of mathematical induction, and the rule of substitution

A(s) sx = tx

A(t)

where s and t are terms of some type ωn → ω with n > 0 and x is a list of n
distinct numerical variables that occur in neither s nor t.

PRA1
ε0 is the result of restricting the variables to numerical variables and

the function constants to types ωn → ω. The system PRA2
α+1 is a conservative

extension of PRA1
2α+1 and, in particular, PRA2

ε0 is conservative over PRA1
ε0 .

(Tait 1965a, Theorem 4)

Remark Our construction below would remain valid if we took the original
system T to be, not the result of adding quantification to PRA, but the result
of adding quantification to PRA1

ε0 . But then, from many points of view, that
is the natural system of first-order number theory. 2

f = fAm has the highest rank of Skolem function constants in D. The
Skolem function constants in A(x,y) = Am(x,ym) are among fA1

, . . . , fAm−1
.

Let g = z, fA1 , . . . , fAm−1 . The critical formulas in D for f then are substitution
instances of formulas of the form

A(si(f,g),y)→ A(fy,y)

or
A(si(f,g),y)→ fy 6= si(f,g) + 1

for i = 0, . . . p for some p < ω. Set

Sfg = Maxi≤psi(f,g).

Then it suffices to find f as a function of the g satisfying

fy ' µx ≤ Sfg.A(x,y)

where ' means that the two terms are equal if the right hand side is defined, i.e.
if there is an x ≤ Sfg such that A(x,y). Call this the principal semi-equation.
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At the first step, where f is the Skolem function constant of highest rank,
the si(f,g), and so Sfg, are just terms of T ∗. But in order to proceed by
induction, we need to be able to solve the principal semi-equation in a more
general setting in which Sfg is a functional of f and g in PRA2

ε0 .
We do that by first defining successive approximations θn = Θng of a solution

for f as follows:
θ0y = 0

θn+1y = µx ≤Max{θny, Sθng}A(x,y).

where the latter is understood to be 0 if no such x exists. If, as a function of g,
we can determine an n such that

Sθng = Sθn+1g

then f = θn is a solution of the principal semi-equation. Call this the principal
equation.

Remark The principal equation arises in another proof-theoretic context, namely,
in deriving the so-called no-counterexample interpretation of B from the wit-
nesses of the no-counterexample interpretation of A and A→ B, when A and B
are arithmetic formulas. (Gödel 1938a) refers to a solution of it using ”Souslin’s
schema,” meaning bar recursion, but does not give details. (Kohlenbach 1999)
actually carries out the derivation using an extensional form of bar recursion.
This is discussed in (Tait 2005). I will sketch here the derivation given in
(Tait 1965a) where bar recursion is avoided using induction non ordinals < ε0.

In 1962 Paul Cohen showed me a handwritten manuscript in which he pre-
sented the present procedure for eliminating the Skolem functions in first-order
number theory, intuitively applying bar recursion to solve the principal equa-
tion. He had at that time no prior knowledge of the work in Hilbert’s school on
the ε-calculus. 2

Suppose that f is a numerical constant, so that y is null. In that case, it
is immediate that θ2 = θ1 and so f = θ1 solves the principal equation. So
we may assume that f is a function constant of some type ωm+1 → ω and,
by contracting the arguments, we can assume that m = 0. The nth sequence
number

h̄n

of h is defined to be h if h is a number and it is the usual sequence number
〈h0, . . . , h(n− 1)〉# of 〈h0, . . . , h(n− 1)〉 of h if h is a numerical function of one
variable. If it is a numerical function of m variables with m > 1, then h̄n = h̄′n,
where h′ is the function of one variable with h′〈x1, . . . , xm〉+ = hx1 · · · , xm and
〈x1, . . . , xm〉+ denotes the standard bijection from ωm onto ω. For sequences of
numbers and numerical functions, set

h0, . . . , hpn = 〈h̄0n, . . . , h̄pn〉+.
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A numerical-valued function S in T + of f,g can be associated with a triple
consisting of:

• An ordinal αS < ε0

• A non-decreasing function ΦS : ω → ω in T + and

• A function ΨS : ω → αS in T +

such that the following are theorems of T +:

ΦS(f,gn) = 0⇒ ΨS(f,g(n+ 1)) ≺ ΨS(f,gn)

and
ΦS(f,gn) > 0⇒ Sfg = ΦS(f,g(n+m))− 1

for all m. In fact when S is defined in PRA2
ε0 using only recursions on β, then

αS < ωβ . (Tait 1965a, §5)

Let our given S be so represented by αS ,ΦS and ΨS . We show how toobtain
a solution

n = Ng

of the principal equation in T +. Since

ΦS(θn,gk) = 0⇒ ΨS(θn,g(k + 1)) < ΨS(θn,gk) < αS

it follows that
rn = µx[ΦS(θn,gx) > 0]

is definable by recursion on αS . For each m ≥ 0

Sθmg = ΦS(θmgrm)− 1 (1)

Let
mn,1 < . . . < mn,pn

be all the x < rn such that θnx = 0. Set

γn,i = ΨS(θn,g(mn,i + 1))

Thus
γn,1 � · · · � γn,pn

Now set
γn = Eγn,1 ⊕ · · · ⊕ Eγn,pn ≺ EαS .

Now assume that Sθng 6= Sθn+1g. Then ΦS(θn,grn) 6= ΦS(θn+1,grn+1). So
θngrn 6= θn+1grn, since otherwise rn+1 = rn and so, by (1), Sθng = Sθn+1g.
Hence θnrn 6= θn+1rn. Let x be the least number such that θnx 6= θn+1x.
Then x < rn and θnx = 0. I.e. x = mn,i for some i = 1, . . . , pn. Thus, for
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j < i,mn+1j = mn,j and so γn+1,j = γn,j . If there is no mn+1,i, then clearly
γn+1 ≺ γn. If mn+1,i exists, then it is > mn,i and so the sequence

〈θng0, . . . , θngmn,i〉 = 〈θn+1g0, . . . , θn+1gmn,i〉

is a proper initial subsequence of 〈θn+1g0, . . . , θn+1gmn+1,i〉. Hence γn+1,i ≺
γn,i and therefore γn+1 ≺ γn. We have proved that

Sθng 6= Sθn+1g⇒ γn+1 ≺ γn.

Hence
Ng = µxSθxg = Sθx+1g

can be defined by recursion on EαS . Thus our solution of the principal semi-
equation is

ΘNgg.

Substituting this for f in the critical formulas, we have reduced the number of
Skolem function constants by one.

3 Eliminating Skolem Functions in the Case of
Predicate Logic

Now we consider the case in which T is a first-order theory whose axioms are
quantifier-free and closed under substitution. T ∗ is defined exactly as above,
except that there are no axioms of the second kind for Skolem functions.

Again, let D be a deduction of C in T ∗ which we can assume to contain
no variables other than those in C, since the others can be replaced by some
individual constant. (If there are none, add one, carry out the following elimi-
nation procedure and then replace the constant by a variable.) Let z be a list
of the distinct variables in C. All of the axioms in D other than the axioms for
Skolem functions are obtained from valid numerical formulas by substituting
terms containing Skolem function constants for variables and let

fA1 , . . . , fAm

be all of the distinct Skolem function constants occurring in D, listed in order
of non-decreasing rank. Only axioms for these constants of the first kind occur
in D.

Again we define the functions

φ1, . . . , φm

such that replacing each term fiti by φizti for i = 1, . . . ,m transforms the
axioms for the fAi into theorems of a suitable quantifier-free extension T + of
the quantifier-free part of T . The result of this substitution in C will then be a
theorem of T +.
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T + contains variables over individuals and over individual-valued functions
of n individuals (n > 0) and it contains constants for functions of these variables
whose values may be individuals or functions from n individuals to individu-
als. These constants are introduced by explicit definition or by definition by
cases. The remaining axioms are the quantifier-free axioms of T , closed under
substitution for individual terms. Definition by cases

Φz =

{
Ψz if A(z)
Ξz if ¬A(z)

is obviously expressed by quantifier-free axioms. Since B(Φz) is equivalent in s
to

[A(z)→ B(Ψz)] ∧ [¬A(z)→ B(Ξz)]

T + is conservative over the quantifier-free part of T .

Again, f = fAm has the highest rank of Skolem function constants in D. Let
g = z, fA1

, . . . , fAm−1
.

C(f,g,y) =

p∨
i=1

Am(Si(f,g),y)→ Am(fy,y)

expresses the conjunction of axioms

Am(Si(f,g),y)→ Am(fy,y)

for f . Every axiom for f in D results by substitution for the y in one of these
axioms. Let θ be the constant function defined by

θy = c

where c is some individual constant of T . By repeated use of definition by cases,
we define Φg to be θy = c, if C(θ,g,y) and, if ¬C(θ,g,y), to be Si(θ,g) for
the least i ≤ p such that Am(Si(θ,g),y). It follows that

C(Φgy,y)

is a theorem of T +. Substitute Φg for f in the axioms for the remaining Skolem
functions fA1

, . . . , fAm−1
and now solve for this shorter list of Skolem functions.

Let D be a deduction in T of

C = ∃x1∀y1 · · · ∃xn∀ynA(xi, yj)

We obtain from D a deduction of

∃x1 · · ·xnA(xi, gjx1 · · ·xj)

where the gj are distinct new function variables, or in T ∗

A(si, gjs1 · · · sj)
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where the si are terms containing Skolem function constants. In T + we then
obtain

A(ti, gjt1 · · · tj)

where the ti are defined by multiple cases. Eliminating them we obtain a de-
duction in T of ∨

k1<r1

· · ·
∨

kn<rn

A(uki , fjuk1 · · ·ukn)

This is the First ε-Theorem of (Hilbert & Bernays 1939). (Tait 1965b, §6.3)

4 Failure of Continuity of Third-order Computable
Functions.

We note that there is a third order function

F : [[ω → ω]→ ω]→ ω

and a computable sequence 〈φn | n < ω〉 such that

φn : [ω → ω]→ ω

and
φng > 0→ φn+1g = φng

but with
Fφn 6= Fφn+1

for all n. This casts some doubt on whether the method used above for elimi-
nating ε-terms in first-order number theory will extend to second-order number
theory. Of course, to be a counterexample, we would have to show that such
‘discontinuous’ third-order functions actually arise in solving for Skolem func-
tions in second-order number theory. As far as I know, that question is open.
(See also (Tait 1965b, the Remark in §5).)

Define
f : ω × ω → ω

by

fxy = fxy =

{
1 if x ≥ y
0 if x < y

Let φng be defined for each n < ω and g : ω → ω by

φng =

{
µy ≤ n(gy = 0) if ∃y ≤ n(gy = 0)
0 if otherwise

Then
φn(g) > 0→ φn+1g = φng.

10



But

φnfx =

{
x+ 1 if x < n
0 if otherwise

Hence
φn(λxφnfx) = n.

So define the third-order function

F : [ω → ω]→ ω

by
F (ψ) = ψ(λxψfx).

Then for all n
Fφn = n < Fφn+1.
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