
Lectures on Proof Theory
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[§3. of these lecture notes, on Derivability of induction, is defective. I
hope to revise it soon.]
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Chapter 1

History

Proof theory was created early in the 20th century by David Hilbert to prove
the consistency of the ordinary methods of reasoning used in mathematics—
in arithmetic (number theory), analysis and set theory. Already in his famous
“Mathematical problems” of 1900 [Hilbert, 1900] he raised, as the second
problem, that of proving the consistency of the arithmetic of the real num-
bers. In 1904, in “On the foundations of logic and arithmetic” [Hilbert, 1905],
he for the first time initiated his own program for proving consistency.

1.1 Consistency

Whence his concern for consistency? The history of the concept of consis-
tency in mathematics has yet to be written; but there are some things we
can mention.

There is of course a long tradition of skepticism. For example Descartes
considered the idea we are deceived by a malicious god and that the simplest
arithmetical truths might be inconsistent—but that was simply an empty
skepticism. On the other hand, as we now know, in view of Gödel’s incom-
pleteness theorems, there is no relevant sense in which we can refute it.

Surely, if we are to judge by how long it took for the various successive
extensions of the number system—zero and the negative numbers, and the
complex numbers—to be accepted throughout the mathematical community,
we have to believe that they, each in their turn, raised concerns about con-
sistency (though at least some of the resistance to them simply resulted from
the lack of immediate empirical meaning).
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Computing with infinite series and with infinitesimals, for example, led to
apparent inconsistencies, that called for the rigorous foundation of analysis
which was achieved in the nineteenth century. Also, the problem concerning
the independence of the parallel postulate in geometry, an ancient problem,
was one of consistency: whether the denial of the postulate is consistent with
the remaining axioms. In the eighteenth century, the investigation of this
problem was intense and the attempts to prove that the denial is inconsistent
finally led to the realization that it is consistent, i.e. to the development of
non-Euclidean geometries.

But it seems clear that the primary impetus, if only in the psychological
sense, for Hilbert’s concern for the consistency problem arose from Cantor’s
introduction of the transfinite numbers in his Foundations of a General The-
ory of Manifolds: a Mathematico-Philosophical Investigation into the Theory
of the Infinite [1883]. For the transfinite numbers are introduced essentially
by the condition that, given any transitive set M of numbers, we may in-
troduce the number S(M). Define the relation ≺ on the transfinite numers
by

α ≺ S(M)←→ α ∈M

Cantor regarded it as implicit in his definition of the new numbers that any
sequence

α0 � α1 � α2 � . . .

is finite. So, given the null set ∅, S(∅) is the least number 0. And when α is
a number, S({α}) is the least number greater than α, i.e. S(α) = α + 1.

But there is a problem with Cantor’s application of the notion of set
here. Up to this point in history, the notion of a set had been clarified,
primarily by Bolzano and Cantor, himself. But this notion of set applied
to sets of elements of some given domain—sets of real numbers or sets of
points in Euclidean space, say. And in this case, by a set of elements of a
domain D was meant the extension of any property or concept defined on D.
But in the case of the theory of tranfinite numbers, no domain D is given
in advance from which the numbers are being picked out using the notion
‘set of elements of D. Rather, a new ‘domain’—call it Ω—is being created
by stating the means for constructing its elements: namely, if M is a set
of elements of Ω, then S(M) is an element of Ω. Here the definition of the
domain already involves the notion of a set of elements of that very same
domain. That the old notion of set is no longer applicable in this case is a
consequence of the following:
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Theorem 1 Ω is not a set.

For, if it were, then α = S(Ω) would be a number and so α � α � . . . would
be an infinite decreasing sequence.

So, in contrast to domains such as the domain of points in Euclidean
space or the real numbers, it is no longer the case that, for the domain Ω,
we may take the extension of any concept defined on the domain to be a set.
Indeed, we have to exclude as a set the extension of the concept ‘x ∈ Ω’.
This fact, which incidentally Cantor fully understood, has led to one of the
dominant themes in the foundations of mathematic today: the investigation
axioms of infinity or, as they are also called, large cardinal axioms. It is
precisely the question of what sets of numbers exists—or, equivalently, of
what numbers exist.

Failure to understand the peculiar nature of Ω led to the ‘paradox of
the greatest ordinal’ and the ‘paradox of the greatest cardinal’; although
the proof of the above theorem, surely known to Cantor, yields a simpler
proof of the inconsistency of assuming that Ω is a set. (And, if we assume
that every totality equipollent to a set is a set, then the inconsistency of
the assumption that the cardinal numbers constitute a set follows.) Frege,
although he seems to have read Cantors Foundations and to have accepted
his transfinite numbers, did fail to understand this point. He in effect took
the totality of all objects as a domain and assumed that the extension of
any concept defined on this domain is a set (and so in the domain). The
contradiction that Russell (and Zermelo) found in Frege’s system, however,
did not depend upon accepting the transfinite numbers as objects; rather it
depended on a later result of Cantor, namely that no set M can be mapped
onto the set of subsets of M—and consequently no set can contain all of its
own subsets.

Remark 1 I believe that what further has to be understood, in order to make
sense of these ‘paradoxes’ is that the notion of a transfinite number or, equiv-
alently, of a set of transfinite numbers is an essentially open-ended notion:
no matter what principles we introduce to construct sets of numbers, provid-
ing only that these principles are well-defined, we should be able to admit all
numbers obtained by these principles as forming a set, and then proceed on
to construct new numbers. So Ω cannot be regarded as a well-defined exten-
sion: we can only reason about it intensionally, in terms of those principles
for constructing numbers that we have already admitted, leaving open in our
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reasoning the possibility—in fact, the necessity—of always new principles for
constructing numbers. When this is not understood and Ω is counted as a
domain in the sense of a well-defined extension, then the so-called paradoxes
force on us a partitioning of well-defined extensions into two categories: sets
and proper classes; and the only explanation of why such an extension should
be a proper class rather than a set would seem to be simply that the assump-
tion that it is a set leads to contradiction. The paradoxes deserve the name
“paradox” on this view because it offers no explanation of why there should
be this dichotomy of well-defined extensions.

It is not clear that, at the end of the day, Cantor himself entirely understood
the situation. In the Foundations itself, realizing that his original conception
of set was no longer adequate, he offers a new explanation of the notion which
he clarifies in later correspondence by drawing the distinction between set
and proper class simply as the distinction between consistent and inconsistent
multiplicities. But this casts some doubt on whether he understood the
essential open-endedness of the concept of a set of numbers. The notion of
a consistent multiplicity is relative: Thus relative to the usual second-order
axiom system for set theory, Morse-Kelly set theory, MKC, or its first order
version, Zermelo-Fraenkel set theory, ZFC, the multiplicity of (strongly)
inaccessible cardinals is consistent—i.e. if we add to MKC the axiom that
there is a set M consisting of all inaccessible cardinals, then this theory is
consistent if MKC is. For MKC implies that the set of sets of rank less than
the least inaccessible cardinal, if there is one, form a model of MKC; and
in this model M = ∅. On the other hand, a very reasonable development
of the open-ended notion of number leads to the axiom that there are as
many inaccessible cardinals as there are numbers. MKC together with this
axiom implies that the totality of inaccessible cardinals is not a set. Ω or
any other proper class fails to be a set, not because the assumption that it
is a set is inconsistent, but because it is incompletely defined: in the case of
Ω, anything that we admit as a set of numbers leads to bigger numbers.

The upshot of this discussion is that the paradoxes of set theory give no
grounds for doubting the consistency of the theory of transfinite numbers or
its embodiment in ordinary set theory. By a well-founded set, we mean a set
s such that every sequence s = s0 3 s1 3 s2 3 . . . is finite. Call s a pure set iff
every such sequence ends with a set sn, possibly the null set. Define the rank
of a well-founded pure set to the least number greater than the ranks of all of
its elements. Let R(α) denote the set of all pure sets of rank < α. Another
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way of putting it is that R(α) is the result Pα(∅) of iterating the PowerSet
operation s 7→ P (s) α times, starting with the null set ∅. Then ordinary
set theory is a theory of pure well-founded sets and its intended models are
structures of the form 〈R(κ),∈〉, where the numbers κ will depend upon
the particular axioms included in the theory. There is no appeal here to
the essentially incomplete Ω or, correspondingly, the essentially incomplete
totality of all pure well-founded sets.

Nevertheless, it seems that the paradoxes affected the thinking of many
mathematicians at the turn of the century, including Dedekind, Poincaré and
Hilbert, causing them to be concerned about methods of reasoning they had
adopted which, although ‘set theoretic’ in one sense, have nothing to do with
the source of the paradoxes. A clear statement of some of these concerns is
given in a somewhat later paper by Hermann Weyl “On the new foundational
crisis of mathematics” [Weyl, 1921]. Two of the main issues of concern, the
Axiom of Choice and the Law of Excluded Middle, we will discuss later on.
Let me comment briefly on a third issue, the PowerSet Axiom, which asserts
the existence of the set P (s) for any set s. We can code real and complex
numbers as sets of finite ordinals, complex-valued functions of n complex
variables as sets of ordered n+1-tuples of real or complex numbers, etc. So, all
of analysis concerns only P n(ω) for some small n. Now the process of passing
from a domain M to the totality of all subsets of M involves only the notion
of set already clarified by Bolzano and Cantor, not the open-ended notion of
set involved in the theory of transfinite numbers. But, nevertheless, there is
an element of open-endedness even in this notion. By a set of elements of
M we mean the extension of some concept defined on M . But how may this
concept be defined? It is clear that we cannot restrict ourselves to concepts
defined by formulas of some particular formal language. For example, if M is
infinite, then even if we admit names of elements of M in the definition, there
are no more sets defined by formulas in the language than there are elements
of M ; but by Cantor’s theorem, mentioned above, there are more subsets of
M than there are elements of M . Now a very reasonable assumption is that
every definable subset of M , where M is a set of sets, is defined by a formula
in the language of set theory but in which names of ordinal numbers may
occur. Such sets are called ordinal definable sets. But notice here that the
totality of formulas of this kind is itself open-ended, since the totality of all
ordinal numbers is. On the other hand, this only shows the open-endedness of
the class of definitions of subsets of M , not the open-endedness of the class
of its subsets. Indeed, in set theory without the PowerSet Axiom, we can
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prove, given M , that there is an ordinal κ such that every ordinal definable
subset of M is definable by means of ordinals less than κ.

My aim here is not to try to clarify this issue: I only want to present the
historical context for the development of proof theory. But I do want to note
that, contrary to what Weyl wrote in his paper, the so-called ‘antinomies’,
as he called them, are not obviously a concern for analysis or, indeed, for the
theory of R(κ) for any fixed number κ.

On the other hand, both for Dedekind and Hilbert, one consequence of
the so-called paradoxes of set theory was that there is no proof that there are
infinite sets. Frege’s assumption, in effect, that the universe of all objects is
a set, and Dedekind’s assumption that the objects of his thoughts form a set
are both inconsistent. Now, given any infinite set, it is possible to construct
a representation of the system of natural numbers; but without some given
infinite set, there was no guarantee of the consistency even of elementary
arithmetic. It seems to be this aspect of the paradoxes that most concerned
Hilbert.

In any case, Hilbert’s concern was to prove the consistency of ordinary
mathematics. Prior to the late nineteenth century, the only method available
for proving consistency of a theory was that interpreting the theory in another
one, so that the axioms of the one theory turn out to be theorems of the other.
For example, the theory of rational numbers can be interpreted in the theory
of natural numbers (i.e. finite ordinals) by representing rational numbers
(k−m)/n+ 1 by triples (k,m, n) of natural numbers. For example, equality
of triples is defined by

(k,m, n) ≡ (k′,m′, n′) := k(n′ + 1) +m′(n+ 1) = k′(n+ 1) +m(n′ + 1)

and the operations of addition, subtraction, multiplication and division are
defined in an obvious way which respects the equality relation. (Equals
added to, subtracted from, multiplied by, or divided by equals are equal.)
The ordering relation on triples likewise is defined by

(k,m, n) < (k′,m′, n′) := k(n′ + 1) +m′(n+ 1) < k′(n+ 1) +m(n′ + 1)

In this way, every axiom of the ordered field of rational numbers becomes a
provable sentence about triples of numbers in Peano Arithmetic PA—indeed,
simply about numbers, since pairs, triples, etc., of numbers can be suitably
coded in this theory by numbers.
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In a similar way, various non-Euclidean geometries can be proved con-
sistent by interpreting them in Euclidean geometry. Three dimensional Eu-
clidean geometry, in turn, can be interpreted in the theory of the ordered
field of real numbers in a familiar way by interpreting points as triples of real
numbers. Finally, using Dedekind’s or Cantor’s construction, for example,
the theory of the ordered field of real numbers can be interpreted in the sec-
ond order theory of the ordered field of rational numbers. So, ultimately, all
of these theories can be interpreted in second order Peano Arithmetic, PA2.
Of course, this does not prove the consistency of these theories absolutely; it
only proves them consistent relative to PA2. I.e., if this latter theory is con-
sistent, then they all are. But how do we prove PA2 consistent? Or even just
PA? Clearly the method of interpretation won’t work. In order to interpret
PA in a theory, the theory must imply the existence of an infinite number
of elements. But what more convincing theory of this kind can we find than
PA itself? By an analysis due to Dedekind [Dedekind, 1887], PA2 can be
interpreted in second order predicate logic with a unary function constant f
and the nonlogical axioms

∃x∀y(f(y) 6= x)

∀xy(f(x) = f(y) −→ x = y)

But this theory still implies the existence of an infinite set. A new idea is
needed to prove consistency of PA.

This forms the background of Hilbert’s program for proving consistency.
Perhaps the best short account of it can be found in his paper “On the
infinite” [Hilbert, 1926]. A more extended discussion is in [?; ?].

1.2 Finitist Proof Theory

His idea was that, no matter how transfinite the concepts and methods of
proof may be in a theory such as PA or even set theory, as we ordinarily
understand them, our uses of them, our propositions and proofs, are nec-
essarily finite. All that is needed is to provide a precisely defined language
in which the concepts in question can be expressed by means of formulas
and a precisely specified system of rules of inference for these formulas which
adequately express what we take to be the valid inferences concerning these
concepts. In other words, his idea was to represent the nonfinitist concepts
and methods of proof in a formal axiomatic theory.
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There are two ingredients needed for this: first, the axiomatization of the
mathematical ideas in the theory, so that everything assumed in the theory
about the primitive concepts and objects are explicitly stated in the axioms.
This was of course an old idea, of course; but the kind of rigorous axiom-
atization needed to implement Hilbert’s program was of much more recent
origin. In fact, the most impressive example of it was his own Foundations
of Geometry [Hilbert, 1899]. The second ingredient is the explicit statement
of the principles of logic to be used in deriving theorems from the axioms,
so that logic itself could be axiomatized. In this case, too, the timing was
just right: the analysis of logic in Frege’s Begriffsschrift was just what was
required. (There was a remarkable meeting here of supply and demand.)

Now, having in this way completely formalized the mathematical theory,
notions such as proposition, inference, proof become purely syntactical no-
tions, referring to configurations of symbols. Propositions are represented by
configurations of a certain kind called a formulas. A formal proof or, as we
shall call it, a deduction is just a sequence of formulas where each formula is
either in a given list of formulas, called axioms, or is obtained from earlier
formulas by one of a list of rules for transforming formulas, called rules of
inference. In this framework, the assertion that the original theory is con-
sistent is the purely syntactical statement that there is no such sequence
of configurations of symbols, i.e. there is no such deduction, ending with
a configuration of the form A ∧ ¬A. The syntactical objects and concepts
in question are very simple, comparable to the objects and concepts of el-
ementary number theory. Indeed, as we now know from [Gödel, 1931], the
syntactical objects can be coded by numbers in such a way that the concepts
in question turn out to be very elementary arithmetic concepts.

Having transformed the problem of consistency into a problem of elemen-
tary syntax or arithmetic, the program was to prove, for given mathematical
theories, the syntactical or arithmetical statement that no contradiction is
derivable. But, of course, the question now is: what methods are to be used
in this proof of consistency? After all, the statement that the theory is con-
sistent, though a very elementary syntactical proposition, is still a non-trivial
mathematical statement, saying (in its arithmetic form) that no number has
a certain elementary property. We must use mathematics to prove it. The
question is: what mathematics? For example, the simplest proof of consis-
tency of PA would be to note that the axioms are all true on the intended
interpretation in the system of natural numbers and that the rules of infer-
ence preserve truth. So, since A ∧ ¬A is never true, it cannot be deducible;
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hence PA is consistent. But this proof is frivolous: it uses precisely the
methods of proof that we are trying to prove consistent. For example, if PA
were inconsistent, then we would be able to prove in it anything, including
the arithmetic statement that expresses its consistency. (Of course, as we
know from Gödel’s second incompleteness theorem [Gödel, 1931], the con-
verse is also true: if we could prove in PA its consistency, then it would be
inconsistent. But that is getting ahead of our story.)

Hilbert’s answer to this question was to require the methods used in
proving consistency to be restricted to what he called finitist mathematics.
The objects of finitist mathematics are to be finite combinations of sym-
bols. These can be coded by natural numbers and, conversely, numbers
may be regarded as combinations of symbols—for example the expressions
S(· · ·S(0) · · · ) with 0 or more S’s, representing the result of applying the
successor operation S zero or more times to 0. So we lose nothing by con-
sidering just the case of numbers. The properties and relations which are
taken to be finitistically meaningful must have the property that there is an
algorithm for deciding whether or not they hold for given arguments. Thus,
the Law of Excluded Middle holds for finitist propositions, not as a logi-
cal assumption, but as a requirement on what we take to be a meaningful
proposition. The idea of finitism, that mathematics is concerned essentially
just with the natural numbers and that the only properties and relationships
that should be admitted are those which come equipped with an algorithm
for deciding in each case whether or not they apply, goes back to Kronecker.
But there is this difference between Kronecker and Hilbert. For the former,
mathematics is to be restricted entirely to finitist mathematics. Kronecker
had to be completely aware of the fact that he was rejecting a large part
of the mathematics of his time and in particular, a large part of analysis.
Hilbert, on the other hand, was not willing to give up this mathematics.
His idea was to justify it by proving, using only finitist methods, that it is
consistent.

Hilbert was never completely explicit about what he meant by finitist
mathematics (nor was Kronecker). The fact is that he seemed to be confi-
dent that any mathematical problem with an elementary formulation had an
equally elementary solution. Thus, the statement of consistency of PA or of
ZFC is elementary and so, if true, should have an elementary proof. One
lesson of Gödel’s incompleteness theorems is that this is false. But Hilbert,
not knowing this, was probably not concerned with spelling out exactly what
finitist reasoning was. Once consistency was proved, one could simply look
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at what was needed in the proof.
But there is nevertheless a question of how one could spell out the idea of

finitism: we are to deal only with finite things, but we have to prove general
propositions, such as the statement of the consistency of some system such
as PA. But this proposition, ∀x¬P (g, x), stating that no number x is a
formal deduction in PA of the sentence 0 = 1, say, (where g is the Gödel
number of this sentence), has an infinite number of instances P (g, n) for
each number n. Such propositions are admitted in finitist mathematics only
if P (a, b) is a relation for which we have an algorithm for determining its
truth value for all values of its free variables a and b. But that assertion
itself is infinitary in the sense that it refers to an infinite system of values
of the free variable. Moreover, by asserting the general proposition, we are
asserting that computing out the truth value of P (g, n) for each n will yield
only truth, again an assertion about the infinite totality of numbers. How
are we to respect the ‘finite’ in finitism in view of this?

1.3 Primitive Recursive Arithmetic

There is a particular analysis of the notion of finitism which seems to be in
accord with Hilbert’s discussion of finitist methods and in particular, of the
notion of a proof of something for an ‘arbitrary’ number as a schematic proof
for all numbers. Let the free variable b stand for an arbitrary number. So
by iterating the procedure of subtracting 1, we have the sequence b · · · 1, 0,
where · · · refers to some arbitrary but fixed number of iterations of taking
successors. Consider computing a function f for the ‘arbirary’ argument b.
according to the recursion equations

f(0) = k

f(S(c)) = g(f(c))

where k is a given number and g a given function. The computation of f(b)
has the form

f(b)⇒ · · · ⇒ g(· · · f(1) · · · )⇒ g(· · · g(f(1)) · · · )⇒ g(· · · g(g(k)) · · · )

This computation of f(b) for the ‘arbitrary’ b is a schematic computation
involving the iteration of a certain process, but the iterations are not arbitrary
now: · · · has the same meaning in all of its occurrences as it has in the
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representation of b by b, · · · 1, 0. Thus, the finitist does not have to accept
infinite objects, such as functions; he may read f(b) simply as a shorthand for
the above schematic computation. Of course, the computation also involves
g; and so, if this is also to be finitistically admissible, there must be such a
schematic representation of g(b) (which then is used to successively compute
g(k), g(g(k)), . . . .

In general, the idea is that we may begin with arbitrary numbers, say
a and b. That is a and b represent fixed, but arbitrary, iterations. We can
represent the computations of a function f(a, b) or a proof of a proposition
P (a, b) by representing it as a schematic computation or proof involving no
arbitrary iterations other than the ones given by the arbitrary numbers a
and b. It would seem that this idea of generality is absolutely minimal; that
anything more stringent is to deny generality entirely and so to reject non-
trivial mathematics. I don’t want to discuss this further, but it leads to a
precise decription of finitist number theory, namely that part of arithmetic
which is formalized in so-called Primitive Recursive Arithmetic, PRA. For
further argumentation for this, see my paper “Finitism” [Tait, 1981]. What
we will do now is to describe the system PRA. It was first discussed by T.
Skolem in “The foundations of elementary arithmetic established by means of
the recursive mode of thought, without the use of apparent variables ranging
over infinite domains” [Skolem, 1923]. “Apparent variable” is an old name
for bound variables. So PRA is a theory with no bound variables. We will
consistently take free variables to be different symbols than bound variables.
(This is common in Proof Theory, like denoting arbitrary formulas by up-
per case latin letters instead of by lower case greek letters. It is a badge,
proclaiming that this is a work in Proof Theory! Of course, in the usual
formalisms, one can’t really speak of free or bound variables, only of free or
bound occurrences of variables.)

Free (individual) variables will be denoted by a, b, c and d, with or without
subscripts. Bound (individual) variables will be denoted by x, y, z, u and v,
with or without subscripts. We assume given infinite lists of distinct free and
bound variables.

The easiest way to describe the formal system PRA is to simultaneously
introduce the non-logical constants and define the terms. The non-logical
constants, other than the identity symbol = (which we will regard in these
lectures as non-logical), all are function constants—which includes individual
constants as function constants of 0 arguments.

The terms and constants of PRA:
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• Every free variable is a term.

• 0 is an individual constant.

• S is a function constant of 1 argument.

• If f is a function constant of n arguments, n > 0, and t1, . . . , tn are
terms then f(t1, . . . , tn) is a term. In some cases, we write sft for f(s, t)
when f has 2 arguments.

• If t(a1, . . . , an) is a term all of whose free variables are in the list
a1, . . . , an of distinct variables, then we introduce a new function con-
stant of n arguments, which we denote by λx1 · · ·xnt(x1, . . . , xn).

• . If g and h are function constants of n and n+2 arguments, respectively,
then we introduce a new function constant of n+1 arguments, which
we denote by R(g, h).

Note that λx1 · · ·xnt(x1, . . . , xn) and R(g, h) denote constants. The con-
stants are atomic symbols and, unlike our names for them, carry no syn-
tactical structure. As usual, we introduce the numerals as abbreviations:
1 = S(0), 2 = S(1), etc.

The atomic formulas of PRA are just equations s = t between terms.
The formulas are built up from these equations by means of the propositional
connectives ¬,∨,∧,−→ and ←→. We can of course (since the logic of this
system is classical) take some suitable subset (e.g. ¬ and ∨) of these constants
as primitive and introduce the others by contextual definition. s 6= t is of
course an abbreviation for ¬s = t. The non-logical axioms are

0 6= S(t)

S(s) = S(t) −→ s = t

λx1 · · ·xnt(x1, . . . , xn)(s1, . . . , sn) = t(s1, . . . , sn)

R(g, h)(s1, . . . , sn, 0) = g(s1, . . . , sn)

R(g, h)(s1, . . . , sn, S(t)) = h(s1, . . . , sn, t, R(g, h)(s1, . . . , sn, t))

There is just one non-logical rule of inference: the rule of Mathematical
Induction

A(0), A(b) −→ A(S(b)) =⇒ A(t)
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HereA(b) denotes some formula with 0 or more occurrences of b. A(0), A(S(b)), A(t)
result from A(b) by replacing all occurrences of b by 0, S(b), t, respectively.
For the logical axioms, choose some complete set of axioms for propositional
logic and the axioms

t = t

s = t −→ [A(s) −→ A(t)]

of identity. We can assume that the only logical rule of inference is Modus
Ponens

A,A −→ B =⇒ B

Note that all of the axioms that we have written down have the property
that if A(c) is an axiom, then so is A(t) for every term t. This is also
true, clearly for logical axioms. Moreover, Modus ponens is preserved by
substituting t for c throughout both premises and the conclusion. However,
the rule of Mathematical Induction is not preserved in general. Why?

Exercise 1 Prove by induction on n that, if A(c) has a deduction of length
n in PRA, then so has A(t) for any term t. [Hint: If the last inference in
the deduction is an instance

A(0), A(b) −→ A(S(b)) =⇒ A(s)

of Mathematical Induction, first substitute a new variable d for b in the
second premise (using the induction hypothesis), where d does not occur in
t.]

It is not difficult to see that the computation of every function f(a1, . . . , an) of
PRA for ‘arbitrary’ arguments a1, . . . , an using the defining axioms above and
(using the above exercise) that the deduction of every formula A(a1, . . . , an)
with just the variables ai using the axioms and rules of inference can be ana-
lyzed just as the case of the example f(0) = k, f(S(b)) = g(f(b)) above. The
computation or deduction involves iterations of certain operations, but each
such iteration is measured by one of those used in building up the arbitrary
numbers a1, . . . , an themselves from 0 using the successor operation. There
is no appeal to the infinite, only to the arbitrarily large finite as represented
by the arguments a1, . . . , an.

What is perhaps harder to be convinced of is that the primitive recursive
functions and the methods of proof formalized in PRA represent the only
functions and methods of proof satisfying this criterion. An argument for
this is presented in [Tait, 1981].
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Exercise 2 Show that the axioms of 0 and successor, i.e.

0 6= S(t)

and
S(s) = S(t) −→ s = t

can be replaced by the single axiom

0 6= S(0)

[Hint: show that there are function constants pred and sgn such that

predf(0) = 0 pred(S(t)) = S(0)

sgn(0) = 0 sgn(S(t)) = S(0).

are theorems of PRA minus the axioms of 0 and successor.]

Exercise 3 Show that there are constants f, g and h satisfying the recursion
equations for addition, multiplication and exponentiation. I.e.

f(s, 0) = s

f(s, S(t)) = S(f(s, t))

g(s, 0) = 0

g(s, S(t)) = f(g(s, t), s)

h(s, 0) = S(0)

h(s, S(t)) = g(h(s, t), s)

Exercise 4 Prove that for every formula A of PRA there is a term tA of
PRA such that A←→ tA = 0 is a theorem of PRA. [Hint: Find a function
constant f such that f(a, b) = 0 ←→ a = b. Find a function constant neg
such that neg(b) = 0 ←→ b 6= 0 is a theorem of PRA. Find a function
constant f such that f(b, c) = 0 ←→ b = 0 ∨ c = 0 is a theorem of PRA.
(Try f(b, c) = b× c).]

The functions denoted by function constants of PRA and called primitive
recusive functions. (Surprise!)
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Exercise 5 Show that each primitive recursive function is explicitly definable
in PA; i.e. each function constant f of PRA can be introduced in PA by
explicit definition in such a way that all the axioms of PRA are theorems
of PA (extended by explicit definitions). [Hint: For this you need to know
some of the development of the theory of syntax in PA that is needed for
Gödel’s incompleteness theorems. Begin the proof by stating what it is you
know: PLEASE don’t begin by stating that each primitive recursive function
is explicitly definable in PA!]

We can understand the generalization ∀xA(x), where A(b) is a formula
of PRA, as simply expressing A(b). In this way, we can express in PRA
the consistency of PA and other systems: ∀x¬P (g, x); since P(a,b) is ex-
pressed by a formula of PRA. Similarly, we can understand ∀x∃yA(x, y) as
an incomplete shorthand for the formula A(b, f(b)), where f is some func-
tion constant. But, of course, these quantified formulas occur only as limiting
cases: we cannot in general apply the propositional comnnectives to them.

Any way, the thesis I am proposing, but will not defend here, is that
finitist arithmetic, as Hilbert understood it, at least up to the 1930’s, is
formalized in PRA.

In the sense of the last exercise, we have that PRA ⊆ PA. So, on our
thesis, all of finitist reasoning is formalized in PA. It follows then from
Gödel’s second incompleteness theorem that the consistency of PA, if a fact,
is not provable finitistically. For, if P (g, b) is a theorem of PRA, then the
consistency of PA, ∀xP (g, x), is a theorem of PA.

So, if the consistency of PA or stronger systems is to be proved, stronger
methods than those formalized in PRA—and so, on the above thesis, stronger
methods than finitist arithmetic—are needed. But now we have opened
a Pandora’s box: Finitism is distinguished by the particular conception,
sketched above, of generality as it occurs in the definition of functions and
in proofs. This conception seems minimal, in the sense that it is difficult to
see what conception of generality could admit any nontrivial functions and
methods of proof and not admit all of PRA. So, conceptually speaking, a
consistency proof in PRA is the most we could ask for. But once we have to
extend beyond PRA to a system Σ in order to prove consistency of PA, we
must ask what it is about Σ that makes the proof of consistency significant.
At the end of the day, I think that we will see that it is not the consistency
proof at all that is interesting; rather it is the details of the proof, from
which we can extract a new way of understanding the concepts and methods
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of proof formalized in PA.
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Chapter 2

Ordinal Numbers, the Veblen
Hierarchy, and the Functions of
Proof Theory

The first proof-theoretical consistency proof for PA was Gentzen’s [Gentzen,
1936] and required that PRA be extended by the principle of transfinite in-
duction up to a certain ordinal ε0. So, since PRA ⊆ PA, transfinite induction
up to ε0 is not deducible in PA. Gentzen also proved that transfinite induc-
tion up to each ordinal < ε0 is deducible in PA. So ε0 is called the ordinal of
PA. Of course, this description is rough: PA does not contain variables over
transfinite ordinals and so we have to understand propositions about some
segment of the ordinals in PA as being about some particular well-ordering
of the natural numbers representing that segment. (That means of course
that the segment has to be countable.)

If someone should ask you why you want to study proof theory, you could
answer: Because its there! But, if you want to be more original, you could
point out that it is one of the few fields that actually motivates the study of
transfinite ordinal arithmetic.

2.1 Preliminaries

By an ordinal number we will mean a von Neuman ordinal. I.e., each ordinal
is the set of its predecessors; so an ordinal is a set of ordinals, and α < β
iff α ∈ β. Moreover, every transitive set of ordinals is an ordinal. (M is
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transitive iff x ∈ M always implies x ⊂ M .) α, β, γ and δ with or without
subscripts denote ordinals. ∅ is an ordinal and, indeed, the least one: ∅ = 0;
and α ∪ {α} is an ordinal and, in fact, the least ordinal greater than α :
α∪{α} = α+ 1, called the successor of α. An ordinal which is neither 0 nor
a successor is called a limit ordinal. ω denotes the least limit ordinal. If M
is a set of ordinals, then

⋃
M is an ordinal and is, in fact, the least upper

bound of M . When M is null,
⋃
M = 0; when M has a greatest element α,

then
⋃
M = α. If M is nonempty and has no greatest element, then

⋃
M

is a limit. An ordinal-valued function f with domain of definition a set M
of ordinals is called order preserving iff for all α and β in M , α < β implies
f(α) < f(β) If f is an order preserving ordinal-valued function defined on
some limit ordinal γ, then we define

Limα<γf(α) =
⋃
{f(α) | α < γ}

Limα<γf(α) is necessarily a limit ordinal.
The totality of ordinals Ω is well-ordered by <, i.e. by ∈. This means

that < is a linear ordering of Ω and that every non-empty subset of Ω has a
least element. Call a class C of ordinals hereditary iff ∀α < β(α ∈ C) always
implies that β ∈ C. Then we have the principle of Transfinite Induction: Ω
is the only hereditary class of ordinals. I.e.

[∀α < β(α ∈ C) −→ β ∈ C] −→ ∀α(α ∈ C)

By a cardinal number, sometimes called an initial ordinal, we mean an
ordinal which is not equal in power to one of its elements. A set is said to be
of power less than {greater than, equal to} the cardinal κ iff it is in one-to-one
correspondence with a cardinal which is less than {greater than, equal to}
the cardinal κ. λ, κ, µ, ν with or without subscripts will denote cardinals. A
cardinal κ is called regular iff whenever M ⊂ κ and M is of power < κ, then⋃
M < κ. ω denotes the least infinite ordinal. If κ is a cardinal, let M be

the set of all ordinals of power ≤ that of κ. Then
⋃
M is a cardinal which

is the least cardinal > κ. (If β =
⋃
M were of power < κ, then so would

β + 1 be; and so β + 1 ∈ M , i.e., β + 1 ⊆
⋃
M , i.e., β ∈

⋃
M = β —a

contradiction.). We denote
⋃
M by κ+.

Exercise 6 a) Show that each finite ordinal, i.e. each element of ω, is a
regular cardinal.
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b) Show that ω is a regular cardinal.

c) Show that each infinite cardinal (i.e. ≥ ω) is a limit ordinal.

d) Show that, for each κ, κ+ is regular.

2.2 Normal Functions and Classes

If f is a function, D(f) denotes its domain of definition and R(f) its range
of values. If M and N are sets, then f : M −→ N means that f is a function
with D(f) = M and R(f) ⊆ N .

Lemma 1 Let f : γ −→ δ be order preserving. Then for all α < γ, α ≤
f(α).

Suppose otherwise. Then there is a least α < γ such that f(α) < α. But
since f is order preserving, it would then follow that f(f(α)) < f(α), which
contradicts the choice of α.

Lemma 2 If f : γ −→ M and g : δ −→ M are order preserving functions
onto the set M , i.e. R(f) = R(g) = M , then f = g and so γ = δ.

For g−1 is an order preserving function M −→ δ and so g−1 ◦ f : γ −→ δ
is order preserving. Hence α ≤ g−1 ◦ f(α) for all α < γ, i.e. g(α) ≤ f(α)
for all α < γ. By symmetry, f(α) ≤ g(α) for all α < δ. So f(α) = g(α)
for all α ∈ γ ∩ δ, the least of γ and δ. If γ < δ, then g(γ) is in M and so
must be = f(α) = g(α) for some α < γ, which is impossible since g is order
preserving. For the same reason, δ < γ is impossible. So γ = δ and f = g.

Proposition 1 For every subset M of an ordinal ε, there is a unique order
preserving function f : δ −→ M for some ordinal δ ≤ ε with R(f) = M . f
is called the enumeration of M and is denoted by R−1(M). δ is called the
ordinal of M and is denoted by o(M).

We define f by recursion: Assume that f(α) is defined for all α < β. If
{f(α) | α < β} = M , then we are done: set δ = β. Otherwise, there is a least
element γ ∈ M − {f(α) | α < β}. Set f(β) = γ. Since f is order preserving
and M ⊆ ε, ε > f(α) ≥ α for all α for which f(α) is defined. So, for some
β ≤ ε, the first case must apply.
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f is necessarily unique by Lemma 2.
From now on in this chapter, unless otherwise specified, we will be speak-

ing only of ordinals ∈ κ, where κ is some fixed regular cardinal > ω.
M ⊆ β is called unbounded in β iff

⋃
M = β iff for no α < β is M ⊆ α.

When we say simply that M ⊆ κ is unbounded, it will always be understood
that we mean “unbounded in κ”. Let a subset M of β be unbounded in β.
Then β must be 0 or a limit ordinal. For if β = α+ 1, then

⋃
M ≤ α. If β is

a limit, then β = Limα<δf(α), where f : δ −→M is the enumeration of M .

Lemma 3 M ⊆ κ is unbounded iff its ordinal is κ.

Let f : δ −→ M be the enumeration of M . δ ≤ κ. If δ < κ, then, since M
has the same power as δ, which is less than κ, and κ is regular,

⋃
M < κ—a

contradiction.
So the unbounded sets are precisely the ranges of the order preserving

functions κ −→ κ. Note that, if M and N are unbounded with enumerations
f and g, respectively, and if M ⊆ N , then g(α) ≤ f(α) for all α < κ. For
g−1 ◦ f : κ −→ κ is order preserving and so α ≤ g−1 ◦ f(α) for all α < κ. I.e.
g(α) ≤ f(α).

If M ⊆ κ, β is a limit ordinal < κ and if M ∩ β is unbounded in β,
then β is called a limit point of M (relative to κ). M is called closed iff it
contains all of its limit points. Closed unbounded subclasses of κ are called
club (relative to κ). Let f : κ −→ κ. f is called continuous iff for every
limit ordinal γ < κ, f(γ) = Limα<γf(α). f is called normal iff it is order
preserving and continuous.

Proposition 2 Let M ⊆ κ. M is club iff R−1(M) is normal.

Let f = R−1(M). We have proved that M is unbounded iff D(f) = κ. Let
M be club and γ < κ be a limit ordinal. Set β = Limα<γf(α). Then M ∩ β
is unbounded in β and so β ∈ M and moreover, β is the least element of
M − {f(α) | α < γ}. Hence, β = f(γ).

Conversely, let f be normal and let β ∩ M be unbounded in the limit
ordinal β. Let γ be the least upper bound of the α such that f(α) < β. Since
β ∩M be unbounded in M , γ is a limit and so f(γ) = Limα<γf(α) = β. So
β ∈M .

In set theory, the notion of a club set plays an important role; but in
proof theory, because we are interested in computing ordinals, we will see
that it is the correlative notion of normal function that is important.
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Exercise 7 Prove that, if f and g are normal functions, then f ◦g is normal.

Lemma 4 a. Let f : κ −→ κ. It is normal iff for every α < κ

f(α) < f(α + 1)

and if, for every limit β < κ,

f(β) =
⋃
α<β

f(α)

b. Let δ < κ, g : κ −→ κ and suppose that α < g(α) for all α < κ. Then
there is a unique normal function f such that

f(0) = δ

f(α + 1) = g(f(α))

a. We prove by induction on β that α < β −→ f(α) < f(β). So assume
α < β. If β = δ + 1, then α ≤ δ and so by the induction hypothesis,
f(α) ≤ f(δ) < f(β). If β is a limit, then there is a δ < β with α < δ.
So f(α) < f(δ) ≤

⋃
ε<β f(ε) = f(β). We have proved that f is order

preserving and so, when β is a limit, f(β) =
⋃
α<β f(α) = Limα<βf(α).

b. For limits γ < κ, define f(γ) =
⋃
α<γ f(α). Since κ is regular, γ < κ,

and f(α) < κ for all α < κ, it follows that f(γ) < κ.

As an example, for any α < κ define α + β as a function α+ : κ −→ κ of β
by

α + 0 = α

α + (β + 1) = (α + β) + 1

α + γ =
⋃
α<γ

α + β

for γ a limit. (Note that the ambiguous use of ‘+1’ is harmless, since the two
meanings of α + (1) coincide.) Since α + β < α + (β + 1), α+ is a normal
function. One easily shows that α+ enumerates the set κ − α. As a second
example, define the function α× (β) = α× β by

α× 0 = 0
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α× β + 1 = α× β + α

α× γ =
⋃
β<γ

α× β

for γ a limit. If α > 0, β + α < β and so α× is a normal function. By
induction on β, 0× β = 0 is easily proved.

We will shortly use the following :

Proposition 3 Let γ and δ be limit ordinals. Then every α < γ × δ is
uniquely of the form α = γ × ζ + ε where ζ < δ and ε < γ.

Choose the least θ such that α < γ × θ. One exists, since γ× is a
normal function. For the same reason, θ must be a successor, θ = ζ + 1. So
γ× ζ ≤ α < γ× ζ+γ. Since (γ× ζ)+ enumerates κ−γ× ζ, there is a unique
ε with α = γ × ζ + ε. Since α < γ × ζ + γ, we must have ε < γ. It is clear
from the construction that ζ and ε are uniquely determined.

Let
M(f)

denote the set of fixed points α = f(α) of the function f : κ −→ κ.

Proposition 4 If f is normal, then M(f) is club.

Assume that f is normal. In order to prove that M(f) is unbounded, we
need to show that for each α < κ there is a fixed point of f ≥ α. If α = f(α),
we are done. Otherwise, define α0 = α and αn+1 = f(α). Since α0 < α1 and
f is order preserving, αn < αn+1 for all n < ω. Set γ = Limn<ωαn. Since κ
is regular and > ω, γ < κ. f(γ) = Limn<ωf(αn) = Lim0<n<ωαn = γ and so
γ is a fixed point < α. So M(f) is unbounded.

Let β be a limit ordinal < κ and let M(f) ∩ β be unbounded in β. I.e.
β = Limα<δg(α), where g : δ −→M(f)∩ β is the enumeration of M(f)∩ β.
Then f(β) = Limα<δf(g(α)) = Limα<δg(α) = β, since the values of g are
fixed points of f . So β ∈M(f).

So, when f is normal, the enumeration of M(f) is normal. We denote it
by f ′ and call it the derivative of f .

Proposition 5 Let δ < κ and for each α < δ, let Mα be a club subset of κ.
Then M =

⋂
α<δMα is club.
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Let β < κ be a limit and let M ∩ β be unbounded in β. Then Mα ∩ β is
unbounded in β for each α < δ. So β ∈ Mα for each α, i.e. β ∈ M and so
M is closed.

We need to show that, for each α < κ, there is an element of M > α. Since
δ and ω < κ, δ × ω < κ. We define an increasing sequence 〈αξ | ξ < δ × ω〉
by recursion. α0 = α + 1. For 0 < ξ, ξ is uniquely of the form δ × n + θ,
where n < ω and θ < δ. αξ is the least element of Mθ greater than Limζ<ξαζ .
Since κ is regular and so Limζ<ξαζ < κ, one such element exists since Mθ is
unbounded in κ. Again, by regularity, β = Limξ<δ×ωαξ < κ. Then for each
θ < δ, β = Limn<ωαδ×n+θ; i.e., β is the limit of a sequence of elements of
Mθ. Hence, since Mθ is closed, β ∈Mθ for each θ < δ. I.e., β ∈M.

Exercise 8 Call a subset S ⊆ κ stationary iff S ∩ C 6= ∅ for every club set
C.

a) Let 〈Cα | α < κ} be a sequence of club sets. Prove that the diagonal of
this sequence

∆αCα = {β < κ | ∀α < β(β ∈ Cα)}

is club. [Hint: Use Proposition 5 to show that we can assume α < β
implies Cβ ⊆ Cα.]

b) Let f : κ −→ κ and suppose that the set S = {α < κ | f(α) < α} is
stationary. Prove that there is a γ such that Mγ = {α ∈ S | f(α) = γ}
is stationary. [Fodor, 1956] [Hint: Otherwise, for each γ there is a club
set Cγ such that Mγ ∩ Cγ = ∅. Consider S ∩∆γCγ.]

2.3 Veblen Hierarchies

Using Propositions 2, 4 and 5, we can construct the following hierarchies of
normal functions.

Definition 1 Let f be a normal function. The Veblen hierarchy 〈fα | α < κ〉
of normal functions based on f is defined by

f0 = f

and for β > 0

fβ = R−1(
⋂
α<β

M(fα))
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Thus, for β > 0, fβ enumerates the common fixed points of all the fα for
α < β. Let α < β. Then M(fβ) ⊆ R(fβ) ⊆M(fα). So⋂

α≤β

M(fα) = M(fβ)

and, if γ is a limit ⋂
α<γ

M(fα) =
⋂
α<γ

R(fα)

In view of these equations, we have the following alternative characterization
of the hierarchy.

Proposition 6 If f is a normal function, then

f0 = f

fα+1 = (fα)′

and if γ is a limit

fγ = R−1
⋂
α<γ

R(fα)

The following proposition characterizes the order of the ordinals of the
form fα(ξ).

Proposition 7 fα(ξ) < fβ(ζ) iff

a. α < β and ξ < fβ(ζ), or

b. α = β and ξ < ζ, or

c. β < α and fα(ξ) < ζ.

Proof: Let α < β. ξ < fβ(ζ) iff fα(ξ) < fα(fβ(ζ)) = fβ(ζ). Let α = β.
ξ < ζ iff fα(ξ) < fα(ζ) = fβ(ζ). Let β < α. fα(ξ) < ζ iff fα(ξ) = fβ(fα(ζ)) <
fβ(ζ).

κ is a club set and its enumeration is the identity function iκ with iκ(α) =
α for all α < κ. Every α < κ is a fixed point of iκ and so its derivative i′κ =
iκ. It easily follows that the whole Veblen hierarchy in this case collapses:
(iκ)α = iκ for all α. But the following proposition shows that this is the only
case in which the hierarchy collapses: For f a normal function other than iκ,
α 6= β −→ fα 6= fβ.
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Proposition 8 Let f be a normal function, f 6= iκ and let δ = δf be the
least ordinal such that f(δ) 6= δ. Then

a. fα(ξ) = ξ for all α < κ and all ξ < δ.

b. δ < fα(δ) for all α < κ.

c. f ∗(α) = fα(δ) defines a normal function f ∗.

Proof.

a. This holds for α = 0 by the definition of δ. Suppose that it holds for all
α < β. Then δ ⊆M(fα) for all α < β and so δ ⊆

⋂
α<βM(fα) = R(fβ).

b. δ < f(δ) since δ 6= f(δ) and δ ≤ f(δ) since f is normal. R(fα) ⊆ R(f)
and so δ < f(δ) ≤ fα(δ).

c. Let α < β. δ < fβ(δ) by b) and so fα(δ) < fα(fβ(δ)) = fβ(δ). So f ∗

is order preserving; and so we need only prove that it is continuous.
Let γ be a limit and β = Limα<γfα(δ). We must prove that fγ(δ) = β.
By a), δ ⊆ R(fγ) and so fγ(δ) is the least element of R(fγ) − δ. β ∈⋂
α<γ R(fα) = R(fγ), since for each α < γ, β = Limα<ξ<γfξ(δ) ∈ R(fα)

(since R(fα) is closed). So by b), β ∈ R(fγ)− δ; and hence fγ(δ) ≤ β.
By b), δ < fγ(δ) and so fα(δ) < fα(fγ(δ)) = fγ(δ) for each α < γ.
Hence, β = Limα<γfα(δ) ≤ fγ(δ). I.e. β = fγ(δ).

Let f 6= iκ be normal. The normal function f∗ is defined by

f∗ = (f ∗)′ = R−1(M(f ∗)

Proposition 9 Let f 6= iκ be normal.

a. f∗(0) is a limit.

b. If f∗(γ) is a limit, then

α, β < f∗(γ)⇒ f∗(β) < fβ(α) < f∗(γ)

c. If δf < θ < f∗(0), then there are α, β < θ with fβ(α) ≥ θ. In fact, we
may take α = δ.

Proof.
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a. 0 ≤ δ < ff∗(0)(δ) = f∗(0). Let α + 1 ∈ M(f ∗). Then α ≤ fα(δ) <
fα+1(δ) = α+ 1. So α ∈M(f ∗). So the least element f∗(0) of M(f ∗) is
a limit.

b. Let ε = Max{α, β}+ 1. Since f∗(γ) is a limit, ε < f∗(γ). So

fβ(α) ≤ fβ(fα(δ)) < fβ(fε(δ)) = fε(δ) < ff∗(γ)(δ) = f∗(γ)

c. fθ = f ∗(θ) > θ, since f∗(0) is the least fixed point of f ∗. So ∀β <
θ(fβ(δ) < θ contradicts the continuity of f ∗.

f∗(γ) need not be a limit for γ > 0. For example, given a normal function
f 6= iκ, define g by g(α) = f(α) for α < f∗(0) and g(α) = α for α ≥ f∗(0). g
is normal and 6= iκ and g∗(α) = f∗(0) + α for all α < κ.

Proposition 10 Let f 6= iκ be normal and δ = δ(f) ≤ α ∈ R(f). Then
there is a greatest ordinal β = βα such that α ∈ R(fβ). β ≤ α and for
α = fβ(γ), γ < α. If α < f∗(0), then β < α.

Proof. α ≤ fα(δ) < fα+1(δ) ≤ fα+1(γ) for all γ ≥ δ. If γ < δ, then
fα+1(γ) = γ < α. So α 6∈ R(fα+1). Let γ be the least ordinal with α 6∈ R(fγ).
γ > 0, since α ∈ R(f). γ is not a limit since, for a limit ε, R(fε) =

⋂
ξ<εR(fξ).

So γ = β+1 for some β = βα. α ∈ R(fβ) and, for θ > β, α 6∈ R(fθ) ⊆ R(fβ+1).
β + 1 ≤ α + 1, and so β ≤ α. Let α = fβ(ξ). ξ ≤ α since fβ is normal and
α 6= ξ, since α 6∈ R(fβ+1). So ξ < α. Note that δ ≤ ξ, since ξ < δ implies
fβ(ξ) = ξ < α. Now suppose that α < f∗(0). Then βα < α, since β = α
implies α < fα(δ) ≤ fα(ξ) = α—a contradiction.

2.4 Ordinal Arithmetic

We have already defined ordinal addition and multiplication. Ordinal expo-
nentiation α− expβ = αβ is defined by

α0 = 1

αβ+1 = αβ × α

and for limits γ,

αγ =
⋃
β<γ

αβ
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00 = 0 and 0β = 0 for all β > 0; and 1β = 1 for all β. But, if α > 1, then
α− exp is normal by Lemma 4, since β × α > β.

Remark 2 If we want to prove an equation s(α) = t(α) where the terms
s(α) and t(α) express normal functions of α (e.g. when they are built up
by means of a composition of normal functions), then it suffices to prove
s(0) = t(0) and that s(α) = t(α) implies s(α + 1) = t(α = 1). The equation
then follows by induction since, if s(α) = t(α) holds for all α < γ, where γ
is a limit, then s(γ) = t(γ) holds by continuity.

Exercise 9 a) Prove that + and × are associative:

(α + β) + γ = α + (β + γ)

(α× β)× γ = α× (β × γ

b) Show that neither + nor × is commutative. In particular, show that

1 + ω = ω < ω + 1

2× ω = ω < ω × 2

c) Prove the left distribution law

α× (β + γ) = α× β + α× γ

d) Show that the right distribution law

(α + β)× γ = α× γ + β × γ

fails. [Hint: Prove that 1 × α = α. Now, using b), consider 2 × ω =
(1 + 1)× ω.]

e) Prove
αβ+γ = αβ × αγ

αβ×γ = (αβ)γ

The main result we need here is a generalization of a theorem of arithmetic
of finite ordinals.
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Definition 2 The ordering by first differences of finite sequences of ordinals
is defined by

〈α1, . . . , αm〉 ≺ 〈β1, . . . , βn〉

iff there is a j ≤ n such that αi = βi for i < j and either j = m + 1 or else
j ≤ m and αj < βj.

Exercise 10 Prove that ≺ does not well-order the set of finite sequences
of ordinals < κ—in fact, that it does not even well-order the set of finite
sequences of ordinals < 2.

Proposition 11 Let α > 1.

a. Every β > 0 is uniquely of the form

β = αβ1 × ζ1 + · · ·+ αβm × ζm

where m ≥ 0, 0 < ζi < α and β1 > · · · > βm. We call this the normal
form of β to the base α. We include the case of β = 0 by allowing m=0.

b. If
γ = αγ1 × η1 + · · ·+ αγn × ηn

is also in normal form, then β < γ iff

〈αβ1 × ζ1, . . . , α
βm × ζm〉 ≺ 〈αγ1 × η1, . . . , α

γn × ηn〉

Proof. a. We prove this by induction on β. Let γ be the least ordinal such
that β < αγ. Since αexp is a normal function (when α > 1), γ cannot be a
limit. If γ = 0, then β = 0 and m=0 gives the required form. Otherwise,
γ = β1 + 1 for some β1 and so αβ1 ≤ β < αβ1 × α. By Proposition 3, β is
uniquely of the form αβ1 × ζ1 + θ for some ζ1 with 0 < ζ1 < α and θ < αβ1 .
The last inequality implies θ < β. So by the induction hypothesis, θ has the
required form, which we can write as θ = αβ2 + · · · + αβm × ζm. Note that
Since α− exp is normal and θ < αβ1 , β1 > β2.

b. It clearly suffices to show that, if β = αβ1 × ζ1 + · · · + αβm × ζm is
the normal form of β to the base α and γ > β1, then αγ > β. We prove this
by induction on m. If m=0, β = 0 < αγ. Let m = k+1. By the inductive
hypothesis, αβ1 > αβ2 × ζ2 + · · · + αβm × ζm. So αγ ≥ αβ1+1 = αβ1 × α ≥
αβ1 × (ζ1 + 1) = αβ1 × ζ1′ + αβ1 > β.
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When α = 2, the ζi must all be =1; and so the normal form to base 2 is

β = 2β1 + · · ·+ 2βm

where β1 > · · · > βm. When α = ω, then the ζi are all < ω. So ωβi × ζi =
ωβi + · · ·+ ωβi (ζi summands) and so the normal form to base ω can also be
written as

β = ωβ1 + · · ·+ ωβm

where β1 ≤ · · · ≤ βm. In both cases, normal form to base 2 and normal form
to base ω, β < γ iff 〈β1, . . . , βm〉 ≺ 〈γ1, . . . , γn〉, where the βi and γj are the
exponents in the corresponding normal forms.

O. Veblen [1908] introduced the hierarchy 〈kα | α < ω+〉 based on the
normal function k = ω−exp. His purpose was to introduce a unique notation
for each ordinal < k∗(0). We shall instead consider the hierarchy 〈hα | α <
ω+〉, where h = 2− exp.

Exercise 11 a) Show that the fixed points of n+ for 0 < n ≤ ω are
precisely the infinite ordinals (α ≥ ω).

b) Show that the fixed points of ω+ are precisely the ordinals of the form
ω × α for α infinite.

c) Show that every ordinal is a fixed point of 1× .

d) Show that the fixed points of α× are precisely the ordinals ωδ greater
than α. [Hint: Show by induction on δ that α, β < ωδ implies α+ β <
ωδ.]

e) Let α = ωα1 + · · · + ωαm, m > 0, and β = ωβ1 + · · · + ωβn, where
α1 ≥ · · · ≥ αm and β1 ≥ · · · ≥ βn. Show that

α + β = ωα1 + · · ·+ ωαi + β

for the greatest i = 1, . . .m such that αi ≥ β1. [Hint: use d).]

f) Let α = ωα1 × k1 + · · ·+ ωαm × km be the normal form of α to the base
ω. Show that α×n = ωα1 × k1×n+ωα2 × k2 + · · ·+ωαm × km. [Hint:
Use e).]

g) Let α be as in f) and let γ > 0. Show that α× ωγ = ωα1+γ.
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h) Now let α and β be as in e). Show that

α× β = ωα1+β1 + · · ·+ ωα1+βn

i) Show that 2α = ωα iff α is a fixed point of ω×.

j) Show that the fixed points of ω − exp are > ω.

k) Show that the fixed points of 2 − exp are ω and the fixed points of
ω − exp, so that

2− exp1(0) = ω

2− exp1(1 + α) = ω − exp1(α)

l) Show that, for β > 1, 2− expβ = ω − expβ.

Going back to Cantor, the values of the derived function ω − exp′ of k =
ω− exp are denoted by ω− exp′(α) = εα and called the ε-numbers. So these
are the fixed points ωε = ε. So we have 2−exp(0) = ω and 2−exp(1+α) = εα.

2.5 The Functions of Proof Theory

In proof theory it is not the function h or k that we want, but the function
ψ:

Definition 3 • ψ : κ −→ κ is defined by

ψ(0) = 0

ψ(1 + α) = 2α = 2− exp(α)

• Let α = ωα1 + · · ·+ωαn, where α1 ≥ · · · ≥ αn. This form is unique and
so we can define χα : κ −→ κ by

χα(β) = ψα1(· · · (ψαn(β)) · · · )

ψ is clearly normal. δψ = 3, since ψ(α) = α for α < 3 and ψ(3) = 4.
From now on

〈ψα | α < κ〉
will refer to the hierarchy based on this particular ψ. 〈χα | α < κ〉 is not a
Veblen hierarchy, of course, since χ0 is the identity function iκ on κ and the
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hierarchy based on this function collapses to just one function. But since the
composition of normal functions is normal, each χα is normal.

Every ordinal α is uniquely of the form γ+n, where γ is 0 or a limit and
n < ω. So

2α = 2γ × 2n = 2γ + · · ·+ 2γ

with 2n summands. It follows then from Proposition 11 that every ordinal α
is uniquely of the form

(2.1) α = 2α1 + · · ·+ 2αn

where each αi is a limit or 0 and α1 ≥ · · · ≥ αn. We will call this the dyadic
form of α. Let

(2.2) β = 2β1 + · · ·+ 2βm

also be in dyadic form. It follows easily from Proposition 11 that α < β iff
〈α1, . . . , αn〉 ≺ 〈β1, . . . , βm〉. Now, let ζ1 ≥ · · · ≥ ζm+n be the αi’s and βj’s,
counting multiplicities. The commutative sum of α and β is defined by

(2.3) α⊕ β = 2ζ1 + · · ·+ 2ζm+n

Note that this is also in dyadic form.

Proposition 12 〈ψ,⊕〉 is the least pair of functions such that

a. ⊕ is commutative: α⊕ β = β ⊕ α

b. α⊕ is order preserving: β < γ −→ α⊕ β < α⊕ γ

c. ψ is order preserving

d. ψ(α)⊕ ψ(α) ≤ ψ(α + 1).

In other words, if 〈g,⊗〉 also satisfies these conditions, then for all α and
β

α⊕ β ≤ α⊗ β

ψ(α) ≤ g(α)

Proof. First we must show that ψ and ⊕ satisfy these conditions.
a. is immediate.
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b. Let (2.1) and (2.2) and γ = 2γ1 + · · · + 2γk be dyadic normal forms.
α ⊕ β is given by 2.3. Let α ⊕ γ = 2η1 + · · · + 2ηn+k . β < γ implies
〈β1, . . . , βm〉 ≺ 〈γ1, . . . , γk〉, which implies 〈ζ1, . . . , ζm+n〉 ≺ 〈η1,, . . . , ηn+k〉;
and this implies α⊕ β < α⊕ γ.

c. is immediate since ψ is normal.
d. This is immediate for α = 0. Let α > 0 and ψ(α) have the dyadic form

2γ + · · · 2γ with 2k summands (1 + α = γ + k). So ψ(α)⊕ ψ(α) = 2β + 2β =
2β+1 = ψ(α + 1).

In fact, ψ is the least order preserving function satisfying ψ(α) + ψ(α) ≤
ψ(α + 1). If g is another such function, then ψ(0) = 0 ≤ g(0). Now assume
ψ(α) ≤ g(α). ψ(α+1) = ψ(α)×2 ≤ g(α)×2 ≤ g(α+1). If γ is a limit and we
assume ψ(α) ≤ g(α) for all α < γ, then ψ(γ) =

⋃
α<γ ψ(α) ≤

⋃
α<γ g(α) ≤

g(γ).
Now we assume that 〈g,⊗〉 satisfies a.- d. α+ is the least order preserving

function j : κ −→ κ with j(0) = α. So by b., α + β ≤ α⊗ β. Hence

g(α) + g(α) ≤ g(α)⊗ g(α) ≤ g(α + 1)

But ψ is the least function satisfying ψ(α)×2 ≤ ψ(α+1), and so ψ(α) ≤ g(α)
for all α.

Now we prove α⊕β ≤ α⊗β by induction on α⊕β. Let the dyadic forms
of α, β, and α⊕ β be (2.1), (2.2) and 2.3), respectively. Suppose

α⊗ β < α⊕ β = 2ζ1 + · · ·+ 2ζm+n

By the commutativity of ⊕ and ⊗, we can assume that ζm+n = βm. m cannot
be 0, since otherwise β = 0 and we have α⊗0 < α⊕0 = α, contradicting the
fact that 0 ⊗ α = α ⊗ 0 is an order preserving function of α. If βm = 0, set
γ = 2β1 + · · ·+ 2βm−1 . If βm is a limit, then there are ηk ≤ · · · ≤ η1 ≤ ζm+n−1

such that
α⊗ β < 2ζ1 + · · ·+ 2ζm+n−1 + 2η1 + · · ·+ 2ηk

Set γ = 2β1 + · · · + 2βm−1 + 2η1 + · · · + 2ηk . In either case, we have γ < β
with α ⊗ γ < α ⊕ γ. Hence α ⊗ γ < α ⊗ β ≤ α ⊕ γ < α ⊕ β, contradicting
the induction hypothesis that ζ ⊕ η ≤ ζ ⊗ η for all ζ ⊕ η < α⊕ β. QED

We should compare the hierarchies 〈ψα | α < κ〉 and 〈2− expα | α < κ〉.
If k and m are normal functions, then so is their composition k ◦m and,

since α = k(m(α)) iff α = m(α) = k(α),

M(k ◦m) = M(k) ∩M(m).
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2 − exp(α) = ψ(1 + α), and so M(2 − exp) = M(ψ) − ω. The finite fixed
points of ψ are the α < 3 = δψ and so for β = 1,

(2.4) 2− expβ(α) = fβ(3 + α)

Assume that this holds for some β. δ(ψβ) is again 3, and so M(2− expβ) =
M(ψβ)−ω. Hence (2.4) holds also for β+ 1. By continuity, then, it holds for
all β > 0. δ2−exp = 0 and so e2−exp∗(α) = 2−expα(0) = ψα(3) = ψ∗(α). I.e.
ψ∗ = 2− exp∗ and so ψ∗ = 2− exp∗. So 2− exp∗(0) supports the hierarchy
〈ψα | α < κ〉, i.e.

α, β < 2− exp∗(0) −→ ψα(β) < 2− exp∗(0)

If α, β < 2 − exp∗(0), then α ⊕ β ≤ ψ(α) ⊕ ψ(β) ≤ ψ(α ∪ β) + 1) <
2− exp∗(0). Thus 2− exp∗(0) also supports the function ⊕.

It follows then that, as far as the functions ψα and ⊕ of proof theory
are concerned, we may as well take κ = 2 − exp∗(0) rather than a regular
uncountable cardinal. The function 2 − exp∗ has a name in proof theory:
namely, 2− exp(∗) = Γ. But we will have another use for the symbol Γ.
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Chapter 3

The Cut Elimination Theorem

3.1 Deductive Systems

Definition 4 A formula system consists of

1. A set of objects, called formulas. The formulas are partitioned into
three disjoint kinds: prime formulas, disjunctive or

∨
formulas, and

conjunctive or
∧

formulas. With each disjunctive or conjunctive for-
mula is associated a class of formulas called its components. Prime
formulas have no components. A disjunctive formula with components
{Ai | i ∈ I}, is often denoted by∨

i∈I

Ai

A conjunctive formula with these components is often denoted by∧
i∈I

Ai

But CAUTION: This notation is ambiguous, since it is not excluded
that two disjunctive, respectively, conjunctive formulas have the same
components. So

∨
i∈I Ai denotes some disjunctive formula with these

components. Similarly in the conjunctive case.

2. An operation A 7→ A associating with each formula A a formula A,
called its complement, such that the complement of a prime formula is
prime, ∨

i∈I Ai =
∧
i∈I Ai

∧
i∈I Ai =

∨
i∈I Ai
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and
A = A

So complements come in pairs, where each member of the pair is the
complement of the other.

3. An operation A 7→ |A|, where |A| is an ordinal, called the rank of A.
The rank operation is to satisfiy two conditions:

(a) |A| = |A|
(b) |A| < |B| for every component A of B.

We give three examples of formulas systems.

Example 1 The Formula System of Countable Propositional Logic.

• Formulas. Assume given a countably infinite list of distinct proposi-
tional constants: P0, P1, . . .. The set of formulas is defined by

– Every propositional constant is a formula.

– If M is a set of formulas, then
∨
M and

∧
M are formulas.

The propositional constants are the prime formulas,
∨
M is disjunctive

and
∧
M is conjunctive.

• Components The components of
∨
M and

∧
M are the formulas in M .

(We are not excluding the case of M = ∅.)

• Complements.
P2n = P2n+1 P2n+1 = P2n∨

M =
∧
M∧

M =
∨
M

where M is the set of A for A ∈M .

• Ranks.
|Pn| = 0

|
∨

M | = |
∧

M | =
⋃
A∈M

|A|
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Exercise 12 Show that, for each countable ordinal α, there is a formula A
of Countable Propositional Logic with |A| = α.

Example 2 The Formula System of Classical First Order Predicate Logic,
CPL.

• Formulas. The terms are built up in the usual way from free variables,
individual constants and function constants. The prime formulas are
of the form

P (t1, . . . , tn) P̄ (t1, . . . , tn)

where P is a predicate constant of n arguments and the ti are terms.
We allow the case of n=0, in which case P is a propositional constant
and we write P and P̄ rather than P () and P̄ (). The formulas are
built up from the prime formulas and the propositional constants >
(for trivial truth) and ⊥ (for absurdity or trivial falsety) by means of
disjunction A∨B, conjunction A∧B, existential quantification ∃xA(x),
and universal quantification ∀xA(x), where A(x) is obtained from a
formula A(b) by replacing each occurrence of the free variable b by the
bound variable x which does not occur in A(b). Thus, besides the prime
formulas, we have the formulas

⊥ >
A ∨B A ∧B
∃xA(x) ∀xA(x)

• ⊥, A∨B, and ∃xA(x) are disjunctive formulas. >, A∧B, and ∀xA(x)
are conjunctive.

• Components. ⊥ and > have no components, A∨B and A∧B have the
components A and B, and ∃xA(x) and ∀xA(x) have the components
A(t), for every term t.

• Complements. The complement operation is defined by

P (t1, . . . , tn) = P̄ (t1, . . . , tn) P̄ (t1, . . . , tn) = P (t1, . . . , tn)

⊥ = > > = ⊥
A ∨B = Ā ∧ B̄ A ∧B = Ā ∨ B̄
∃xA(x) = ∀xA(x) ∀xA(x) = ∃xA(x)
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• Rank.

– Prime formulas have rank 0.

– |⊥| = |>| = 0.

– |A ∨B| = |A ∧B| = Max{|A|, |B|}+ 1.

– |∃xA(x)| = |∀xA(x)| = |A(b)|+ 1.

In the case of the quantifiers, note that |A(t)| = |A(b)| for every term
t. So we do have |∃xA(x)| = |

∨
t∈TmA(t)| > |A(t)| for all components

A(t); and similarly for ∀xA(x).

Note that, unlike the case of Countable Propositional Logic, the ranks of
the formulas of CPL are all finite. This will be true of the following example,
too. However, we will later consider natural formula systems containing
formulas of infinite rank.

Example 3 The Formula Systems of Classical First Order Arithmetic, CPA
and CPA∗. These formula systems are defined exactly as in the case of CPL,
with these exceptions:

• In both CPA and CPA∗, the only individual constant is 0̄ and the only
function constants are S (for successor) and the function constants of
PRA. In CPA the only predicate constants are = and a single unary
predicate constant U .

• In CPA∗, the formulas are the closed formulas, or sentences, of CPA—
i.e. containing no free variables.

• We identify the closed term t with n̄, where n is the value of t. The n̄’s
are the numerals:

1̄ = S(0̄), 2̄ = S(1̄), . . .

• In CPA∗, the components of ∃xA(x) and ∀xA(x) are just the formulas
A(n̄).

Remark 3 First order arithmetic is usually formalized using only the con-
stants for the functions + and ×, rather than for all primitive recursive
functions. The other primitive recursive functions can be introduced by ex-
plicit definition so that the defining equations associated with them become
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theorems. This shows that our formalization of first order arithmetic is con-
servative over the usual formalism, in the sense that any sentence of the
latter that is provable in our system is already provable in latter system.

In all of these examples of classical systems, we might (but will not)
introduce the negation ¬A of a formula A by

¬A := A

Thus, with this definition, the classical inference from ¬¬A to A becomes
the trivial inference from A to itself. This shows that, for intuitionistic logic,
our notion of a formula system is not sufficiently rich.

Definition 5 A signed formula system is a formula system in which each
formula is classified as positive, +, or negative, -, subject to the condition
that A is positive iff A is negative.

Example 4 The Formula Systems of Intuitionistic First Order Predicate
Logic, IPL, and of Intuitionistic First Order Arithmetic, IPA and IPA∗,
are defined exactly as in the corresponding classical systems except that we
assign signs to the formulas as follows:

• P (t1, . . . , tn) is positive and P (t1, . . . , tn) is negative.

• ⊥ is positive and > is negative.

• ∃xA(x) and ∀xA(x) are positive iff A(x) is positive; otherwise they are
negative.

• The signs for A ∨B and A ∧B are given by the table

A B A ∨B A ∧B
+ + + +
+ - + -
- + + -
- - - -

From now on, we will take all formula systems to be signed: we have made
our point that, in the classical case, the sign plays no role; but it also does
no harm and can be assigned arbitrarily (consistent with A and A having
opposite signs). In particular, the formula systems of CPL, and IPL are the
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same, the formula systems of CPA and IPA are the same and the formula
systems of CPA∗ and IPA∗ are the same.

Implication and negation are defined by

A −→ B := A ∨B

¬A := A −→ ⊥

So A −→ B is positive except when A is positive and B is negative; hence,
¬A is always positive. Bi-implication is defined by

A←→ B := (A −→ B) ∧ (B −→ A)

We would like to define the notion of a deduction, not for single formulas,
but for finite sets of formulas.

Γ, ∆, Θ, Γα, . . .

will denote finite sets of formulas.

Γ,∆

will denote the union Γ ∪∆ of Γ and ∆. It is not excluded in this notation
that Γ and ∆ contain some common formulas.

Γ, A1, . . . , An

will denote the set Γ∪{A1, . . . , An}. An intuitionistic set or i-set of formulas
is a finite set of formulas from a signed formula system which contains at most
one + formula.

In classical logic, we may think of a set Θ of formulas occurring as a
premise or conclusion of an inference as expressing the disjunction

∨
Θ of

the formulas in Θ.
In intuitionistic logic, negative formulas have no meaning as assertions;

rather they stand for hypotheses. To interpet Θ intuitionistically, we should
divide it into two parts, Γ (where Γ is the set of complements of formulas
in Γ) and ∆, consisting of the negative formulas and the positive formulas
in Θ, respectively. Then Θ expresses that the conjunction of the (positive)
formulas in Γ implies the disjunction of the (positive) formulas in ∆, i.e.∧

Γ −→
∨

∆.
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Notice that, in classical logic,
∨

Θ and
∧

Γ −→
∨

∆ are logically equiva-
lent, since the complement of a formula expresses its negation and A −→ B
means ¬A∨B; but in intuitionistic logic these are not equivalent: for exam-
ple, A −→ A, but ¬A ∨ A is not a valid principle of intuitionistic logic.

In the original formalism of the Sequence Calculi of [Gentzen, 1935], θ is
written as the sequent

Γ⇒ ∆

expressing
∧

Γ −→
∨

∆. So in this notation, all formulas occuring in infer-
ences are positive. It follows that an i-set of formulas in the sequent notation
is either

Γ⇒ ∅

which is usually written
Γ⇒

or else of the form
Γ⇒ A

As a matter of fact, Gentzen took Γ and ∆ to be, not sets of formulas, but
sequences. It simplifies the rules of inference, however, to replace sequences
by sets and sequents by sets of positive and negative formulas.

Definition 6 • A Classical Deductive System Σ consists of a formula
system ΣF together with a set ΣA of axioms sets. The axiom sets are
finite sets of prime formula of the system. The only conditions on ΣA

are

– For every prime formula P , some subset of P, P is in ΣA. [Com-
pleteness Condition]

– If Γ, A ∈ ΣA and ∆, A ∈ ΣA, then some subset of Γ,∆ is in ΣA.
[Cut Condition]

• An Intuitionistic Deductive System is a classical deductive system ex-
cept that the axiom sets are i-sets.

The rules of inference for a deductive system Σ are:

AX Γ,∆ (∆ ∈ ΣA)
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∨ ∆, Aj

Γ,
∨
i∈I Ai

(some j ∈ I,∆ ⊆ Γ)

∧ ∆j, Aj

Γ,
∧
i∈I Ai

(all j ∈ I,∆j ⊆ Γ)

CUT
∆, A Θ, A

Γ
(∆,Θ ⊆ Γ)

Notice that, when ∆, A and ΘA are i-sets, then ∆,Θ is an i-set; so it is
always possible to cut A with the conclusion ∆,Θ. The rules of inference
other than CUT are called normal rules of inferences and their instances are
called normal. The sets of formulas above the line are called premises and
the set below the line is called the conclusion. Thus AX has no premises,∨

has just one premise,
∧

has a premise corresponding to each component
Aj of

∧
i∈I Ai. CUT has two premises. Note that in each premise of each

inference we have underlined one formula. This is called the minor formulas
or mf of the premise, and together they are called the mf of the inference.
The mf of a cut are called its cut-formulas or cf. In each normal inference,
there are underlined formulas in the conclusion, called the principal formulas
or pf of the inference. In AX, all the formulas in ∆ are pf. In the other
normal inferences, there are just one pf. CUT has no pf. Normal inferences
have cut-degree = 0. The cut-degree of a cut, however, is the rank |A| = |A|
of its cut-formulas.

We shall adopt the following convention regarding the notion of an infer-
ence: An inference is given, not only by its premises and conclusion, but also
by its mf and pf. Thus, there may be two distinct inferences with the same
premises and conclusion. For example

A,B

A,B,A ∨B
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Intuitionistic Restriction In intuitionistic deductive systems, all inferences
are restricted to the case that every premise and conclusion is an i-set.

Exercise 13 Rewrite the rules of inference in the notation of sequents in-
volving just positive formulas.

Definition 7 (Deductions) We define the notion of a deduction D of Γ
of rank ≤ α and cut-degree ≤ δ

D ` Γ [α, δ]

by induction on α. Namely, if

(∗)
· · ·Γi · · ·

Γ
(i ∈ I)

is an inference with cut-degree < γ and for each i ∈ I, Di ` Γi [αi, γ], then
D = 〈(∗), 〈Di | i ∈ I〉,Γ〉 is a deduction of Γ of rank ≤ α and cut-degree ≤ δ.
(∗) is called the inference of D and the Di are called its subdeductions.

We write
` Γ [α, δ]

to mean that there is a deduction D of Γ of rank ≤ α and cut-degree ≤ δ
and

` Γ [< α, δ]

to mean that there is such a deduction whose rank is < α.
Note that the rank and cut-degree of a deduction have not actually been

defined; but we may define them as the least α such that the deduction
has rank ≤ α and the least δ such that the deduction has cut-degree ≤ δ,
respectively. It is natural to think of the deduction as a well-founded tree
(well-founded meaning that every path upward is finite), where each node
is the conclusion Γ of an inference and the nodes immediately above Γ, if
any, are the premises of the inference. Then the rank of the deduction is
the height of the tree. It cut degree is the least ordinal greater than the
cut-degree of each cut in the deduction. So a deduction contains no cuts just
in case its cut degree is 0: in this case, we say that the deduction is normal.

Exercise 14 Assume given a deductive system, either classical or intuition-
istic.
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a) Prove that ` A,A [2× |A|, 0], for every A.

b) Prove that ` A∨A [2×|A|+2, 0] for every A (providing a formula A∨A
exists in the deductive system). [Hint: Be careful in the intuitionistic
case. Only i-sets are admitted.]

c) Prove that ` > [0, 0], providing a conjunctive formula > with no com-
ponents exist in the system.

d) Prove that, if the disjunctive formula ⊥ with no components exists in
the system, then ` Γ,⊥ [α, δ] implies ` Γ [α, δ].

Lemma 5 (Weakening Lemma) If ` Γ [α, δ], then ` Γ,∆ [α, δ], provid-
ing in the intuitionistic case that Γ,∆ is an i-set.

Proof. Simply add ∆ to the conclusion of the inference of the given
deduction of Γ.

There are two properties of classical systems which we shall want to use
later on. By a contraction, we mean an inference in which the conclusion is
included in each premise.

Lemma 6 (Contraction Lemma) In classical deductive systems, if ` Γ [α, δ],
then there is a deduction of Γ of rank ≤ α and cut-degree ≤ δ in which every
inference is a contraction.

Proof by induction on α. Let

· · ·Γi · · ·

Γ

be the inference of the given deduction. Γi ⊆ Γ and so, by Weakening, we
may suppose that each Γi = Γ. Now apply the induction hypotheis to the
deductions of the premises.

Lemma 7 (Reduction Lemma) In a classical system assume

` Γ [α, δ]
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a) For each j ∈ I
` Γ− {

∧
i∈I

Ai}, Aj [α, δ]

b) If I is finite, then

` Γ− {
∨
i∈I

Ai}, {Aj | j ∈ I} [α, δ]

c) If {A} is an axiom set, then

` Γ− {Ā} [α, δ]

Proof of part a) by induction on α. The other parts are equally straight-
forward. We can assume the the given deduction contains only contractions.
If the pf of its inference is other than

∧
i∈I Ai, then the inference is preserved

by replacing Γ by Γ−{
∧
i∈I Ai}, Aj in all the premises and in the conclusion.

Now apply the induction hypothesis to the deductions of the premises. If∧
i∈I Ai is the pf of the final inference, then one of the premises is Γ, Aj.

Apply the induction hypotheis to this premise.

3.2 The Elimination Theorem

Lemma 8 (Elimination Lemma) Let D ` Γ, A [α, δ] and D′ ` Γ′, A [β, δ],
where |A| ≤ δ. Then ` Γ,Γ′ [α⊕ β, δ].

Of course, we obtain ` Γ,Γ′ [α ∪ β, δ + 1] using a cut with cut formula
A. In fact, if |A| < δ, there is no increase in cut-degree. The real content is
when |A| = δ.

Proof by induction on θ = α ⊕ β. In order to prove the lemma in the
intuitionistic case, we need only observe that when D and D′ are intuitionistic
deductions, then so is the deduction we construct of Γ,Γ′. This is routine in
each case and is left to the reader.

CASE 1. A is not a pf of D or else A is not a pf of D′. Since ⊕ is

commutative, |A| = |A| and A = A, the lemma is symmetric in A and A.
Hence, we can assume that A is not a pf of D. So the inference of D is of
the form
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(I)

· · ·Γi, Bi · · ·Γj, Bj, A, · · ·

Γ, A

(i ∈ I, j ∈ J)

indicating the possibility of some premises containing A as something other
than a mf and others not.

` Γi, Bi [αi, δ]

and
` Γj, Bj, A [αj, δ]

where the αi and αj are all < α. By the induction hypothesis, since αj⊕β <
θ,

` Γj, Bj,Γ
′ [αi ⊕ β, δ]

(II)

· · ·Γi, Bi · · ·Γj, Bj,Γ
′ · · ·

Γ,Γ′
(i ∈ I, j ∈ J)

is an inference, and so since αi, αj ⊕ β < θ, ` Γ,Γ′ [θ, δ].

CASE 2. A is pf of D0 and A is pf of D1.

CASE 2a. A is a prime formula. Then Γ, A = ∆, A,Θ, where ∆, A is an
axiom set, and Γ′, A = ∆′, A,Θ′, where ∆′, A is an axiom set. By the Cut
Condition on axiom sets, this means that ∆,∆′ ⊆ Γ,Γ′ includes an axiom
set. So ` Γ,Γ′ [0, 0].

CASE 2b. A is non-prime. Note that in this case, α and β must be > 0.
By symmetry we may suppose that A =

∨
i∈I Ai and so A =

∧
i∈I Ai. So the

inference of D has a single premise ∆, Aj with mf Aj, where

` ∆, Aj [α′, δ]

and α′ < α. The inference of D′ has the premise ∆′, Aj with mf Aj, where

` ∆′, Aj [β′, δ]
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and β′ < β. Since α and β are > 0, we have α = α ⊕ 0 < θ and, similarly,
β < θ. Also, α′ ⊕ β, α ⊕ β′ < θ. Here we are using the fact that ⊕ is order
preserving in both arguments.

If ∆ = ∆− {A}, then

(3.1) ` ∆− {A}, Aj [α′, δ]

If A ∈ ∆, then by the induction hypotheis applied to α′ ⊕ β

(3.2) ` Γ′,∆− {A}, Aj [α′ ⊕ β, δ]

If ∆′ = ∆′ − {A}, then

(3.3) ` ∆′ − {A}, Aj[β′, δ]

If A ∈ ∆′, then by the induction hypothesis applied to α⊕ β′,

(3.4) ` Γ,∆′ − {A}, Aj [α⊕ β′, δ]

Since |Aj| < |A| < δ, we may apply cut to one of the four pairs (3.1,3.3),
(3.1, 3.4), (3.2, 3.3) or (3.2, 3.4) of premises to obtain

` Γ,Γ′ [θ, δ]

Recall that, when γ = ωγ1 + · · ·+ ωγn is the normal form to base ω of γ,
i.e. where γ1 ≥ · · · ≥ γn, then

χγ(β) = ψγ1(· · ·χγn(β) · · · )

We now state the main theorem of this chapter.

Theorem 2 (Cut Elimination Theorem) In every deductive system

a. D ` Γ [α, δ + ωγ] implies ` Γ [ψγ(α), δ].

b. ` Γ [α, δ + γ] implies ` Γ [χγ(α), δ].

In particular, taking δ = 0, a deduction of Γ of rank α and cut-degree γ
can be transformed into a normal deduction of rank ≤ χγ(α).

b) is obtained by setting γ = ωγ1 + · · ·+ωγn in normal form and iterating
a) n times.
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a) The proof is by induction on γ and, within that, by induction on α.
In other words, we assume that a) holds for all α′ and γ′ such that (i) γ′ < γ
or (ii) γ′ = γ and α′ < α. Under these hypotheses, we prove it for α and γ.

First assume that the last inference of D is not a cut. Then it is of the
form

(**)

· · ·Γj · · ·

Γ

(j ∈ J)

where for each j ∈ J there is an αj < α with ` Γj [αj, δ + ωγ]. By the
induction hypothesis (ii), ` Γj [ψγ(αj), δ] for each j. So, since ψγ(αj) < ψγ(α)
the result follows using (**).

So we can assume that the last inference of D is a cut

∆, A Θ, A

Γ

where ∆,Θ ⊆ Γ. It follows that |A| < δ + ωγ and that there are α′, α′′ < α
with ` ∆, A [α′, δ + ωγ] and ` Θ, A [α′′, δ + ωγ]. Let β = α′ ∪ α′′. Then
β < α. By the induction hypothesis (ii)

` ∆, A [ψγ(β), δ]

` Θ, A [ψγ(β), δ]

CASE 1. γ = 0. Then |A| ≤ δ, and so by the Elimination Lemma,
` Γ [f(β)⊕ f(β), δ]. But f(β)⊕ f(β) ≤ f(β + 1) ≤ f(α) = ψ0(α).

CASE 2. γ > 0. Since |A| < δ + ωγ, there is a θ < γ and m < ω with
|A| < δ + ωθ × k. So applying the above cut,

` Γ [ψγ(α), δ + ωθ × k]

Iterating the induction hypothesis (i) k times and noticing that the values of
ψγ are fixed points of ψθ

` Γ [ψθ(· · ·ψθ(ψγ(α)) · · · ), δ]

I.e.
` Γ [ψγ(α), δ]
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f(0) = 0 < ω0 and when 0 < α < ω, f(α+1) = 2α < 2α+1. When α ≥ ω,
f(α) = 2α. So in any case, f(α) ≤ 2α. For all α, n and β, define βαn

βα0 = α βαn+1 = ββ
α
n

Then fn(α) ≤ 2αn. So

Corollary 1 If k < ω, then

` Γ [α, δ + k]

implies
` Γ [2αk , δ]

Definition 8 • The set SubF (A) of subformulas of a formula A in a
formula system is defined by induction on the rank of A:

SubF (A) = {A} ∪
⋃
{SubF (B) | B is a component of A}

• SubF (Γ) is the set of all formulas occuring as subformulas of some
formula in Γ.

• Let D be a deduction. We define the notion of a formula in D by
induction on its rank. Namely, A is a formula in D iff it is in the
conclusion of the inference of D or it is in some subdeduction of D.

Corollary 2 (Subformula Property) If D ` Γ [α, 0], then every formula
in D is a subformula of some formula in Γ.

Proof. Every formula in a premise of a normal inference is a subformula of a
formula in the conclusion.

Exercise 15 a) Show that, in a classical deductive system ` Γ,
∧
i∈I Ai [α, δ]

implies ` Γ, Aj [α, δ] for every j ∈ I.

b) Show that a) holds in an intuitionistic deductive system if
∧
i∈I Ai is

positive or its components are all negative. Show that the restriction is
necessary in the intuitionistic case.

49



c) Assume that
∨
i∈I Ai is positive or all of its components are negative

and assume that no subformula of a formula in Γ is a
∧

-formula with
more than one component. Show that, in an intuitionistic deductive
system, ` Γ,

∨
i∈I Ai [α, δ] implies ` Γ, Aj [χδ(α), 0] for some j ∈ I.

[Hint: first apply the Elimination Theorem to the given deduction.]
Show that this fails in in general in a classical deductive system.

d) In CPL, assume that every conjunctive subformula of
∨
i∈I Ai or of a

formula in Γ has only a finite number of components and that
` Γ,

∨
i∈I Ai [α, δ]. Show that there is a finite set ∆ of components Aj

of
∨
i∈I Ai such that ` Γ,∆ [χδ(α), 0]

e) Assume that there is a disjunctive formula ⊥ with no components and
that the disjunctive formula A∨B with components A and B exists for
each A and B. Define ¬A = A ∨ ⊥. Show that ` A ∨ ¬A is deducible
in the classical system.

f) Make the same assumption as in e) and, moreover, assume that P is a
prime formula which occurs in no axiom set except {P, P}. Show that
P ∨ ¬P is not deducible intuitionistically.

e) Call a deductive system consistent iff there is no formula A such that
both ` A and ` A. Show that the system is consistent iff the null set
of formulas is not derivable.

We mention some extensions of the Cut Elimination Theorem.

I. We can add to the rules of inference

AX′ Γ, A,A

for arbitrary non-prime formulas A; where, in the intuitionistic case, Γ must
consist entirely of negative formulas. (In the case of prime formulas A, each
inference of this form is an instance of AX, by the Completeness Property.)
Of course, by Exercise 14 a), there is a normal deduction of each instance
of this rules of rank 2 × |A|. By adding the new rule, though, we are able
to reduce ranks of deductions in some cases. The proof of the Elimination
Lemma goes through as before, with the addition of one new possibility in
Case 2b: namely, when Γ, A or Γ′, A is an instance of AX′. By symmetry
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we can assume the former. But then A ∈ Γ and so ` Γ,Γ′[β, δ] follows by
applying weakening to D′.

We will refer to deductions using AX′ as deductions in the extended sense.

II. If P is a prime formula and 〈Bi | i ∈ I〉 is some family of formulas,
then we could introduce the rule of inference

P

· · ·Γi, Bi · · ·

Γ, P

(Γi ⊆ Γ)

where, in the intuitionistic case, all the sets must be i-sets. We may add
P for any number of prime formulas P , providing that the only inferences
having P as a pf are instances of AX with principle formulas P and P . The
proof of cut elimination goes through as before, with one new consideration
in Case 1a) in the proof of the Elimination Lemma: namely,when Γ, P is
obtained by P. But in this case, Γ′, P can only be an instance of AX with
pf P and P . But then P ∈ Γ′ and so ` Γ,Γ′[β, γ] by Weakening.

III. We may add to a deductive system inferences of the form P for
one or more arbitrary formulas P and not just prime formulas, and without
any restrictions on inferences in which P is a pf. We shall call such infer-
ences extra-logical inferences. The proofs of the Elimination Lemma and Cut
Elimination Theorem go through without change, except that, in defining
the cut-degree of an inference, we ignore cuts

∆, P Θ, P

Γ

where ∆, P is obtained by P. Thus, a normal deduction in this case is a
deduction in which the only cuts are of this form, where ∆, P is obtained
by P. The Subformula Property in this case no longer holds: rather, we
can only say that, all the formulas occuring in a normal deduction of Γ are
subformulas of formulas in Γ or of P or P , where P is pf of some extralogical
inference.
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3.3 First Order Predicate Logic

We have already described the formula systems CPL (Example 2) and IPL
(Example 4). It is usual to take the axiom sets of both CPL and IPL to be
the i-sets {A,A} for atomic formulas A. However, we will assume only that
the axiom sets satisfy the Completeness and Cut Conditions. In particular,
this will include First Order Predicate Logic with Identity. In this deductive
system, a particular binary relation constant = is singled out and we take
the axiom sets to be the following i-sets:

A,A

t = t

s 6= t, A(s), A(t)

for terms s and t and all prime formulas A and A(b) (where s 6= t is the
complement of s = t). The augmented collection of axiom sets clearly still
satisfies the Completeness and Cut Conditions. The only distinction between
CPL and IPL is that deductions in IPL are restricted to i-sets, whereas
deductions in CPL may involve arbitrary sets.

Notice that the only inferences that may have more than two premises
are instances of

∧
when the principal formula has an infinite number of

components.

Exercise 16 Prove that, in any deductive system, when and only when there
are formulas with infinitely many components can deductions have infinite
rank.

The systems CPL and IPL, which we will denote collectively by PL, have
formulas with infinitely many components and yet, as we ordinarily consider
them, have only deductions of finite rank. The reason is that the rule of
inference for ∀xA(x) usually given is not

∧
but

∀
∆, A(b)

Γ,∀xA(x)

(b 6∈ ∆,∆ ⊆ Γ)

b 6∈ ∆ means that b does not occur in a formula in ∆. Of course the other
conjunctive formulas of this system, viz. > and binary conjunctions A ∧ B
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have 0 and 2 components, respectively; and so replacing
∧

by ∀ does mean
that all deductions are finite. Let `′ Γ[m,n] mean that there is a deduction
of Γ in PL of rank ≤ m and cut-degree ≤ n, but with

∧
replaced by ∀ in

the case of pf of the form ∀xA(x). Note that all deductions in the sense of `′
in PL have finite cut-degree, since only a finite number of formulal occur in
a deduction and all formuilas have finite rank. The connection between the
two versions of deduction in PL is given by

Exercise 17 a) Prove by induction on α that D ` Γ[α, δ] implies `′
Γ[m,n], where m < ω, m ≤ α n < ω and n ≤ δ.

b) Prove that, if the free variable b does not occur in any formula in Γ and
`′ Γ, A(b)[m,n], then for every term t, `′ Γ, A(t)[m,n].

c) Prove (using b)) that `′ Γ[m,n] implies ` Γ[m,n].

By c) and a), we have [Gentzen, 1935]:

Corollary 3 (Gentzen’s Hauptsatz) `′ Γ[m,n] implies `′ Γ[2mn , 0].

As a matter of fact, Gentzen did not provide the bound on the rank of
the cut-free deduction; but it was his use of ordinals in connection with his
consistency proof for PA that leads to this bound.

Of course, a direct proof of Corollary 3 is easily obtained from our proof
above for `. The only modification that is needed is in the proof of the
Elimination Lemma in the case that A = ∃xA(X) is pf of the inference of D
and A = ∀xA(x) is pf of D′. So we have

∆, A(t)

Γ, A

and

∆′, A(b)

Γ, A

where b does not occur in ∆′. But now apply Exercise 17 b) to this latter
inference to obtain
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∆′, A(t)

Γ, A

with no increase in rank or cut-degree, which puts us back on track in the
proof of the Elimination Lemma.

Exercise 18 Prove that every theorem of classical or intuitionistic first-
order predicate logic, in your favorite formalization of this system, is de-
ducible (or, strictly speaking, its unit set is deducible) in the deductive system
CPL or IPL, respectively. [In the case of CPL, it is not hard to simply prove
directly that the normal rules of inference are semantically complete: If, in
every structure which interprets the non-logical constants in the formulas in
Γ and for every assignment of values in the domain of the structure, some
formula in Γ is satisfied, then there is a normal deduction of Γ.]

As a consequence of Exercise 15 c) and d) and Lemma 7, we have

Corollary 4 (
∨

-Instantiation) a) If no subformula of Γ is a ∧-formula
or a ∀-formula, then in IPL

i) ` Γ, A ∨B [α, 0] implies ` Γ, A [α, 0] or IPL ` Γ, B [α, 0].

ii) ` Γ,∃xA(x) [α, 0] implies ` Γ, A(t) [α, 0] for some term t.

b) In CPL, ` Γ, A ∨B [α, 0] implies ` Γ, A,B [α, 0].

c) If no subformula of Γ or A(b) is a ∀-formula, then in CPL, ` Γ, ∃xA(x)[α, 0]
implies ` Γ, A(t0), . . . , A(tn)[α, 0] for some list t0, . . . , tn of terms.

3.4 First Order Arithmetic

The formula systems of CPA, IPA,CPA∗ and IPA∗ have already been de-
scribed in Examples 3 and 4. We will refer to CPA and IPA collectively as
PA and to CPA∗ and IPA∗ as PA∗.

The axiom system of PA consists of the unit set of each defining equation
of a primitive recursive function, the unit sets

0 6= S(t)

S(s) 6= S(t), s = t
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t = t

and
U(t), Ū(t)

s 6= t, A(s), A(t)

for each prime formula A(b). To the rules of inference of PL we add the rule
of Mathematical Induction

MI

∆, A(0̄) Θ, A(b), A(S(b))

Γ, A(t)

(∆,Θ ⊆ Γ, b 6∈ Θ)

In the inference MI, the mf are A(0̄), A(b) and A(S(b)), and the pf is A(t),
which all have the same rank as the induction formula A(b).

The maximum of the numbers n+ 1, where n is the rank of an induction
formula in the deduction will be called the induction-degree of the deduction.
Note that the extension III of the Cut Elimination Theorem applies to PA
to show that, if there is a deduction of Γ in PA, then there is one whose
cut-degree is ≤ its induction degree.

Notice that every deduction in PRA is a deduction in PA.
The axiom system of PA∗ consists of

n̄ = n̄

m̄ 6= n̄

when m 6= n,
U(n̄), Ū(n̄)

Recall that in PA∗ we identify closed terms with the same value. So every
axiom set of sentences in PA is an instance of AX in PA∗. Given a deduction
in PA, it will contain only a finite number of instances of MI and only a
finite number of cuts. Let Γ be a set of formulas of PA. A numerical instance
of Γ is a set of sentences that results from substituting a numeral for each
free variable in the formulas of Γ (the same numeral for each occurence of
the variable in each formula in Γ).

Lemma 9 If there is a deduction in PA of Γ of induction-degree k, then
each numerical instance of Γ has a deduction in PA∗ of rank < ω × ω and
cut-degree k.
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Proof. First, we can assume that the cut-degree of the given deduction
D is ≤ k. We show by induction on n that, if D is of rank n, then there is
a deduction of each numerical instance of Γ of rank ≤ ω × n and cut-degree
≤ k. Let Γ′ be the numerical instance. If Γ is an instance of AX in PA,
then Γ′ clearly includes an axiom of PA∗. If the last inference in D is other
than an instance of AX or MI, then the result follows immediately by the
induction hypothesis. So assume that the last inference is

∆, A(0̄) Θ, A(b), A(S(b))

Λ, A(p̄)

so that Γ′ = Λ′, A(p̄)′. By the induction hypothesis, there are deductions of

∆′, A(0̄)′ and Θ′, A(m̄)
′
, A(m+ 1)′ all of some rank α < ω×n and cut-degree

≤ k, for each m. We obtain a deduction of Γ′ of rank ≤ α + p < ω × n and
cut-degree ≤ k by induction on p. If p = 0, then we obtain Γ‘ from ∆′, A(0̄)′

by Weakening. Let p = r + 1. We have a deduction of Λ′, A(r̄)′ of rank
≤ α + r and so, by a cut with cut-formula A(r̄)′, we have a deduction of Γ′

of rank ≤ α + p. QED
So every deduction in PA of a set Γ of sentences can be transformed into

a deduction in PA∗ of rank < ω×ω and some finite cut degree n and so, by
the Cut Elimination Theorem, into a normal deduction of Γ of rank

2ω×ωn < ε0

where ε0 = ψ1(5) = 2 − exp1(2) = ω − exp1(1) is the least fixed point of ψ
greater than ω.

Theorem 3 (Schütte, 1951) If Γ is a set of sentences deducible in PA,
then it has a normal deduction in PA∗ of rank < ε0.

Using the primitive recursive functions pred and sgn, defined by

predf(0) = 0 pred(S(t)) = S(0)

sgn(0) = 0 sgn(S(t)) = S(0).
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we can construct for each formula A of PRA a term [A] with the same free
variables, such that A←→ [A] = 0. First, define

s− 0 = s s− S(t) = pred(s− t)

|s− t| = s− t+ t− s.
Now define

[s = t] = (s− t) + (t− s)
[¬A] = 1− sgn[A]

[A ∧B] = [A]× [B].

The preceding discussion of first order arithmetic is independent of whether
we are speaking of CPA or IPA. The following, however, is significant only
for CPA. The hierarchy of Π0

n and Σ0
n formulas of PA are defined as follows:

The Π0
0 are the formulas without quantifiers and not containing the predi-

cate constant U . The Σ0
n formulas are the complements of Π0

n formulas. The
Π0
n+1 formulas are those of the form ∀xA(x), where A(b) is Σ0

n. Since the Π0
0

formulas are equations, the formulas in Π0
n are all of rank n. Every formula

of PA is logically equivalent in CPL to a Π0
n formula and the hierarchy is

not degenerate: for every n > 0, there is a Π0
n formula which is not Σ0

n.
By Π0

n − PA we will mean PA but with mathematical induction MI
restricted to induction formulas which are Π0

n. By the discussion above, this
means that each deduction in Π0

n − PA transforms into a deduction in PA∗

of rank < ω × ω and cut-degree n+ 1. So, noting that

2ω×ω = ωω, 2ω×ω2 = 2ω
ω

= ωω
ω

and in general for n > 1
2ω×ωn = ωωn

We have

Theorem 4 If Γ is a set of sentences deducible in Π0
n − PA, then Γ has a

normal deduction in PA∗ of rank < ωωn .

Corollary 5 Let Γ be a set of equations in PA, i.e. in PRA, and let it be
deducible in Π0

0 − PA. Then

a. Γ is deducible in PRA.

b. Γ has a normal deduction of rank < ωω in PA∗.
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3.5 Derivability of Induction

Let Σ be a deductive system which is a faithful extension of PA∗. This
means, first, that every formula A of PA∗ is a formula of Σ and that the
components, complement, sign, and rank of A are the same in Σ as they are
in PA∗ and, secondly, that, for every set of formulas of PA∗, it is an axiom
set of PA∗ iff it is an axiom set of Σ.

Let a formula of PA with just the free variables a and b be given. We
denote the formula by a ≺ b. So for any close terms s and t, s ≺ t is a
formula of PA∗. We assume that

m̄ ≺ n̄ ∈ ΣA

defines a well-ordering of the natural numbers, which we shall also denote by
≺. For every n, let o(n) denote the ordinal of the set of predecessors of n in
the ordering ≺.

Recall that U and U are the unary relation constants in PA. Let

H = H(U) = ∀x[∀y(y ≺ x −→ U(y)) −→ U(x)]

Thus, H expresses the fact that U is hereditary with respect to ≺ and, since
the only axiom set containing formulas containing U or U are of the form
U(n̄), U(n̄),

H, ∀xU(x)

expresses in Σ the principle of induction on ≺ and

H, ∀x[x ≺ n̄ −→ U(x)]

expresses induction on ≺ up to n. We will prove the

Theorem 5 (Induction Theorem) Let ω > p > 0. Then

`Σ H,U(n̄)[α, p]⇒ o(n) ≤ ψp(α)

Proof. We can assume that Σ is a classical system, since its deductions
include those of the corresponding intuitionistic system. Let Σ′ result from
adding to Σ all inferences of the form

U(n̄)

· · ·Γ, U(m̄) · · ·

Γ, U(n̄)

(m ≺ n)
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We can assume that all deductions in Σ and Σ′ are contractions. As we
noted above (see II), the Elimination Lemma and so the Cut Elimination
Theorem remain valid for Σ′.

Lemma 10 Let p > 0. Then for every Γ

`Σ H,Γ [α, p]

implies
`Σ′ Γ [2× α, p]

The proof is by induction on α. If the final inference is other than one with
H as pf, the result is immediate. Let the last inference have H as pf. Hence,
for some m and β < α

`Σ H, ∀x[x ≺ m̄ −→ U(x)] ∧ U(m̄),Γ [β, p]

By two applications of part a) of the Reduction Lemma and one application
of part b)

`Σ H, k̄ 6≺ m̄, U(k̄),Γ [β, p]

for each k and
`Σ H,U(m̄),Γ [β, p]

For each k ≺ m, {k̄ ≺ m̄} is an axiom set and so by Part c) of the Reduction
Lemma,

`Σ H,U(k̄),Γ [β, p]

for all k ≺ m. So by the induction hypothesis

`Σ′ U(k̄),Γ [2× β, p]

for all k ≺ m; and hence by U(m̄)

`Σ′ U(m̄),Γ [2× β + 1, p]

Again by the induction hypothesis

`Σ′ U(m̄),Γ [2× β, p]

So, by a cut with cut-formula U(m̄) of rank 0,

`Σ′ Γ [2× α, p]
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The remainer of the proof of the Induction Theorem consists in showing
that in Σ′

` U(n̄)[β, 0] =⇒ o(n) ≤ β

This will follow from

`Σ′ U(n̄0), . . . , U(n̄k)[β, 0] =⇒Mini≤k o(n̄i) ≤ β

But a normal deduction of U(n̄0), . . . , U(n̄k) in Σ′ can only involve inferences
U(n̄), and so the conclusion immediately follows.
∀x ≺ n̄A(x) is an abbreviation for ∀x(x ≺ n̄ −→ A(x).

Corollary 6 Let ω > p > 0.

`Σ H, ∀x ≺ n̄U(x)[α, p] =⇒ o(n) ≤ ψp(α) + 1

We need only note that, by Reduction,

` H, ∀x ≺ n̄U(x)[α, p] =⇒` H,U(m̄)[α, p]

for all m ≺ n.

Corollary 7 In PA

` H, ∀x ≺ n̄U(n̄) =⇒ o(n) < ε0

f

For the hypothesis implies that in PA∗

` H, ∀x ≺ n̄U(n̄)[< α, 1]

for some α < ε0. But then ψ(α) < ε0.

Corollary 8 In Π0
k − PA

` H, ∀x ≺ n̄U(n̄) =⇒ o(n) < ωωk+1
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The antecedent implies that in PA∗

` H,U(m̄)[ω2, k + 1]

for all m ≺ n.
By a primitive recursive relation, we mean a relation whose characteristic

function is primitive recursive (pr). With certain countable limit ordinals α,
we may associate a primitive recursive relation ≺α which well-orders the set
of natural numbers and such that the well-ordering has order type α. (Of
course, there is no unique such pr well-ordering.) We will call such ordinals
primitive recursively represented or pr represented or prr. So a ≺α b can be
expressed by a formula in PA with the free variables a and b. We denote
this formula by a ≺α b, and it will have the property that, for all m and n,
PA ` m̄ ≺α n̄ or PA ` m̄ 6≺α n̄ (where a 6≺α b denotes the complement of
a ≺α b.

We are interested in the question: for what prr ordinals α is transfinite
induction on ≺α a theorem of PA? We express induction on ≺α applied to
a formula A(b) by

Jx(A(x), α) := ∀x[∀y ≺α xA(y) −→ A(x)] −→ ∀xA(x)

In particular, Jα := Jx(U(x), α) expresses induction on ≺α for an arbitrary
property of numbers: if it is derivable in PA, then so is Jx(A(x), α) for every
formula A(x) of PA.

PA0 will denote PA but without the principle of mathematical induc-
tion. Since we are interested in what instances of mathematical induction
are needed to derive induction on α, we want to consider only deductions in
PA0.

The least limit ordinal ω is of course prr, where for example ≺ω can be
taken to be the natural ordering < of the numbers.

Proposition 13 Jx(A(x), ω) is a theorem of Π0
n−PA for every Π0

n formula
A(b).

Let B(b) = ∀x < bA(x) −→ A(b). The sets

B(0) ∀x[B(x) −→ B(S(x))], B(b), B(S(b))
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are deducible in Π0
0 − PA. Hence, by MI with induction formula B(b), we

have
∀x[B(x) −→ B(S(x)), B(b)

and hence
B(0),∀x[B(x) −→ B(S(x))],∀xB(x)

Every ordinal β < 2α is uniquely of the form 2β1 + · · · + 2βn where β1 >
· · · > βn. Moreover, if γ = 2γ1 + · · · + 2γm , where γ1 > · · · > γm, then
β < γ iff 〈β1, . . . , βn〉 ≺ 〈γ1, . . . , γm〉, where ≺ is the lexicographical ordering
defined in Chapter 2 (Definition 2). This suggests the following definition of
≺2α .

The finite sequence 〈k1, . . . , kn〉 can be coded by the number

2k1+1 × 3k2+1 × · · · × pkn+1
n−1

where p0 = 2, p1 = 3, . . . , pn−1, . . . is the sequence of all the prime numbers in
increasing order. We are including the case of the null sequence of numbers
(n = 0). In this case, the code is 0. When kn ≺α · · · ≺α k1, we call the code
an α-sequence number. The function f which enumerates the α-sequence
numbers in their natural order is pr. If f(k) is the above α-sequence number,
then we write

k = [k1, . . . , kn]

Moreover, the function k∗ = n, the length of the coded sequence, is pr as is
the function defined by k[i] = ki+1 if i < k∗ and k[i] = 0 if i ≥ k∗. Now we
define the pr representation ≺2α of 2α from ≺α by

[k1, . . . , kn] ≺2α [k′1, . . . , k
′
n′ ]

iff

• n < n′ and ki = k′i for all i = 1, . . . , n, or

• there is an j with 0 < j ≤ n such that j ≤ n′, ki = k′i for 0 < i < j
and kj ≺α k′j.

In what follows, let ≺ be ≺2α . If k = [k1, . . . , kn], then we write k(m) =
[k1, . . . , kp], where p = Min(m,n). (So k(0) = 0.) Let

B(a, b) = ∀y ≺ b(a)U(y) −→ U(b)

C(b) = ∀xu[u ≤ x∗ ∧ x[u] = b −→ B(u, x)]
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Proposition 14 In PA0 J2α can be deduced from Jx(C(x), α).

Assume Jx(C(x), α) and

(3.5) ∀x[∀y ≺ xU(y) −→ U(x)]

We need to derive ∀xU(x) from these assumptions. It will suffice to deduce
∀xC(x), since C(b[0]) −→ B(0, b) and B(0, b) −→ U(b). (The latter follows
from b(0) = 0.) So assume

(3.6) ∀v ≺α dC(v)

We need to deduce C(d) from this. For then we will have ∀x[∀v ≺α xC(v) −→
C(x)] and ∀xC(x) will follow using Jx(C(x), α). Assume

(3.7) a ≤ b∗ ∧ d = b[a]

We need to deduce B(a, b). So assume

(3.8) ∀y ≺ b(a)U(y)

From all of these assumptions we need to derive U(b). Since a ≥ b∗ implies
b(a) = b, it follows from (3.5) and (3.8) that

(3.9) a = b∗ −→ U(b)

Assume that a < b∗. If a + 1 = b∗, then B(a + 1, b) follows from (3.5) and
b(a+1) = b. If a + 1 < b∗, then b[a+1] ≺α b[a]; and so C(b[a+1]) by (3.6) and
(3.7). So in any case B(a+ 1, b), i.e.

∀y ≺ b(a+1)U(y) −→ U(b)

So we need to deduce ∀y ≺ b(a+1)U(y). Let e ≺ b(a+1). If e ≺ b(a), then U(e)
follows by (3.8). So we can assume that b(a) � e ≺ b(a+1) which means that

e(a) = b(a) ∧ e[a] ≺α b[a]

C(e[a]) by (3.6) and (3.7). We are assuming a < b∗. So, since e(a) = b(a), a ≤
e∗. So B(a, e) and therefore by (3.8), U(e). So we have deduced ∀y ≺
b(a+1)U(y) and therefore

a < b∗ −→ U(b)
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Thus, we have U(b).
Now, backing up: B(a, b) follows from (3.5), (3.6) and (3.7). So

∀x[∀v ≺α xC(v) −→ C(x)]

follows from (3.5). So ∀xC(x) follows from (3.5) using Jx(C(x), α). So (3.5)
implies B(0, b), i.e (3.5) implies U(b). QED

Definition 9 The proof-theoretic ordinal of a system Σ is the least ordinal
β such that for every prr α < β, Jα is a theorem of Σ.

Theorem 6 a. The proof-theoretic ordinal of PA is ε0.

b. The proof-theoretic ordinal of Π0
n − PA is ωωn+1.

We have already proved that these are upper bounds on the α such that
Jα is deducible. To prove that they are least upper bounds, it suffices to
prove this for b. Let

J(Π0
n, α) −→ J(Π0

m, β)

mean that for each Π0
m formula A(b) there is a Π0

n formula B(b) such that

Jx(B(x), α) −→ Jx(A(x), β)

is deducible in Π0
0 − PA.

i) We observe without proof that

J(Π0
n, ω) −→ J(Π0

n, ω
k)

for each k < ω.
A fine proof of this is given by G. Mints.

ii) The result of substituting a Π0
n formula A(b) in C(b) for U(b) is equivalent

in CPL to a Π0
n+1 formula. So

J(Π0
n+1, α) −→ J(Π0

n, 2
α)

Hence

J(Π0
n, ω

k+1) −→ J(Π0
n−1, ω

(ωk)) −→ · · · −→ J(Π0
0, ω

k
n+1)
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Chapter 4

Theory of Types and Natural
Deduction

The second branch of proof theory stemming from [Gentzen, 1935] concerns
the system of Natural Deduction. But I think that the significance of this
system is best understood in a more general context: the theory of types of
Curry and Howard.

4.1 Types

There are two leading ideas behind the theory of types. The first idea implies
a kind of mathematical essentialism: objects of mathematics always exist
as objects of some particular type. A type is given by specifying definite
rules for constructing objects of that type (Introduction Rules) and reasoning
about them (Elimination Rules). The notion of a type in something like our
sense was first introduced in Bertrand Russell’s Principles of Mathematics,
Appendix B. The types that Russell considered are those built up from the
type of individuals by passing from a type A to its power type

P(A)

and from types A and B to their binary product type

A×B

P(A) is the type of all sets of objects of type A and A × B is the type of
all ordered pairs (‘couples with sense’, to use Russell’s term) (s, t) with s of
type A and t of type B.
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The notion of a type is a primitive notion and should not be confused
with the notion of a set. The notion of set is first introduced in the context
set of objects of type A for some type A. The question of whether an object
of type A is in a set s of objects of type A, i.e. whether or not it is an element
of the object s of type P(A), can be non-trivial: the set s may be defined as
the extension of some logically complex property of objects of type A. But
the question of whether a given object is of a given type A is always a trivial
question: the notion of ‘object’ is type-ambiguous: an object is an object of
some type and to be given an object implies being given its type. Of course,
associated with any type A is the set of type P(A) of all objects of type A; but
to speak of this, or any, set is to presuppose the type of objects from which
the set is to be constituted. The initial (Russell’s) motivation for the theory
of types was the realization that the anti-essentialist conception of Frege is
incoherent: the totality of ‘all’ mathematical objects cannot itself be treated
in mathematics and that, consequently, the easy answer to the question “set
of what?” given by “set of any objects whatsoever” is inadequate.

It is also important to distinguish the primitive notion of an ordered pair
(s, t) from its representations such as {{s}, {s, t}} in axiomatic set theory.
When the types A of s and B of t are distinct, then there is no set {s, t}.
There is indeed, as we shall see, a type A+B with natural embeddings s 7→ s′

and t 7→ t′ of A and B into A+B, so that the ‘set’ {s, t} can be represented
by the object {s′, t′} of type P(A+B). But the construction of A+B already
involves the notion of an ordered pair.

A further type-forming operation was introduced in Hilbert’s “Über das
Unendliche” [Hilbert, 1926]. Namely, from given types A and B, we may
introduce the exponential type

BA

of all B-valued functions defined on A.
We may generalize the constructions AB and A×B. Let A be a type and

let F be a type-values function defined on A. That is, for each object s of
type A, F (s) is a type. We introduce the Product Type

Πx :A F (x)

of all functions f defined on A such that, for each s of type A, f(s) is of type
F (s). We also introduce the Sum or Disjoint Union type

Σx :A F (x)
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of all pairs (s, t) where s is of type A and t is of type F (s). Notice that
when F is a constant function F (s) = B for all s of type A, then we obtain
Exponentiation and Binary Product as special cases:

BA = Πx :A F (x) A×B = Σx :A F (x)

We introduce the Null Type, which will be denoted by

0

Of course, there will be other types which fail to have objects. (For example,
there are no objects of type 0×A.) But the notion of type is not extensional
and, in particular, not every type which fails to have objects is identified
with 0. 0 is distinguished from these other ‘empty’ types by being specified
as null.

We also introduce the One-Object Type

1

whose object we denote by o, and the Two-Object Type

2

whose objects, Truth and Falsety, are denoted respectively by

> ⊥

We also introduce the type-valued function T defined on 2 with

T(>) = 1 T(⊥) = 0

The power type can now be introduced by definition:

P(A) = 2A

For t of type A and s of type P(A), we define

tεAs := T(s(t))

So, when s(t) is True, tεAs is the ‘true’ type 1; and when s(t) is False, it is
the ‘false’ type 0.
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4.2 Propositions as Types (PAT)

Speaking of ‘true’ and ‘false’ types leads us to the other leading idea of type
theory: we may regard a proposition as a type.

A proposition is the type of its proofs

A proposition is true when there is a proof of it. On this conception of
propositions, the type-forming operations we have just introduced assume
the character of familiar logical operations. This conception of mathematical
propositions and of the logical operations goes back to Brouwer’s intuitionism
and, more particularly, to Heyting’s analysis of intuitionistic logic. We shall
not restrict ourselves to intuitionistic logic, however, but will regard this as
just a restricted case of proofs in general.

On the PAT conception, the implication

A −→ B

simply becomes BA. For a proof f of A −→ B should yield, given any proof
p of A, a proof of B; and moreover, there is no reason to require anything
more of a proof of A −→ B. Hence, the functions of type BA are precisely
the proofs of A −→ B.

More generally, the universal quantification

∀x :AF (x)

where A ia a type and F is a propositional function (i.e. a type-valued
function) defined on A, is just the product type Πx :AF (x). For any proof
of ∀x :AF (x) should yield, for any object t of type A, a proof of F (t). And,
conversely, nothing further should be required of an object of type Πx :AF (x)
for it to be a proof of ∀x :AF (x).

The conjunction

A ∧B

becomes the binary product A×B. For a proof of A ∧B should be nothing
more or less than a pair consisting of a proof of A and a proof of B, i.e. an
object of type A×B.

More generally, the existential quantification
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∃x :A F (x)

where F is a propositional function defined on A, becomes the sum Σx :
A F (x). For a proof of ∃x :AF (x) should be nothing more or less than a pair
consisting of an object t of type A and a proof of F (t).

From now on, expressing a certain bias, perhaps, we will use the logical
notations ∀, ∃,∧, etc. instead of the corresponding Π,Σ,×, etc.

On the PAT conception, the type 0 becomes the Absurd Proposition. Of
course, as we noted above, this does not mean that there are no other false
propositions, i.e. propositions without proofs, only that 0 is introduced as an
absurdity. In the same sense, we may regard 1 as the Necessary Proposition,
since a proof o of it is explicitly given. The connection between the truth
values > and ⊥ and the necessary and absurd propositions is given by the
propositional function T. Namely, T(>) is 1 and T(⊥) is 0.

The Negation ¬A of the proposition A is defined by

¬A := A −→ 0

Once one accepts the PAT conception, this definitions seems forced. The
minimal condition for a type A∗ to be a negation of A would be that A∗

and A together imply every proposition. But that will be so precisely if they
together imply 0. So the minimal condition is A∗∧A −→ 0 or A∗ −→ (A −→
0). So A −→ 0 is the weakest type with the property in question.

But this may still seem an unreasonable analysis of negation. To say
that A is true is to say that there is an object of type A. To say that it is
false, therefore, is to say that there is no object of type A. But that is not
an existence statement, whereas the assertion of ¬A is. However, we may
question whether the proposition that there is no object of type A has any
precise mathematical meaning other than that expressed by ¬A. Thus, the
argument may be turned around: to assert that there is no object of type A
is nothing more than to assert ¬A.

We define bi-implication by

A←→ B := (A −→ B) ∧ (B −→ A)

Given propositions A and B, we define the propositional function 〈A,B〉
on 2 by

〈A,B〉(x) = (T(x) −→ A) ∧ (¬T(x) −→ B)
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Thus 〈A,B〉(>) is (1 −→ A) ∧ (¬1 −→ B), which in ordinary propositional
logic is equivalent to A. Similarly, 〈A,B〉(⊥) is (0 −→ A) ∧ (¬0 −→ B),
which is equivalent to B. So, assuming that we introduce the means for
constructing the proofs of ordinary propositional logic, we will have

(4.1) 〈A,B〉(>)←→ A 〈A,B〉(⊥)←→ B.

So we may express the Disjunction A ∨B by

A ∨B := ∃x :2 〈A,B〉(x)

Considered as a type, we could denote A ∨ B by A + B. An object of type
A ∨ B is a pair (s, t), where s is of type 2 and t is a proof of 〈A,B〉(s). By
(4.1), a proof t of A yields a proof (>, f(t)) of A ∨ B and a proof t of B
yields a proof (⊥, g(t)) of A ∨ B, where f is of type A −→ 〈A,B〉(>) and
g is of type B −→ 〈A,B〉(⊥). So t 7→ (>, f(t)) and t 7→ (⊥, g(t)) are the
embeddings of A and B in A+B mentioned in §1.

We could likewise have defined a different operation of conjunction A&B
by

A&B := ∀x :2 〈A,B〉(x)

Remark 4 There is certainly a difference between propositions and types in
regard to our interests in them. In general, with a proposition our concern is
simply whether or not it is provable, not with the different kinds of proofs that
it might have; whereas with a type A, we are likely to be interested in what
kinds of objects of type A there are. So perhaps we shouldn’t think of all types
as propositions. (For example, N is a pretty uninteresting proposition, proved
by each of the natural numbers.) But the issue is not really important. For if
within the (perhaps) more general domain of types we can prove a proposition
A (that we agree is a proposition), even using types that are not recognized
as propositions, then it is difficult to see on what grounds we would reject A
as a logical truth. For example, one might want to reject the identification of
∃x :A F (x) with the disjoint union Σx :A F (x) and adopt Frege’s definition
of it as ¬∀x :A¬F (x) instead, on the grounds that the disjoint union is not
really a proposition. Of course, this proposal only makes sense in classical
logic, since ∃ ←→ ¬∀¬ is not valid intuitionistically. But in the classical
theory of types there is an object of type Σx : A F (x) ←→ ¬∀x : A ¬F (x);
and so any theorem of logic based on one of these definitions is a law of logic
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based on the other. An important example of this which we will discuss later
is the Axiom of Choice in the form

∀x :A ∃y :B F (x, y) −→ ∃f :BA ∀x :A F (x, f(x))

which is a law of logic when ∃ is taken to mean disjoint union and so, by our
argument above, is simply a law of logic.

Remark 5 A striking illustration of the difference between the ‘truth-functional’
conception of logic and the PAT point of view concerns the matter of defini-
tions. Suppose that we wish to introduce by nominal definition a propositional
function R defined on some type A. From the truth-functional point of view
propositions are determined by their truth values and so R is defined when
we specify some equivalence

(4.2) ∀x :A [R(x)←→ F (x)]

where F is some given propositional function defined on A. But from the
type theoretic point of view, this is entirely inadequate. For any object t of
type A, this equivalence only tells us that R(t) is true precisely when F (t)
is; but it does not identify the proposition R(t)—it doesn’t tell us what the
objects of type R(t) are. Indeed, from this equation we can deduce

∀x :A [R(x)←→ F (x) ∧ F (x)]

but F (t) is a distinct proposition from F (t)∧F (t). On the type theoretic con-
ception, the appropriate form of a nominal definition is that R(t) means or is
definitionally equal to F (t), which, unlike (4.2), is not itself a mathematical
proposition, but a metamathematical one.

Remark 6 Notice that on the PAT conception, logical truths are not ‘empty’,
as they are sometimes said to be. The truth of

A −→ [B −→ A]

or
[A −→ B] ∧ [A −→ C] −→ [A −→ B ∧ C]

for example, expresses something about the general notions of function and
pair. Indeed, on the PAT conception, it is hard to see along traditional lines
where logic leaves off and mathematics begins. Perhaps the point of demar-
cation is the introduction of infinite types such as N.

71



Remark 7 The identification of the relation proposition/proof with type/object
reveals a fact about the latter. Proofs are things that we can in principle con-
struct; so, when we speak of an object of type A, we are speaking of something
that we can construct, in the sense that it is given by a term. (The question of
whether or not two terms denote the same object, i.e. are definitionally equal,
is decidable.) But it may appear to be a difficulty with this point of view that
we can only construct a countable number of objects in this sense, whereas,
once we introduce the infinite type T, we can construct types such as P(N)
which are uncountable. There are two remarks to be made about this. One
is that the theoruy of types does not form a closed formal system. Once we
introduce N, we are lead to introduce further infinite types which lead to the
construction of more and more objects of type P(N). Of course, though, it is
true that, no matter what direction we might extend the theory of types, the
collection of terms that we obtain will remain countable. But—and this is the
second remark to be made about the countability of what we can construct—
the uncountability of P(N) is not a statement external to mathematics, about
what objects we can in the long run construct, an anthropological statement,
so to speak. Rather, it is expressed by the proposition

∀f :N −→ P(N)∃x :P(N)∀y :N[x 6= f(y)]

which we can prove.

4.3 Formulas and Terms

So far we have been speaking of types and objects informally, relying on
the intuitive notion of function and pair. But the point of logic is to give a
foundation for these basic notions by specifying exactly what constructions of
them we admit and what principles we admit in reasoning about them. The
most natural way to present such a foundation is to shift from the material
to the formal mode of speach and, instead of speaking of types and objects,
to speak of formulas and terms.

The classes of formulas and terms must be defined simultaneously. For-
mulas without free variables will be called sentences and are intended to
denote types. Each term will be assigned a class of formulas, called its types.
A term of type A is intended to denote an object of type A. We shall write

t :A
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to mean that t is of type A.
We shall introduce relations

s ≡ t A ≡ B

of definitional equality between terms and formulas. Definitionally equivalent
terms of formulas are understood to have the same meaning. We will show
that this relation is decidable. The first step in our definition is to specify
that

t :A,A ≡ B =⇒ t :B

It will turn out that all the types of a term are definitionally equal and that
definitionally equal terms have the same types.

We want to allow for types other than the ones we can obtain by means
of the type-forming operations we consider here, and so we assume given
some number of symbols, including 2, which we call type constants. For each
sentence A, we may have zero or more predicate constants of sort A. The
predicate constants will include T which is of sort 2.

The atomic formulas are the type constants and the expressions Rt, where
R is a predicate constant of sort A and t :A. So in particular, 0,2 and Ts
are atomic formulas whenever s :2.

With each formula A we introduce the free variables

vn(A)

of sign A (n < ω). We sometimes denote free variables of sign A by v(A) or,
when the type is given by the context, by u or v. But it must be understood
that a variable of sign A contains A as a syntactical part. Thus, the free
variables occuring in v(A) are itself along with the free variables occuring in
A. A free variable of sign A is a term of type A:

v(A) :A

It follows that v(A) : B for any B definitionally equivalent to A. The free
variables of type A are intended to range over the objects of type A.

Besides free variables, we also introduce an infinite supply of bound vari-
ables, which we denote by x, x, z, . . . x0, . . .. These are syntactically atomic
and are not terms.

The formulas are built up from atomic formulas by means of the following
operation: Let A and F (v(A)) be formulas such that, for all free variables
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u(C) occuring in F (v(A)) v(A) does not occur in C. Let x be a bound
variable not occuring in A or F (v(A)). Then

∀x :A F (x) ∃x :A F (x)

are formulas.
The restriction that x not occur in A or in F (v(A)) is just a matter of

convenience. For example, consider ∀x :B F (x, v(A)). If we now violate the
restriction and form ∃x :A∀x :B F (x, x) we have lost track of which occur-
rences of x refer to which quantifier. We could make conventions governing
this; but we lose nothing by imposing our simple restriction.

The point of the restriction on the free variables should be clear. The
meaning of a formual or term should be determined once we assign values to
the free variables it contains. Call a free variable v unfettered in a formula
B or term t iff, for all free variables u(C) in B or t, respectively, v does not
occur in C. Suppose that v is fettered in F (v), e.g. F (v) is F (v, u(C(v))),
containing the variable u(C(v)). Then in ∀x F (x) = ∀x F (x, u(C(x))) the
expression u(C(x)) is no longer a variable, since C(x) is not a type. The
assignment of values to the free variables which occur in ∀x F (x, u(C(x)))
therefore does not determine its meaning.

From the point of view of logic, formulas denote propositions and a term
t of type A denotes a proof of A. Let the free variables in t which are not
in A have signs B, . . . , C. Then we say that t is a deduction of A from the
premises B, . . . , C. For example, the variable v(A) is a deduction of A from
the premise A (since v(A) cannot occur in A.) Note that when a variable
v(B) occurs in both t and in A, we do not on that account take B to be
a premise; for in this case, it is not the proof that depends upon the value
of v(B), but the proposition A itself. Of course, it could happen that there
are other variables of sign B in t which do not occur in A, so that B is
nevertheless a premise of the deduction.

Our definition of a deduction from premises has a somewhat odd conse-
quence which may be seen from the example of predicate logic. If D is the
domain of individuals, R is a predicate constant of sort D and v = v(D) is a
free individual variable, then there is a term t = λx :Rv x (to be introduced
below) of type Rv −→ Rv. Since t contains no free variables other than
v, which also occurs in Rv −→ Rv, it is a deduction of Rv −→ Rv with
no premises. On the other hand, (v, t) is of type ∃x :D [Rx −→ Rx] and,
according to our definition, is a deduction of this sentence from the premise
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D. But this deduction is generally regarded, except by the advocates of ‘free
logic’, to be an absolute deduction, i.e. without premises. So the theory of
types sides with free logic on this issue. On the other hand, on the model
theoretic conception of logic, we assume the domain of individuals to be non-
empty; and this amounts to taking D as a premise. In the general case, the
point to be made is that the inference from F (s) to ∃x :A F (x), when s :A,
may introduce a premise B. Namely this will happen if a free variable v(B)
in s is also in the deduction t of F (s) but no free variable of type B is in
∃x :A F (x). On the other hand, the inference to ∃x :A F (x) is not from F (s)
alone, as we are used to thinking in the case of predicate logic, but from A
and F (s). Since, by hypothesis, v(B) does not occur in ∃x : A F (x), it a
fortiori does not occur in A. Hence, B is already a premise of s. So no new
premises are really being introduced.

There is another oddity in the treatment of logic within the theory of
types that is connected with the fact, already noted, that in logic we are
generally not interested in the kinds or multiplicity of proofs that a propo-
sition has, but only in whether or not it has a proof. So from the point of
view of deductions, there is no need for more than one variable of each type.
A deduction of a sentence A containing two distinct variables of sign B is
simply a deduction of A from the premise B, and we might as well substitute
one of the variables of sign B for all of the others in the deduction. On the
other hand, when we think of the formulas as denoting types of objects and
the terms as denoting objects, then there isa significant difference between
the term t(u, v) containing two variables of sign B which can vary indepen-
dently of one another and the term t(v, v). We could eliminate this difference
between deductions in the usual sense and deductions in the theory of types
by requiring the premises of deductions in the former sense to be labelled—to
be indexed by numbers. Then the premise A with index n would correspond
to the variable vn(A).

By choosing a variable v(A) not occuring in B, we obtain the formulas

A −→ B := ∀x :A B A ∧B := ∃x :A B

Of course this notation hids the particular choice of the bound variable x
occuring in the formula; but this won’t matter, since we will not distinguish
between terms or formulas which can be obtained from one another by changes
(‘renaming’) of bound variables. A term will be of type ∀x :A F (x) just in
case it is of type ∀y :A F (y), providing that both are formulas; and similarly
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for ∃. It follows that we will pass from the formula F (v(A)) to ∀x :A F (x)
or ∃x :A F (x) without mentioning that x must not occur in F (v(A)), since,
if it did, we could always first rename the bound variables to comply with
the restriction.

Similarly, given the term t(v(A)) and formula F (v(A)), we may substitute
a term s of type A for v(A), yielding t(s) and F (s), respectively. If s contains
bound variables, we simply may first rename them to be different from any
bound variables in t(v(A)) or F (v(A)) before making the substitution.

Our definitions in the last two sections of P(A), s ∈A t, A←→ B, 〈A,B〉
and A∨B will carry over to the formal mode; but now they must be under-
stood, not as the definition of relations and operations, but as abbreviations
of formulas. For example, P(A) is just an abbreviation for A −→ 2, i.e. for
∀x :A.2.

We turn now to the construction of terms other than free variables. The
rules of construction of terms have the form of introduction and elimination
rules in the sense of Natural Deduction.

The Type 2
The 2-Introduction Rule is

> :2 ⊥ :2

The 2-Elimination Rule is

s :F (>), t :F (⊥), r :2⇒ [s, t, r]F (x) :F (r)

This rule expresses the fact that > and ⊥ are the only objects of type 2.
So, if F (>) and F (⊥) are true, then so is F (r) for all r : 2. For the sake of
brevity, we will generally drop the subscript F (x). Clearly we should have
[s, t, s] mean the same as s and [s, t, t] mean the same as t. We will express
this by means of the Conversion Rule

[s, t,>] CONV s [s, t,⊥] CONV t
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We now introduce the abbreviations

0 := T⊥ 1 := T>

Now we can introduce the abbreviation ¬A of A −→ 0.

The Type 0
There are no introduction rules for 0; but there is the 0-Elimination Rule

t :0⇒ N(A, t) :A

for every formula A. So, for every formula A and every terms t of type 0,
there is a term N(A, t) of type A.

The Type 1
The 1-Introduction Rule is

o :1

The 1-Elimination Rule is

s :F (o), t :1 ⇒ [s, t]F (x) :F (t)

for each formula F (v(1)). Again, we shall usually drop the subscript F (x)
when denoting this term. Clearly [s,o] should just be s. So we have the
conversion rule

[s,o] CONV s
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Universal Quantification
The ∀-Introduction Rule is this: Let V = v(A) be unfettered in F (v) and

in the term t(v). Then

t(v) :F (v)⇒ λx :A t(x) : ∀x :A F (x)

We have already discussed the necessity for requiring v to be unfettered in
F (v) in order to form ∀x : A F (x). The requirement that v be unfettered
in t(v) is precisely the familiar requirement that v not occur in any premise
in the deduction t(v) of F (v). For example, without this restriction, we
could construct the nonsense ‘deduction’ λx :A u(F (x)) from the deduction
u(F (v)) of F (v).

In the case of implication A −→ B, B = F (v) doesn’t contain v. t(v)
is a deduction of B and, if v actually occurs in t(v), then it is a deduction
of B from the premise A (among others possibly). Passing to the deduction
λx : A t(x) of A −→ B expresses the usual rule of −→-Introduction or
Deduction Theorem: given a deduction of A from the assumption v of A,
we may infer A −→ B, ‘discharging’ the assumption v. Discharging the
assumption v is expressed for us by binding the variable v.

Let f be a term of type ∀x : A F (x) and let s : A. Then f is intended
to denote a function defined on A and s an object of type A. We form the
term (fs) to denote the value of the function f for the argument s. Thus, we
write (fs) instead of the more usual f(s). When there will be no confusion,
we drop the parentheses and write fs. The rule of ∀-Elimination then is

f :∀x :A F (x), s :A ⇒ fs :F (s)

The type F (s) might itself be of the form ∀y :B G(y), so that fs denotes
a function defined on B. For t of type B we then write fst for (fs)t. In
general,

fst · · · r abbreviates (· · · ((fs)t) · · · r)
In the special case of A −→ B, in which F (v) = B does not contain v,

∀-Elimination takes the form of Modus Ponens or −→-Elimination

f :A −→ B, s :A ⇒ fs :B
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When f = λx :A t(x) :∀x :A F (x) and s :A, then clearly fs is to denote
the deduction of F (s) that we obtain from t(v) by substituting the object s
of type A for the variable v of type A. Thus, the meaning of fs is given by
the Conversion Rule

(λx :A t(x))s CONV t(s)

This is called the rule of λ-Conversion.

Existential Quantification
The rule of ∃-Introduction is

s :A, t :F (s) ⇒ (s, t)B :∃x :A F (x)

where B = ∃x : A F (x). The subscript is necessary to avoid ambiguity.
For example, we might have a formula G(v, v), where v = v(A) and F (v)
could be any of G(s, v), G(v, s) or G(v, v). s :F (s) would hold in each case
if it held in any of them. So, without the subscript, the type of (s, t) is
not determined. Nevertheless, when the context determines which formula
is involved, we shall drop the subscript and write simply (s, t).

A special case of ∃-Introduction is ∧-Introduction

s :A, t :B ⇒ (s, t) :A ∧B

Let p : ∃x :A F (x). Then p stands for a pair whose first member is an
object s of type A and whose second member t is of type F (s). If we denote
s by (p1) and t by(p2), then the rule of ∃-Elimination is simply

p :∃x :A F (x) ⇒ (p1) :A, (p2) :F ((p1))

From the explanation just given, we have the Conversion Rules

((s, t)1) CONV s ((s, t)2) CONV t

When it will cause no confusion, we will write p1 and p2 for (p1), (p2),
respectively. Also, we will extend the abbreviation

fst · · · r abbreviates (· · · ((fs)t) · · · r)

to the case in w hich some of the s, t, . . . , r are not terms, but 1’s and 2’s.
In the special case of A ∧B, we obtain the usual rule of ∧-Elimination:

p :A ∧B ⇒ p1:A, p2:B
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But in the general case, our version of ∃-Elimination is not the usual one.
For example, suppose that A is the domain of individuals and that p is a
deduction of the first-order formula ∃x :A F (x). Then p1:A. In other words,
from the deduction p we obtain an individual term p1. Moreover, p2 is a
deduction of F (p1). But this will not in general be a first-order formula.
The same observation applies to higher order predicate logic as well. The
theory of types does not fit in the framework of predicate logic. On the
other hand, as we shall see, Gentzen provided another form of ∃-Elimination
which does not lead outside the framework of predicate logic and such that
any first-order formula deducible in the theory of types will be deducible
using Gentzen’s form of ∃-Elimination.

There is one more rule of construction that we need, which occurs only
in classical logic and not in intuitionistic logic; namely the rule of ¬¬-
Elimination

t :¬¬A ⇒ D(t) :A

Terms t in which all occurrence of D are in parts of t of the form v(B),
will be called constructive or intuitionistic terms or deductions.

For handy reference, here is a list of the rules for constructing terms:

v(A) :A
t :0⇒ N(A, t) :A

s :F (o), t :1 ⇒ [s, t] :F (t)
> :2 ⊥ :2

r :2, s :F (>), t :F (⊥)⇒ [s, t, r] :F (r)
t(v(A)) :F (v(A))⇒ λx :At(x) : ∀x :AF (x)

f : ∀x :AF (x), s :A ⇒ fs :F (s)
s :A, t :F (s) ⇒ (s, t) : ∃x :AF (x)
p : ∃x :AF (x) ⇒ p1:A, p2:F (p1)

t :¬¬A⇒ D(t) :A
t :A,A ≡ B ⇒ t :B

where, in the case of λx :At(x), it is required that v(A) be unfettered in both
t(v(A)) and F (v(A)).

We have been glossing over a point that should now be made explicit:
Let v = v(A), s :A and let t(v) :F (v). We have been assuming that i) F (s),
the result of substituting s for v in F (v) is a formula and ii) t(s), the result
of substituting s for v in t(v), is a term of type F (s). The proof of this, by
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induction on F (v) and t(v), is routine.

4.4 Definitional Equality

Here is a list of the conversion rules:

(4.3) [s,o] CONV s

(4.4) [s, t,>] CONV s [s, t,⊥] CONV t

(4.5) λx :At(x)s CONV t(s)

(4.6) (s, t)1 CONV s (s, t)2 CONV t

The right- and left-hand terms in any instance of (4.4) have the same type
F (>) or F (⊥). This is true in the case of (4.5, too. If x :At(x) : ∀x :AF (x)
and s : A, then both λx : At(x)s and t(s) are of type F (s). In the case of
(4.6), (s, t)1 and s have the same type A, where (s, t) : ∃x : AF (x). But
(s, t)2 has the type F ((s, t)1) and t has the type F (s). So if they are to have
the same types, we must ensure that F ((s, t)1) ≡ F (s). However, that will
follow immediately from the following

Definition 10 (Definitional Equality) The relation ≡ is the least equiv-
alence relation between terms or formulas such that

s CONV t ⇒ s ≡ t

s ≡ t, A ≡ B ⇒ N(A, s) ≡ N(B, t)

s ≡ s′, t ≡ t′, F (v) ≡ G(v) ⇒ [s, t]F (x) ≡ [s′, t′]G(x)

s ≡ s′, t ≡ t′, r ≡ r′, F (v) ≡ G(v) ⇒ [s, t, r]F (x) ≡ [s′, t′, r′]G(x)

f ≡ g, s ≡ t ⇒ fs ≡ gt

s(v) ≡ t(v), A ≡ B ⇒ λx :A s(x) ≡ λy :B t(y)

s ≡ s′, t ≡ t′, F (v) ≡ G(v) ⇒ (s, t)F (x) ≡ (s′, t′)G(x)

s ≡ t ⇒ s1 ≡ t1, s2 ≡ t2
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s ≡ t ⇒ D(s) ≡ D(t)

s ≡ t ⇒ Rs ≡ Rt

and, if v is a variable of type A

A ≡ B,F (v) ≡ G(v) ⇒ ∀x :AF (x) ≡ ∀y :BG(y)

and
A ≡ B,F (v) ≡ G(v) ⇒ ∃x :AF (x) ≡ ∃y :BG(y)

Note that vn(A) ≡ vn(B) holds only when A and B are identical.
It easily follows from the definition that

Proposition 15 • If v is unfettered in s(v) and t(v), s(v) ≡ t(v), and
p ≡ q, then s(p) ≡ t(q).

• If v is unfettered in F (v) and G(v), F (v) ≡ G(v), and p ≡ q, then
F (p) ≡ G(q).

• Let s :A and t :B. Then s ≡ t implies A ≡ B.

It follows that each equivalence class C of terms is associated with an equiv-
alence class C ′ of formulas such that the types of each t ∈ C are precisely
the formulas in C ′.

Our aim now is to obtain an algorithm for deciding whether or not two
terms or formulas are definitionally equal.

Let v = v(A). We call a term v-less if it does not contain v. By a
maximal v-less part of a term t we mean an occurrence of a v-less term
in t which is not a proper part of an occurrence of another v-less term
in t. We may write t = T (t1, . . . , tn), where the ti : Ai are maximal v-
parts of t and T (v(A1), . . . , v(An)) contains no v-less parts and each variable
v(Ai) has just one occurrence in it. (So the ti are not necessarily distinct.)
We call T (t1, . . . , tn) the v-structure of t. If v does not occur in t, then
T (v(A1), . . . , v(An)) is just a variable, since t is the only maximal v-less part
of t.

Definition 11 The relations s RED t and s n − RED t between terms is
defined for n > 0 by

• s 1−RED s.
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• If s CONV t, then s 1−RED t.

• If s 1 − RED s′, t 1 − RED t′, and r 1 − RED r′, then N(A, s) 1 −
RED N(A, s′), [s, t] 1 − RED [s′, t′], [s, t, r] 1 − RED [s′, t′, r′] and
(s, t) 1−RED (s′, t′).

• Let T (s1, . . . , sn) be the v-structure of s(v), let si 1− RED ti for 0 <
i ≤ n and let t(v) = T (t1, . . . , tn). Then λxs(x) 1−RED λyt(y).

• If f 1−RED g and s 1−RED t, then fs 1−RED gt.

• If r1−REDs and sn−REDt, then rn+ 1−REDt.

• If s n−RED t for some n, then s RED t.

It is immediate that s REDt implies that s ≡ t.
By a simple term we shall mean one which is not of the form st, where

s is a term and t is either a term or is 1 or 2. So, using our convention for
dropping parentheses, every term is uniquely of the form

fst · · · r

where f is a simple term and s, t, . . . , r are all either 1’s, 2’s or terms.
In what follows, we just write N(t) for N(A, t) and λxt(x) for λx :At(x).

Lemma 11 If s′ is obtained from s by simultaneously replacing terms ti by
terms t′i, where ti 1−RED t′i, then s 1−RED s′.

The proof is by induction on s.
Case 1. s = s0s1 · · · sn and s′ = s′0s

′
1 · · · s′n, where n > 0 and each

substitution of a ti is in one of the sj. Then the result is immediate from the
induction hypothesis. So we can assume then that s is simple.

Case 2. s = λxp(x) and s′ = λxp′(x). Let T (p1, . . . , pk) be the v-structure
of p(v). Then the substitutions of the ti in s must be substitutions in the pj.
So p′ = T (p′1, . . . , p

′
k), where by the induction hypothesis, pj 1 − RED p′j.

Hence, by definition, s 1−REDs′.
Case 3. s is N(p), [p, q], [p, q, r], (p, q), p1, p2 or D(p). The result follows

immediately from the induction hypothesis.

Lemma 12 Let r CONV s and r 1−RED t. Then there is a term u such
that s 1−RE u and t 1−RED u.
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The proof is by induction on r.
If s = t, we have nothing to prove, so we assume that s and t are distinct.

It follows that t is not obtained from r by conversion.
Case 1. r = [s,o] and t = [s′,o]. Then u = s′.
Case 2. r = [s, p,>] and t = [s′, p′>]. Then u = s′.
Case 3. r = [p, s,⊥] and t = [p′, s′⊥]. Then u = s′.
Case 4. r = λxp(x)q, s = p(q) and t = λxp′(x)q′, where λxp(x) 1 −

RED λxp′(x) and q 1− RED q′. Then t 1− RED p(q′). We need to show
that s 1 − RED p′(q′) Let T (p1, . . . , pk) be the v-structure of p(v). Then
p′(v) = T (p′1, . . . , p

′
k), where pj 1 − RED p′j. The pj are all v-less and so

p′(q′) is obtained from p(q) by simultaneously replacing zero or more terms
by terms to which they 1-reduce. So by Lemma 11, s 1−RED p′(q′).

Case 5. r = (s, p)1 and t = (s′, p′)1, Then u = s′ suffices.
Case 6.Similarly for r = (p, s)2 and t = (p′, s′)2.

Lemma 13 Let r 1 − RED s and r 1 − RED t. Then there is a term u
such that s 1−RED u and t 1−RED u.

r
1−RED−−−−→ s

1−RED
y y1−RED

t −−−−→
1−RED

u

Proof by induction on r. Let r = r0 · · · rn, where r0 is simple. The 1-
reduction of r to s is called internal iff s = s0 · · · sn, where s0 is simple and
ri 1−RED si for each i. If the 1-reduction is not internal, we call it external.

Case 1. The 1-reductions of r to s and t are both internal, then s =
s0 · · · sn and t = t0 · · · tn, where ri 1-reduces to both si and ti for each i.
Assume n > 0. Then the induction hypothesis applies to yield, for each
i, a ui such that both si and ti 1-reduce to ui. Then s and t 1-reduce to
u = u0 · · ·un.

If n = 0, then r = r0 is a simple term o,>.⊥, N(r′), [r′, r′′], [r′, r′′, r′′′], (r′, r′′)
or λxr′(x) and the result follows easily by the induction hypothesis.

Case 2 Both 1-reductions are external. Then r0 · · · rk converts to some
r′, s = r′sk+1 · · · sn and t = r′tk+1 · · · tn. By the induction hypothesis, the is
a ui for each i > k such that si and ti 1-reduce to ui. So s and t 1-reduce to
r′uk+1 · · ·un.
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Case 3. One of the 1-reductions, say the 1-reduction of r to s, is external
and the other is internal. So r0 · · · rkCONV r′, s = r′sk+1 · · · sn, where ri1-
reduces to si for i > k, and t = t0 · · · tn, where ri 1-reduces to ti for each i. By
Lemma 12, r′ and t0 · · · tk 1-reduce to some u′. By the induction hypothesis,
si and ti 1-reduce to some ui for i > k. So s and t 1-reduce to u′uk+1 · · ·un.

Lemma 14 If r m− RED s and r n− RED t then there is a u such that
s n−RED u and t m−RED u.

Proof:

r = r11 −−−→ r12 −−−→ · · · −−−→ r1m = sy y y y
r21 −−−→ r22 −−−→ · · · −−−→ r2my y y y
... −−−→ ... −−−→ ... −−−→ ...y y y y

t = rn1 −−−→ rn2 −−−→ . . . −−−→ rnm = u

Corollary 9 (Church-Rosser Theorem) If r RED s and r RED t then
there is a u such that s RED u and t RED u.

Definition 12 The relation of subterm is the least reflexive relation between
terms such that

• s is a subterm of [s, t], [t, s], [s, r, t], [r, s, t], [r, t, s], (s, t), (t, s), s1 and s2.

• s is a subterm of λx :At(x) if it is a subterm of t(v), where v = vn(A)
for the least n such that vn(A) does not occur in t(x).

A term is called normal and is said to be in normal form iff it contains no
convertible subterms. If s RED t and t is normal, then t is called a normal
form of s. We can change the ‘a’ to ‘the’:

Corollary 10 (Uniqueness of normal form) Every term has at most one
normal form.
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We will prove later on that every term has a normal form.

Remark 8 Lemma 14 and the Church-Rosser Theorem do not depend on
type structure. Indeed, both were first proved for the abstract Lambda-Calculus
and the Theory of Combinators. The existence of normal form, however, de-
pends very much on type structure. For example, let t = λx(xx), a term
which could not carry any type structure. tt has no normal form, since it
converts and only converts to itself.

Definition 13 The class of terms in the formula A is defined by induction
on A.

• There are no terms in a type constant.

• The terms is Rt are the subterms of t.

• The terms in ∀x : AF (x) or ∃x : AF (x) are the terms in A or F (v)
(where v = vn(A) for the least n such that vn(A) does not occur in
F (x)).

A formula is said to be normal or to be in normal form iff it has no
convertible terms.

Definition 14 The relation A RED B between formulas is defined by

• A RED A

• s RED t ⇒ Rs RED Rt

• A RED B,F (v(A)) RED G(v(A) ⇒ ∀x :AF (x) RED ∀x :BG(x),∃x :
AF (x) RED ∃x :BG(x)

It is immediate that A RED B implies A ≡ B. B is called a normal form
of A iff B is normal and A RED B. It follows by induction on A from the
uniqueness of normal form for terms that

Corollary 11 Every formula has at most one normal form.

We now want to prove that every term has a normal form. The relation

s > t

86



is defined exactly as is s 1− RED t, except that the first clause (viz. s 1−
RED s) is dropped. In otherwords, s > t implies that some conversion takes
place in obtaining t from s. This of course does not mean prima facie that
s > s cannot ever hold. We just considered an example where it does hold
in the abstract Lambda-Calculus. But we will prove that it does not happen
in type theory. Call a term t well-founded iff there are no infinite sequences

t = t0 > t1 > t2 > · · ·

We will prove that every term is well-founded.

Definition 15 We define the notion of a computable term of type A by
induction on A.

• A term of atomic type is computable iff it is well-founded.

• A term f of type ∀x :AF (x) is computable iff ft is a computable term
of type F (t) for every computable term t of type A.

• A term p of type ∃x :AF (x) is computable iff p1 is a computable term
of type A and p2 is a computable term of type F (p1).

We define the notion of a c-extension of a term t of type A by induction on
A. If A is atomic, then t is the only c-extension of t. If A = ∀x :BF (x), then
the c-extensions of t are precisely the c-extensions of ts for all computable
terms s :B. If A = ∃x :BF (x), then the c-extensions of t are precisely the
c-extensions of t1 and t2. So the c-extensions of t are all the terms of atomic
type of the form ts1 · · · sn where the si are either 1, 2 or are computable. t is
computable iff all of its c-extensions are computable and hence well-founded.

The rank |A| of a formula A is defined as follows: For atomic formulas A,
set |A| = 0 and set |∀x :BF (x)| = |∃x :BF (x)| = Max{|B|, |F (v)|}+ 1.

Lemma 15 For each type A

a) Every variable v of type A is computable.

b) Every computable term of type A is well-founded.

c) If s is a computable term of type A and sREDt, then t is computable.

87



The proof is by induction on |A|.
a) We need to show that all c-extensions s = vs1 · · · sn of v are well-

founded. The si which are terms are of types of rank < |A| and so, by
the induction hypothesis, are well-founded. It immediately follows that s is
well-founded.

b) Let s be computable and consider the c-extension t = ss1 · · · sn of s. t
is computable and hence well-founded. So s must be well-founded.

c) We need to show that all c-extensions tt1 · · · tn of t are well-founded.
But if such a term were not well-founded, then neither would the c-extension
st1 · · · tn of s be, contradicting the computability of s.

It follows from b) that in order to prove that every term is well-founded,
it suffices to prove that every term is computable. By an c-instance of a term
t we will mean any result of replacing the variables in t by computable terms
of the same type. (So by a) above, t is a c-instance of itself.)

Theorem 7 (Computability Theorem) Every c-instance of a term t is
computable.

The proof is by induction on t. If t is a variable, this is immediate. If it is
a constant, then it is of atomic type and, being well-founded, is computable.
If t = rs, then by the induction hypothesis, the c-instances of r and s are
computable. So any c-instance of t is computable by definition. Similarly, if
t = s1 or t = s2, where s is computable. So we need only consider terms t
of the form [r, s], [p, r, s], (r, s) or λx :As(x).

Let t′ be a c-instance of t. Consider any c-extension p = t′t1 · · · tn of t′.
We need to show that p is well-founded. Consider a sequence

(4.7) p = p0 > p1 > · · ·

We have to show that (4.7) is finite. In order to simplify notation, we
will agree to write 1 > 1 and 2 > 2.

Let t = N(A, s) and t′ = N(A′, s′). Then every term in the sequence is
of the form N(A′, q)q1 · · · qn, where s′ RED q and ti RED qi for 0 < i ≤ n.
By the induction hypothesis, s′ is computable and the terms among the ti
are computable; Hence the sequence is finite.

Let t = [r, s] and t′ = [r′, s′]. By the induction hypothesis, r′ and s′

are computable. Suppose that every term in the sequence is of the form
[q, q′]q1 · · · qn, where r′ RED q, s′ RED q′ and ti RED qi for 0 < i ≤ n.
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Then the sequence is finite because r′, s′ and all the terms in the list t1 · · · tn
are computable. The other alternative is that some term in the sequence is of
the form [q,o]q1 · · · qn, where r′ > q, s′ RED o and ti RED qi for 0 < i ≤ n,
and the next term is qq′1 · · · q′n, where qi RED q′i for 0 < i ≤ n. . Then the
sequence is finite because q, q′1, . . . q

′
n are.

The argument in the case of t = [r, s, t] is exactly the same.
Let t = (r, s) and t′ = (r′, s′). Suppose that every term in the sequence

is of the form (q, q′)q1 · · · qn, where r′ > q, s′ > q′ and ti > qi for 0 < i ≤ n.
Then the sequence is finite because r′, s′ and all the terms in the list t1 · · · tn
are computable. The other alternative is that n > 0, t1 = q1 is either
1 or 2 and some term in the sequence is of the form (q, q′)q1 · · · qn, where
r′ > q, s′ > q′ and ti > qi for 0 < i ≤ n, and the next term is qq′2 · · · q′n or
q′q′2 · · · q′n (depending on whether t1 is 1 or 2), where qi > q′i for 1 < i ≤ n.
Then the sequence is finite because q, q′, q′1, . . . q

′
n are.

Finally, let t = λxs(x) (dropping the type for the sake of brevity). Then
t′ = λxs′(x). Suppose that every term in the sequence is of the form
λxq(x)q1 · · · qn, where s′(v) > q(v) and ti > qi for 0 < i ≤ n. Then the
sequence is finite because s′ and all the terms in the list t1 · · · tn are com-
putable. Otherwise, n > 0 and there will be a term λxq(x)q1 · · · qn in the
sequence, where s′(v) > q(v) and ti > qi for 0 < i ≤ n, and where the
next term in the sequence is s′(q1)q′2 · · · q′n, where qj > q′j for 1 < j ≤ n. In
that case the sequence is finite by the induction hypothesis because s(q1) is
a c-instance of s(v).

Corollary 12 (Well-foundedness Theorem) Every term is well-founded
and, therefore, has a (unique) normal form.

Moreover, we can effectively compute the normal form of any term or
formula. We now want to use these facts to obtain the promised algorith for
deciding whether or not two terms of formulas are definitionally equal.

Definition 16 We define the strong normal form of a term or formula.

SNF (t) SNF (A)

will denote, respectively, the strong normal form of t and the strong normal
form of A. For t and A non-normal, we define SNF (t) and SNF (A) to
be the strong normal forms of their normal forms, respectively. So in the
following, we are assuming the terms and formulas to be in normal form
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• If t is a variable or constant, SNF (t) = t.

• SNF (N(A, t)) = N(SNF (A), SNF (t)).

• SNF ([s, t]F (x) = [SNF (s), SNF (t)]SNF (F (x), where SNF (F (x)) de-
notes the result of replacing v by x in SNF (F (v)).

• SNF ([r, s, t]F (x) = [SNF (r), SNF (s), SNF (t)]SNF (F (x).

• SNF ((s, t)F (x) = (SNF (s), SNF (t))SNF (F (x).

• SNF (λx :At(x)) = λx :SNF (A)SNF (t(x)).

• SNF (p1) = SNF (p)1 and SNF (p2) = SNF (p)2.

• SNF (st) = SNF (s)SNF (t)

• If A is a type constant, SNF (A) = A.

• SNF (Rt) = RSNF (t).

• If Q is a quantifier, SNF (Qx :AF (x)) = Qx :SNF (A)SNF (F (x)).

It is easy to prove that SNF (t) and SNF (A) are normal. When SNF (t) =
t and SNNF (A) = A, we say that t and A are in strong normal form.

Now, let s ∼ t mean SNF (s) = SNF (t) and let A ∼ B mean SNF (A) =
SNF (B). It is easy to show that s ∼ t implies s ≡ t and that A ∼ B implies
A ≡ B. Conversly, ∼ satisfies the conditions

s CONV t ⇒ s ∼ t

s ∼ t, A ∼ B ⇒ N(A, s) ∼ N(B, t)

s ∼ s′, t ∼ t′, F (v) ∼ G(v) ⇒ [s, t]F (x) ∼ [s′, t′]G(x)

s ∼ s′, t ∼ t′, r ∼ r′, F (v) ∼ G(v) ⇒ [s, t, r]F (x) ∼ [s′, t′, r′]G(x)

f ∼ g, s ∼ t ⇒ fs ∼ gt

s(v) ∼ t(v), A ∼ B ⇒ λx :As(x) ∼ λy :Bt(y)

s ∼ s′, t ∼ t′, F (v) ∼ G(v) ⇒ (s, t)F (x) ∼ (s′, t′)G(x)

s ∼ t ⇒ s1 ∼ t1, s2 ∼ t2

s ∼ t ⇒ D(s) ∼ D(t)
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s ∼ t ⇒ Rs ∼ Rt

and, if v is a variable of type A

A ∼ B,F (v) ∼ G(v) ⇒ ∀x :AF (x) ∼ ∀y :BG(y)

and
A ∼ B,F (v) ∼ G(v) ⇒ ∃x :AF (x) ∼ ∃y :BG(y)

So, since ≡ is defined to be the least equivalence relation satisfying these
conditions, ≡ and ∼ are the same relation. It immediately follows that

Proposition 16 The relation of definitional equality between terms or for-
mulas is decidable.

Since the rules of conversion s CONV t do not introduce variables in t
which are not in s, every variable in the strong normal form of t or A already
occured in t or A, respectively. It easily follows by induction on t that

Proposition 17 If t :A and A is in strong normal form, then every variable
in A is in t.

If t is a constant, then A contains no variable. If t = v(B), then
SNF (B) = A and so every variable in A is in B and so in t.

If t = [r, s]F (x), then A = SNF (F (s)) and the result is immediate from
the induction hypotheis. The case of the other simple terms is exactly the
same. Let t = rs, where r : ∀x :BF (x) and s :B. Then A = SNF (F (s) and
again the result follows immediately by the induction hypothesis.

It follows, in particular, that every closed term has a closed type.

Remark 9 Definitional equality is a metamathematical relation between terms
(or formulas). Two definitionally equal terms are intended to denote the
same object; so that, put in the material mode of speach, definitional equal-
ity becomes the identity relation between objects. Better, when we speak of
objects or types, we are speaking of closed terms or formulas (i.e. with-
out free variables) modulo the relation of definitional equality. Of course,
equivalently we could be speaking about closed terms and formulas in strong
normal form. Definitional equality differs from the mathematical relation of
extensional equality which we will later define. Distinct objects may be ex-
tensionally equal. Definitional equality is a decidable relation between terms,
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extensional equality is not. Frege’s problem, discussed in his ”Sense and
reference,” arises from his (characteristic) confusion of identity with exten-
sional equality. Identity is not a relation between terms (as he supposed in
his Begriffsschrift); rather it is obtained by abstraction from a relation be-
tween terms, namely that of definitional equality.) But the question of the
identity of objects presented by two terms is trivially answered, or at least is
decidable, since it is just the question of whether the two terms are defini-
tionally equal. But the question of whether the objects presented by the two
terms are mathematically equal, i.e. extensionally equal, may be a nontrivial
mathematical question.

Nevertheless, a small question remains about the identity relation. Def-
initional equality between two terms is determined by the conversion rules.
But what is special about these particular rules? We could, for example in-
troduce the further conversion rules that reflect on the intended meaning of
the operations. For example, that > and ⊥ are the only objects of type 2 may
be expressed by the fact that a function f of type ∀x :2F (x) is determined by
its values f> and f⊥. We may express this by

[fT, fT, r] CONV fr

Again, let f be of type ∀x :AF (x). Then λx :Afx is of the same type;
and clearly we should have them extensionally equal. Why not the conversion
rule

λx :Afx CONV f

Again, when p is of type ∃x :AF (x), then the pair (p1, p2) has this type
also, and clearly should be extensionally equal to p. So why not

(p1, p2) CONV p

The addition of these conversions would preserve the validity of the Church/Rosser
Theorem and the Well-foundedness Theorem. Is there something special
about the conversion relations thast we have introduced or is the relation of
identity really a somewhat arbitrary notion? Of course, the question is irrel-
evant to mathematical practice, since it is the relation of extensional equality
rather than identity that plays a role there.

It should be noted that the option does not exist to take identity in the
widest possible sense and treat extensionally equal terms as denoting the same
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object. Otherwise, if t is a term of type Ts and r is extensionally equal to s,
then we would have to regard t as denoting an object of type Tr. But then
the question of whether or not the object denoted by t is of type Tr would
depend upon a proof that s and r are definitionally equal. But as we have
noted, the ’proposition’ that t is of type A is to be singular and outside the
domain of mathematical propositions in the proper sense of requiring proof.

4.5 Some Theorems of Logic

Recall that a term of type A whose free variables other than those in A are
of signs B, . . . , C is called a deduction of A from the premises B, . . . , C. (Of
course, some of these premises may be definitionally equal.) From now on,
we shall want to speak of deductions of A simpliciter, i.e. one which has
no premises, i.e. contains no variables not in A. We call such deductions
absolute.

From now on, we shall assume that the signs of all variables are in strong
normal form. This is of course no real restriction: Simple replace distinct
variables V (Ai) in terms or formulas by distinct variables whose signs are
the strong normal forms of Ai.

Let t be a deduction of A, where A is in strong normal form. If t contains
any variables, then it contains an unfettered one; choose one v of sign C,
where, by our recent agreement, C is in strong normal form. Since every
variable occuring in A occurs in t, v is unfettered in A. (Of course, it might
not occur in A.) Write t = t(v) and A = F (v), displaying the occurrences of
v. Then t′ = λy :Bt(y) is a deduction of A′ = ∀y :CF (y) and is absolute if
t is. Note that A′ is in strong normal form. If t′ contains a variable, then it
contains an unfettered one, u of some sign B in strong normal form. Writing
t′ = λy :C(u)t(u, y) and A′ = ∀y :C(u)F (u, y) to display occurrences of u,
we have t′′ = λx :Bλy :C(x)t(x, y) of type ∀x :B∀y :C(x)F (x, y), and t′′ is
absolute if t is.

A list of variables v1, . . . , vn of signs A1, . . . , An, respectively, is said to be
in good order iff 0 < i < j ≤ n implies that vj does not occur in Ai. Suppose
that this list included all the free variables in the term t = t(v1, . . . , vn of type
A = F (v1, . . . , vn), where A is in strong normal form and we are displaying
all the occurrences of the variables in t and so in A. Remembering that the
list of vi is in good order, we may write Ai = Ai(v1, . . . , vi−1) displaying all
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the occurrences of variables in Ai. Then t′ =

λx1 :A1λx2 :A2(x1) · · ·λxn :An(x1, x2, . . . , xn−1)t(x1, x2, . . . , xn)

is a deduction of the universal closure

∀x1 :A1∀x2 :A2(x1) · · · ∀xn :An(x1, x2, . . . , xn−1)F (x1, x2, . . . , xn)

of A. t′ is absolute if t is.
The rule of ∀-Introduction is exactly the generalization of the rules of ∀-

Introduction and −→-Introduction in Natural Deduction for first-order pred-
icate logic to the theory of types. The rule of ∀-Elimination differs from the
Natural Deduction formulation in that in the latter case, there is just the one
premise f :∀xF (x) and the conclusion ft :F (t) for a given individual term t.
Of course the type of x needn’t appear, since there is only one type of vari-
ables in first-order logic: the type D of individuals. Also, the individual terms
(‘deductions’ of D) are given once and for all, so that our second premise
t :D is not necessary. Of course, in the special case of −→-Elimination, our
form of the rules is exactly the Natural Deduction form, namely the rule of
Modus Ponens.
∃-Introduction is again exactly the same as in type theory as in Natural

Deduction, both for the quantifier ∃ and for ∧. On the other hand, our rule
of ∃-Elimination, namely the operations p1 and p2, although the same as in
Natural Deduction for the case of ∧, is radically different in the case of ∃.
Indeed, if p : ∃x :AF (x), where v actually occurs in F (v), then even when
∃x :AF (x) is a first-order formula (with A the type of individuals), the type
F (p1) of p2 is not a first-order formula. Existential quantifiers elimination
in Natural Deduction is essentially

f : ∀x :D[F (x) −→ B], p : ∃x :DF (x) ⇒ {f, p} :B

where does not occur in B. We can of course define the operation {f, p}.
Namely, {f, p} = f(p1)(p2).

But the type theoretic form of ∃-Elimination yields a principle of logic
not derivable in predicate logic of any order, viz. the Principle of Choice

∀x :A∃y :BG(x, y) −→ ∃z : (A −→ B)∀x :AG(x, zx)

For let v be a variable of type ∀x :A∃y :BF (x, y). Set f(v) = λx :Avx1
and g(v) = λx :Avx2. Then (f(v), g(v)) is a deduction of ∃z : (A −→ B)∀x :
AG(x, zx) and so

λx′ : [∀x :A∃y :BF (x, y)](f(x′), g(x′))
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is the required absolute deduction.

Remark 10 The Principle of Choice was absolutely deduced constructively,
i.e. without using Double Negation Elimination. Also we can constructively
and absolutely deduce

∀x :A¬F (x)←→ ¬∃x :AF (x)

and so by contraposition

¬∀x :A¬F (x)←→ ¬¬∃x :AF (x)

So, in the classical system, using ¬¬-Elimination, we have ∃ ←→ ¬∀¬. So
from Choice we have

∀x :A¬∀y :B¬G(x, y) −→ ¬∀z : (A −→ B)¬∀x :AG(x, zx)

in the classical system. Providing that G(u, v) does not contain ∃, this quan-
tifier does not occur in the formula at all: it is expressed entirely in terms
of ∀ and 0 and the logical constants in G(u, v). Yet the formula cannot be
deduced in the fragement of the theory of types obtained by dropping ∃.

The principle of double negation elimination is derivable in constructive
logic in some cases.

Definition 17 A formula A is called stable iff ¬¬A −→ A is constructively
absolutely deducible.

Proposition 18 a) 2 is stable.

b) Ts is stable for all terms s :2.

c) ¬¬∀x :AF (x) −→ ∀x :A¬¬F (x) is constructively absolutely deducible.
Hence, if F (v) is stable, then so is ∀x :AF (x).

d) ¬¬(A ∧ B) −→ (¬¬A and ¬¬(A ∧ B) −→ ¬¬B) are constructively
absolutely deducible. So A ∧B is stable if both A and B are.

Proof. First, we note that:
I. If f : A −→ B, then f ′ = λx :¬Bλy :Ax(fy) is a deduction of ¬B −→ ¬A.
Hence, iterating once more, f ′′ is a deduction of ¬¬A −→ ¬¬B.
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II. If f :A −→ B and g :B −→ C, then g ◦ f = λx :Ag(fx) is a deduction of
A −→ C.
III. If f :B −→ ∀xoftypeAF (x) and g :∀x :A[F (x) −→ G(x)] then λz :Bλx :
A[gx ◦ fx] is a deduction of B −→ ∀x :AG(x).

Now we prove the proposition.
a) λx :¬¬2> is a deduction of ¬¬2 −→ 2.
c) The second part of c) follows from the first using III. To prove the first

part: Let v be of type A. λz[∀x :AF (x)]zv is of type ∀x :AF (x) −→ F (v).
So ¬¬∀x : AF (x) −→ ¬¬F (v) has a deduction t(v) by I. So λz : [¬¬∀x :
AF (x)]λy : Af(y)z is a deduction of ¬¬∀x : AF (x) −→ ∀x : A¬¬F (x). b)
s = λx : ¬¬T>.o is a deduction of ¬¬T> −→ T>. t = λx : ¬¬0[x(λy :
0N(0, y) is a deduction of ¬¬T⊥ −→ T⊥. So, if F (v) = ¬¬Tv −→ Tv,
then [s, t, r]F (x) is a deduction of ¬¬Tr −→ Tr.

d) λx : A ∧ Bx1 is a deduction of A ∧ B −→ A and λx : A ∧ Bx2 is a
deduction of A∧B −→ B. So by I we have the deductions of ¬¬(A∧B) −→
(¬¬A and ¬¬(A ∧ B) −→ ¬¬B). By II, if A and B are stable, we then
obtain deductions s and t of ¬¬(A ∧ B) −→ A and ¬¬(A ∧ B) −→ B). So
λx :¬¬(A ∧B)(sx, tx) is the required deduction of ¬¬(A ∧B) −→ (A ∧B).

Remark 11 Note that the proof of d) that the stability of A and B implies
the stability of ∃x :AB does not extend to the general case ∃x :AF (x), where
v occurs in F (v). A and F (v) may be stable without ∃x :AF (x) being stable.
Indeed, that is why there is adifference between classical and constructive
logic.

If s :A and t :B, then (λx :At, λx :Bs) is a deduction of A ←→ B and
(λx :¬Axs, λx :0N(¬A, x)) is a deduction of ¬A←→ 0. In particular, there
are deductions of

(4.8) ¬0←→ 1 ¬1←→ 0

(λx :Aλy :1x, λx : (1 −→ A)xo) is a deduction of

(4.9) A←→ (1 −→ A)

Recall the abbreviation

〈A,B〉s := (Ts −→ A) ∧ (¬Ts −→ B)
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when s :2. Thus

〈A,B〉> := (1 −→ A) ∧ (¬1 −→ B)

〈A,B〉⊥ := (0 −→ A) ∧ (¬0 −→ B)

By (4.8) and (4.9) therefore, there are deductions

IAB :〈A,B〉> ←→ A IIAB :〈A,B〉⊥ ←→ B

We defined
A ∨B := ∃x :2〈A,B〉x

So λx : A(>, IAB2x) and λx : B(⊥, IIAB2x) are, respectively, deductions of
the usual ∨-Introduction rules

A −→ A ∨B B −→ A ∨B

λx :Aλy :¬Bλz :Ay(xz) is a deduction of

(A −→ B) −→ (¬B −→ ¬A)

So by ∨-Introduction we have deductions s and t of

¬(A ∨ ¬A) −→ ¬A ¬(A ∨ ¬A) −→ ¬¬A

So r = λx :¬(A ∨ ¬A)(tx)(sx) is a deduction of

¬¬(A ∨ ¬A)

Note that this deduction is constructive. But now, using Double Negation
Elimination, we obtain the Law of Excluded Middle

A ∨ ¬A

So in classical logic, for any formula F (v), where v is a variable of type
A, there is a deduction of F (v) ∨ ¬F (v) and so there is a deduction

p : ∀x :A[F (x) ∨ ¬F (x)]

Let f = λx :A(px1) and g = λx :A(px2). Then f :A −→ 2 = P(A). Let
u :A. Then gu is a deduction of 〈F (u),¬F (u)〉(fu) =

[T(fu) −→ F (u)] ∧ [¬T(fu) −→ ¬F (u)
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From the second conjunct, in classical logic, we obtain a deduction of F (u) −→
T(fu) Recalling that uεAf is T(fu), we thus have a deduction r(u) of

uεAf ←→ F (u)

So (f, λx :Ar(x)) is a deduction of the Comprehension Principle

∃z :P(A)∀x :A[xεz ←→ F (x)

We can denote f by
{x :A | F (x)}

Thus every formula F (t) is equivalent in classical logic to one of the form
tε{x :A | F (x)}, i.e. T({x :A | F (x)}t).

Remark 12 The Comprehension Principle follows from the Law of Excluded
Middle. The converse is also true: Let B be any formula. Using the Com-
prehension Principle, there is a b : P(2) such that T(b⊥) ←→ B. Hence,
¬¬T(b⊥) ←→ ¬¬B. But by Proposition ??, ¬¬T(b⊥) −→ T(b⊥) and so
¬¬B −→ B.

4.6 The Theory of Arithmetical Types

We introduce the constant N to denote the type of the natural numbers.
The rules of N-Introduction are

0 :N

t :N ⇒ S(t) :N

0 is intended to denote the least natuiral number and λx :NS(x) the successor
function. We will write 1 = S(0), 2 = S(1), etc. The rule of N-Elimination
is

s :F (0), g :∀x :N[F (x) −→ F (S(x))], t :N ⇒ R(s, g, t) :F (t)

Note that R(s, g, 0) and s have the same type F (0) and gtR(s, g, t) is of the
same type as R(s, g, S(t)). In fact, the primitive recursion operator R =

λx :F (0)λy : (∀u :N[F (u) −→ F (S(u))])λz :NR(x, y, z)
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is defined by the conversion rules

R(s, g, 0) CONV s R(s, g, S(t)) CONV gtR(s, g, t)

These rules express the principle of primitive recursive definition. Note that
R is of type

F (0) −→ [∀x :N[F (x) −→ F (S(x))] −→ ∀x :NF (x)]

i.e. the axiom schema of Mathematical Induction for F (x). Of corse, R is
not in general closed, since it contains all free variables in F (x).Taking F (x)
to be x ∈N v, where v is a variable of type P(N), λy :P(N)R is a deduction
of the second-order Axiom of Mathematical Induction:

∀y :P(N){0 ∈ y −→ [∀x :N[x ∈ y −→ S(x) ∈ y] −→ ∀x :Nx ∈ y]}

Using the Comprehension Principle, each instance of the axiom schema of
induction can be derived from the axiom.

We extend the notion of definitional equality to arithmetic types by
adding the clause

s ≡ s′, g ≡ g′, t ≡ t′ ⇒ R(s, g, t) ≡ R(s′, g′, t′)

Let s : B and g : B −→ B. Then taking h = λx : Ng, F (x) ≡ B and
f = λx :NR(s, h, x), we have the principle of definition by iteration

f0 ≡ s fS(t) ≡ g(ft)

We want to deine the formula v =N u, where v and u are variables of type
N. First, we define the predecessor function Pr by iteration:

Pr0 ≡ 0 PrS(t) ≡ t

Again by iteration we define the function s− t, which denotes subtraction of
t from s when t ≤ s and has the value 0 otherwise:

s− 0 ≡ s s− S(t) ≡ Pr(s− t)

Addition is defined as usual by the iteration

s+ 0 ≡ s s+ S(t) ≡ S(s+ t)
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The meaning of s =N t should be (s− t) + (t− s) ≡ 0. So define

θ0 ≡ > θS(t) ≡ ⊥

Then we may define

u =N v := θ[(u− v) + (v − u)]

The usual axioms of identity
v =N v

v =N u ∧ v =N w −→ v =N w

as well as Dedekind’s axioms

¬S(t) =N 0

S(s) =N S(t) −→ s =N t

are deducible using mathematical induction. We will drop the subscript N
in =N from now on when no consusion will result (i.e. when it is clear that
we are talking about a formula and not about two terms being identical).
Note that a deduction of s = s is at the same time a deduction of s = t
when s ≡ t. And so we also have as formulas the principle of definition by
primitive recursion:

R(s, g, 0) = s R(s, g, S(t)) = gtR(s, g, t)

The proofs of the Church-Rosser Theorem and the Well-Foundedness
Theorem extend easily to the theory of arithmetical types. The definition of
1-reduction needs to be extended by adding the clause

s 1−RED s′, g 1−RED g′, t 1−RED t′ ⇒ R(s, g, t) 1−RE R(s′, g′, t′)

Otherwise the definitions of n−RED and RED are the same. To extend the
proof of the Church-Rosser Theorem, it suffices to extend the proof of Lemma
12 to the theory of arithmetic types. So let r CONV s and r 1 − RED t,
where s and t are distinct. We need a u such that s and t 1−RED u. The
only new case is where r is R(s, q, 0) or R(p, q, S(o) and in the second case s is
qoR(p, q, o). In the first case, t is R(s′, q′, 0) and so u can be s′. In the second
case, t is R(p′, q′, S(o′)) and so u can be q′o′R(p′, q′, o′). The remainder of the
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proof of the Church-Rosser Theorem and the consequence that every term
and formula has at most one normal form goes through unchanged.

The definition of a computable term of type A is unchanged. The only
modification of the proof of the Computability Theorem is that we have to
add the case of terms of the form R(s, g, t), where we are assuming that
all c-instances of s, g and t are computable. Clearly it suffices to prove
that R(s, g, t) is computable if s, g, and t are. So assume the latter. So
t is well-founded and therefore has a unique normal form t’. t′ has the
form S(S(· · · (S(r)) · · · )), with some m ≥ 0 nested initial occurrences of S’s,
which we call the S-number of t. We prove by induction on m that R(s, g, t)
is computable. Let p = R(s, g, t)t1 · · · tn be a c-extension of R(s, g, t). We
need to show that every sequence

p = p0 > p1 > · · ·

is finite.
Case 1. Every term in the sequence is obtained by internal reduction of

the preceding term and so is of the form R(s”, g′, t′)t′1 · · · t′n, the result is im-
mediate from the computability and hence well-foundedness of s, g, t, t0, . . . , tn.

Case 2 Some term in the sequence is R(s′, g′, 0)t′1 · · · t′n and the next term
is s′t′′1 · · · t′′n. Since s′ and therefore s′′ is computable, then sequence then has
to be finite.

Case 3. Some term of the sequence is R(s′, g′, S(t′))t′1 · · · t′n and the next
term is g′t′R(s′, g′, t′)t′′1 · · · t′′n. But t′ has the S-number m− 1 and so by the
induction hypothesis, s′, g′, t′, R(s′, g′, t′), t′′1, . . . , t

′′
n are all computable. The

finiteness of the sequence follows.
The definition of strong normal form extends to arithmetical terms and

formulas by adding the clause

SNF (R(s, g, t)) = R(SNF (s), SNF (g), SNF (t))

when R(s, g, t) is in normal form. The proof that the relation of definitional
equality is decidable now goes through as before.

4.7 Variable-Free Formalization of Type The-

ory

The reduction of the lambda calculus to the theory of combinators in [Schönfinkel,
1924] applies to positive implicational logic, i.e. to the typed lambda cal-
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culus, where the types are built up from atomic types by means of the
operation A −→ B, to show that the lambda operator can be eliminated
in favor of combinators K and S of each type A −→ (B −→ A) and
(A −→ (B −→ C)) −→ ((A −→ B) −→ (A −→ C)), respectively.(This
observation is essentially contained in the discussion of the so-called theory
of functionality in Chapters 9 and 10 of [Curry and Feys, 1958].) We will
extend that result to the theory of types. To extend the treatment of −→
to ∀ we shall need a generalized form of the combinators K and S, and
to deal with ∃ we will need to introduce a new form of the combinator S
(whose type turns out to be a general form of the Axiom of Choice). But
also in the present context, if we are to eliminate variables, then not only
the lambda operator for forming terms, but also quantification as a variable-
binding operation for forming formulas must be analyzed away; so we will
need an analogue of the combinators for formulas.

As usual, we shall write st for the value s(t) of the function s for the
argument t; so rst is (r(s))(t), etc.

Let v be a free variable of type A. We wish to rewrite the formulas B(v),
∀x :A.B(x) and ∃x :A.B(x), respectively, as B′v, ∀B′ and ∃B′, where B′ is a
type-valued function on A. If t(v) is a term of type B(v), which we express
by

t(v) :B(v)

then λx :A.t(x) is a term of type ∀x :A.B(x), denoting a function on A whose
value for s :A is t(s) :B(s). We wish to rewrite the terms t(v), λx :A.t(x),
respectively, as t′v :B′v and t′ :∀B′. Thus, a two-quantifier formula

Q1x :AQ2y :B(x).C(x, y)

where Q1 and Q2 are quantifiers, is to be rewritten as

Q1x :AQ2y :B(x).C(x)′y

or
Q1x :AQ2y :B′x.C ′′xy

or simply
Q1Q2C

′′

C ′′ is a function defined on A such that C ′′s is a type-valued function defined
on B′s for all s : A. Let u and v be free variables of types A and B(u),
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respectively. A term t(u, v) of type C(u, v) should be rewritten as t′′uv,
where t′′ is of type ∀∀C ′′.

To discuss the general case, we need a definition.

Definition 18 The notion of a base of functionals is defined by induction:

• The null sequence is a base.

• If A is a type and ψ1, . . . , Fn are functions defined on A such that, for
each t :A, 〈F1t, . . . , Fnt〉 is a base, then the sequence 〈A,F1, . . . , Fn〉 is
a base.

When 〈A,F1, . . . , Fn〉 is a base, the base 〈A,F1, . . . , Fn−1〉 is uniquely deter-
mined by the functional Fn. As an example, in the two-quantifier example
above, 〈A,B′, C ′′〉 is a base. More generally, an n-quantifier formula

(4.10) Q1x1 :A1 Q2x2 :A2(x1) · · ·Qnxn :An(x1, . . . , xn−1).B(x1, . . . , xn)

is to be rewritten as

Q1x1 :A1 Q2x2 :A′2x1 · · ·Qnxn :A(n−1)
n x1 · · · xn−1.B

(n)x1 · · · xn

where 〈A,A′2, . . . A
(n−1)
n , B(n)〉 is a base, or simply as

Q1 · · ·QnB
(n).

If v1, v2, . . . , vn are free variables of types A1, A2(v1), . . . , An(v1, . . . , vn), re-
spectively, then a term t(v1, v2, . . . , vn) of type B(v1, v2, . . . , vn) is to be
rewritten as t(n)v1v2 · · · vn, where t(n) is of type ∀∀ · · · ∀B(n).

In order to carry out this analysis, we need to introduce a formalism
in which we can represent functionals and objects which depend upon free
variables.

4.7.1 The Calculus

We must simultaneously define three notions:

• The notion of a base of formulas.

– Bases are finite sequences whose members are called formulas.
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– If 〈~F ,G〉 is a base, then ~F is called the base of G and denoted by
Base(G).

– When 〈A〉 is a base, A is called a (formula) type.

– A base of formulas is intended to denote a base of functionals for
suitable values of the free variables.

– With a formula we may associate a rule of conversion, which spec-
ifies the meaning of the formula. FCONV G means that the for-
mula F converts to the formula G according to the rules of con-
version.

• The notion of a term of type A, where A is a type.

– That t is a term of type A is expressed by t :A.

– With a term we may associate a rule of conversion, which specifies
the meaning of the term. sCONV tmeans that the term s converts
to the term t according to the rules of conversion.

• The notion of definitional equality between two terms or between two
functionals.

– We denote this relation by ≡.

– We may specify at once that, for terms s and t, s ≡ t is defined to
mean s RED r∧ t RED r for some r, where the relation RED is
defined in terms of the rules of conversion: call an occurrence of
a formula or term X in a formula or term U external if it is not
in a part of U of the form vn(A). (When A is a formula, vn(A)
will be introduced as a variable of type A.) For formulas or terms
U and V , U > V will mean that V is obtained by replacing some
external occurrence X of U by Y , where X CONV Y . RED is
the least reflexive and transitive relation which includes >.

– For formulas F and G, F ≡ G will mean that the base of F and the
base of G are of the same length n ≥ 0 and, for some distinct new
symbols x1, . . . , xn, Fx1 · · · xn and Gx1 · · ·xn RED to a common
expression.1

1Notice that, on our definition, variables vn(A) are always in normal form, where a
formula or term X is in normal form iff there is no Y such that X > Y . Thus, even when
the distinct types A and B are ≡, vn(A) 6≡ vn(B).
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– We may also specify at once that the type of a term is to be
determined only to within definitional equality. Thus, as a part
of the definition of the type relation we specify that

t :A ∧ A ≡ B −→ t :B.

It will follow that
s ≡ t ∧ s :A −→ t :A.

If ~Y = 〈Y1, . . . , Yn〉, then 〈X, ~Y 〉 will denote 〈X, Y1, . . . , Yn〉, 〈~Y , Z〉 will de-

note 〈Y1, . . . , Yn, Z〉, ~Y t will denote 〈Y1t, . . . , Ynt〉, etc. Atomic Formulas

If ~F is a base of formulas none of which contains free variables, then Rn(~F )

is an atomic formula with base ~F for each n. There may be conversion rules
associated with an atomic formula. Instantiation If G has base 〈A, ~F 〉 and

t :A, then Gt is a formula with base ~Ft. Quantification
If H has base 〈~F ,G〉, then ∀H and ∃H are formulas with base ~F .

• If ~F is not null and Q is a quantifier, then we have the conversion rule

(QH)t CONV Q(Ht)

• The (universal) closure of a formula H is

H∗ = ∀ · · · ∀H

where the number of ∀’s is the length of the base of H. Thus, H∗ is a
type.

Dummy Argument Places
If 〈~F ,G〉 and 〈~F ,H1, . . . , Hk〉 are bases, then so is 〈~F ,G,H1[G], . . . , Hk[G]〉.

• The rules of conversion for Hi[G] (i = 1. . . . , k) are:

– If ~F 6= ∅
Hi[G]t CONV Hit[Gt]

– If ~F = ∅
Hi[G]t CONV H
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• Abbreviations: Let Base(G) = Base(H)

G −→ H = ∀(H[G])

G ∧H = ∃(H[G])

Transposition of Argument Places
If 〈 ~E, F,G,H1, . . . , Hk〉 is a base, then so is 〈 ~E,∀G,F [∀G], H1{1}, . . . , Hk{k}〉.

The subscript ‘i’ in Hi is meta-notation, marking which formula in the base
we are refering to; the ‘{i}’, on the other hand, is part of the syntax of the
formula Hi{i}. The rules of conversion are:

• If ~E 6= ∅
Hi{i}t CONV Hit{i}

• If ~E = ∅
Hi{i}st CONV Hit(st)

REMARK. In the second case, note that s must be a term of type ∀G and
t must be of type F [∀G]s, i.e. of type F . Since G has base F, st is defined
and is of type Gt, by the principle of ∀ Elimination in §1.8 below. So Hit(st)
is defined. Variables

For each type A and n ≥ 0

vn(A) :A

vn(A) is called a free variable of basic type A. Note that A is a syntactical
part of vn(A). A variable of basic type A may be denoted by v(A), v′(A),
etc. Constants
If A is a type containing no variables, zero or more constant terms of type A
may be introduced.

Quantifier Elimination
Let 〈A,F 〉 be a base.

• ∀ Elimination
s :A, t :∀F =⇒ ts :Fs

• ∃ Elimination
p :∃F =⇒ (p1) :A, (p2) :F (p1)
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Existential Quantifier Introduction
Let H have base 〈~F ,G〉.

P (H) : (H −→ ∃(H[G]))∗

The conversion rules for ∃ are

• If ~F 6= ∅
P (H)t CONV P (Ht)

• If ~F = ∅
P (H)st1 CONV s

P (H)st2 CONV t

The Combinator K
Let G and H have base ~F .

K(G,H) : (G −→ (H −→ G))∗

The conversion rules associated with K are

• If ~F 6= ∅
K(G,H)t CONV K(Gt,Ht)

• If ~F = ∅
K(G,H)st CONV s

The Combinators S∀ and S∃
Let H have base 〈 ~E, F,G〉 and let Q be a quantifier ∀ or ∃. Then

SQ(H) : (∀QH −→ Q∀(H{1})∗

The conversion rules are

• If ~E 6= ∅
SQ(H)t CONV SQ(Ht)

• Assume that ~E = ∅ and let r : ∀QH. So H{1} has base 〈∀G,F [∀G]〉.
Let s :∀G and t :F [∀G]s. So t :F and

SQ(H)r :∀Q(H{1})
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– Let Q = ∀.
S∀(H)r :∀∀(H{1})

S∀(H)rst must be defined to be of type H{1}st, i.e. of type
Ht(st). But rt :∀(Ht), st :Gt and so rt(st) :Ht(st). Thus, we may
define S∀(H)rst by the conversion rule

S∀(H)rst CONV rt(st)

– Let Q = ∃.
S∃(H)r :∃∀(H{1}

Thus
S∃(H)r1:∀G

S∃(H)r2:∀H{1}(S∃(H)r1)

So
S∃(H)r1t :Gt

S∃(H)r2t :Ht(S∃(H)r1t)

But rt : ∃Ht and so rt1 :Gt and rt2 :Ht(rt1). So we may define
S∃(H) by the conversion rules

S∃(H)r1t CONV rt1

S∃(H)r2t CONV rt2

We have completed the description of the calculus.
Notice that the type of S∃(H) is a general form of the Axiom of Choice: for

example, let H have base 〈A,B[A]〉. Then H{1} has base 〈A −→ B,A[A −→
B]〉 and the type ∀∃H −→ ∃∀H{1} may be written as

∀x :A∃y :BHxy −→ ∃f :A −→ B∀x :AHx(fx)

4.7.2 Some properties of the calculus

Let V ar(X) denote the set of variables in the formula or term X.

Definition 19 The type B of the term t is suitable for t iff V ar(B) =
V ar(t)− {t}.
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Lemma 16 The following facts are easily derived.

1. Every variable in a formula in the base of F is in F .

2. Every term has a suitable type.

3. If G and H have bases ~E and 〈 ~E, F 〉, respectively, then

∀(H[G]) ≡ (∀H)[G]

.

4. If G and H both have base 〈 ~E, F 〉, then

H[G]{1} ≡ H[∀G]

5. Let F , G and H all have base ~E. Then

H[F ][G[F ]] ≡ H[G][F ]

.

Assuming that there are no further conversion rules, we may prove in the
usual way

Theorem 8 Church-Rosser Theorem If the formula or term X reduces to
Y and to Z, then Y and Z reduce to some U . In particular, every term or
formula has at most one normal form.

Theorem 9 Well-foundedness Theorem If X is a formula or term, then
every sequence X > Y > · · · is finite. In particular, every formula or term
has a normal form.

In view of these two theorems, the relation ≡ between formulas and terms
is decidable. We will not discuss general conditions on extensions of the
calculus obtained by adding new conversion rules under which the Church-
Rosser and Well-foundedness Theorems are preserved, since the main result
of this paper, the Explicit Definition Theorem below, will be preserved by
any such extension.
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4.7.3 Identity Function

Let G and H have base ~F and let S = S∀(H[G]). Then S is of type

(∀(G −→ H) −→ ∀∀(H[G]{1}))∗

which, by 3 and 4 of the Lemma is ≡ to

(4.11) (∀(G −→ H) −→ (∀G −→ ∀H))∗

Let G be B[A] and let H be C[A]. By 5 of the Lemma, (4.11) is ≡ to

(4.12) (A −→ (B −→ C)) −→ ((A −→ B) −→ (A −→ C))

So
S : (A −→ (B −→ C)) −→ ((A −→ B) −→ (A −→ C))

Set B = A −→ A, C = A, K1 = K(A,B) and K2 = K(A,A). Then
K1 :A −→ (B −→ C) and K2 :A −→ B. Set

IA = SK1K2

Then IA :A −→ C, i.e. IA :A −→ A. Let t :A.

IAt = SK1K2t ≡ K1t(K2t) ≡ t.

Thus IA is the identity function on A.
Notice that the combinators for positive implicational logic really are

a special case of K(G,H) and S∀(H). Namely, they are K(A,B) of type
A −→ (B −→ A) and S∀(C[A][B[A]]) of type (4.12).

4.7.4 Explicit Definition Theorem

Definition 20 A variable v is unfettered in the term t (formula F ) iff for
every variable v(A) occuring in t (F ), v does not occur in A.

Note: If B is a suitable type for the term t, then v is unfettered in t iff it is
unfettered in B.

Theorem 10 (Explicit Definition Theorem) Let v = v(A).

110



• If 〈F1, . . . , Fn〉 is a base and v is unfettered in Fn, then there is a base
〈A,F ′1, . . . , F ′n〉 such that V ar(F ′i ) ⊆ V ar(Fi)− {v} and

F ′iv RED Fi

• If t :B and v is unfettered in t and in B, then there is a t′ : ∀B′ such
that V ar(t′) ⊆ V ar(t)− {v} and

t′v RED t

Note: If B ≡ C, then B′ ≡ C ′. So, in particular, given a term t in which v
is unfettered, we need only find one type C of t in which v is unfettered and
construct t′ :∀C ′. If B is another type of t in which v is unfettered, then t′

will be of type ∀B′ as well.

Proof. The proof is by induction on the definition of the base or term.
Case 1. Assume that v does not occur in Fn. Then it does not occur in any
Fi. Set F ′i = Fi[A].
Case 2. Assume that v is not in t and let B be a suitable type for t. Then
v is not in B and so B′ = B[A]. Set t′ = K(B,A)t, which is of type
∀B′ = A −→ B and t′v CONV t.

In the remaining cases, we may assume that v occurs in the formula or
term in question.
Case 3. Let us assume that F ′ is defined for F = G, F = H and for every
formula F in the base of G or H. Then we may clearly set

(QH)′ = QH ′

H[G]′ = H ′[G′]

H{n}′ = H ′{n}

P (H)′ = P (H ′)

K(G,H)′ = K(G′, H ′)

SQ(H)′ = SQ(H ′)

For example, H[G]′v = H ′[G′]v CONV H ′v[G′v]RED H[G]. AndK(G,H)′v =
K(G′, H ′)v CONV K(G′v,H ′v) RED K(G,H). Note that K(G,H)′ is of
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type (G′ −→ (H ′ −→ G′)∗, which is ∀(G −→ (H −→ G)∗)′, so the type is
right.
Case 4. Let Fi = χis, where s : C and 〈C, χ1, . . . , χn〉 is a base. Then
〈A,C ′, G′1, . . . , G′n〉 is a base and t′ :∀C ′. Set F ′i = G′i{i}t′. Then

F ′iv CONV G′iv(t′v) RED χit = Fi

Case 5. Let H have base 〈B〉, f : ∀H, and t : B. We need to define ft)′.
f ′ : ∀∀ H ′, t′ : ∀B′ and S∀(H

′)f ′ : ∀∀H ′{1}. H ′{1} has base 〈∀B′, A[∀B′〉.
So S∀(H

′)f ′t′ is defined and is of type ∀H ′{1}t′ ≡ ∀(Ht)′. So set (ft)′ =
S∀(H

′)f ′t′. For
S∀(H

′)f ′t′v RED f ′v(t′v) RED ft

Case 6. Let p :∃H, where H has base B. We need to define (p1)′ and (p2)′.
p′ : ∀∃H ′, where H ′ has base 〈A,B′〉. H ′{1} has base 〈∀B′, A[∀B′]〉. So
S∃(H

′)p′ :∃∀(H ′{1}). Set (p1)′ = S∃(H
′)p′1 and (p2)′ = S∃(H

′)p′2.

(p1)′v RED p′v1 REDp1

(p2)′v RED p′v2 REDp2.

The proof is completed.
We may now take ∀x :A.B(x) to be an abbreviation for ∀B′, providing

the free variable v = v(A) is unfettered in B(v). If v is fettered in B, then B
has the form B(v, u(C(v))), where u(C(v)) is a variable and v is unfettered
in C(v). But in this case, ∀x :A.B(x), i.e. ∀x :A.B(x, u(C(x))) doesn’t make
any literal sense: u(C(x)) does not denote a variable of any particular type.
Rather we can only think of it as a dependent variable, depending on the
value of x. But then we may more accurately replace u(C(v)) by u(∀C ′)v,
eliminating at least one context which fetters v. Iterating this proceedure,
we finally transform B(v) into a type D(v) in which v is unfettered and
such that ∀x :A.D(x) expresses the only reasonable meaning of ∀x :A.B(x).
Similarly, we may restrict λx :A.t(x) to the case in which v is unfettered in
t(v); and in that case it is an abbreviation for t′. In this case, the restriction
that v be unfettered in t(v) is precisely Gentzen’s restriction on his rule ∀−I
in the system of natural deduction.

Now we return to the initial discussion of the n-quantifier form. Let
B = B(v1, . . . , vn) be a formula and v1, . . . , vn a list of variables including
all the variables in B, vi = vi(Ai). Assume that the list of variables is in
good order, i.e. i < j implies that vj does not occur in Ai. So we may
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write Ai = Ai(v1, . . . , vi−1), displaying all the free variables. Then vn is
unfettered in B and we may apply the Explicit Definition Theorem to obtain
B′ with base 〈An〉, containing at most the variables vi for i < n and such
that B′vn ≡ B. vn−1 is unfettered in B′ and so we may construct B′′ with
base 〈An−1, A

′
n〉, containing at most the variables vi for i < n− 1, such that

B′′vn−1vn ≡ B. Iterating n times, we obtain the variable-free formula B(n)

with base 〈A1, A
′
2, . . . , A

(n−1)
n 〉 such that B(n)v1 · · · vn ≡ B. Then (4.10) is

precisely Q1 · · ·Qn.B
(n). We denote Bn by

λx1 :A1 · · ·λnxn :An(x1, . . . , xn−1).B(x1, . . . xn).

Moreover, if t = t(v1, . . . , vn) is a term of type B(v1, . . . , vn), then n ap-
plications of the Explicit Definition Theorem yields t(n) : ∀ · · · ∀B(n) with
t(n)v1 · · · vn ≡ t. We denote tn by

λx1 :A1 · · ·λnxn :An(x1, . . . , xn−1).t(x1, . . . xn).

For future reference, when ~F = 〈F1, . . . , Fn〉 is a base and G a formula,
we write

λ~x : ~F = λx1 :F1 · · ·λxn :Fnx1 . . . xn−1.

and

G[~F ] = λ~x : ~F .G.

4.8 The Completeness of Intuitionistic First-

Order Predicate Logic

We return to the original formalism for type theory, involving bound vari-
ables. We will be considering only the constructive system, without the rule

p :66 A =⇒ D(p) : A

of Double Negation Elimination. Formulas of first-order predicate logic
can be regarded as formulas in the theory of types. Choose a type constant D
to be the type of individuals. Individual constants are just constants of type
D, n-ary function constants are constants of typeDD = ∧ · · ·∧D −→ D (with
n − 1 occurrences of ∧), and n-ary relation constants are constants of sort
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Dn. The quantifications ∀xF (x) and ∃xF (x) are taken to be abbreviations
for ∀x : D.F (x) and ∃x : D.F (x), respectively.

In §4.5, we showed that every theorem of intuitionistic predicate logic is
derivable from D in the theory of types. This follows from the fact that every
rule of inference of the Intuitionistic system of natural deduction is derivable
in the theory of types. But the converse does not hold. For example, if
p : ∃xF (x), then p1 is a term of type D but not a term of first-order predicate
logic or in general even definitionally equal to one. So, if x occurs in F (x),
then F (p1) is not a first-order formula. However, we are able to prove this:

Theorem 11 Let Γ be a set of first-order formulas and let t : A, where A is
a first-order formula, t is a constructive term, and all the variables in t are
of sign D or are of some sign in Γ. Then A is derivable from Gamma in
intuitionistic first-order predicate logic.

A constructive term all of whose variables are of sign D or whose sign is
in Γ will be called a Γ-deduction. When s is a term, |s| denotes the number
of occurrences of expressions of the form p1 or p2 in it. (p need not be a
term, since it may contain bound variables which are not bound in p, though
of course they are bound in s.) A deduction s is called special iff |s| = 0.

Lemma 17 Let t be a normal Γ-deduction of A. Then there are normal spe-
cial Γ- deductions t1, . . . , tn of first-order formulas A1, . . . , An, respectively,
containing only the free variables of t , such that A is first-order deducible
from A1, . . . , An.

The proof is by induction on |t| and, within that, by induction on (the
complexity of) t. We can assume that |t| > 0.

CASE 1. Assume that t = s(p1, p2) contains a part p1 or p2, where p
is a term. CASE 1a. Let p : ∃xF (x). Then t′ = λx : Dλy : F (x).s(x, y) is
a normal deduction of ∀x[F (x) −→ A]. But A is first-order deducible from
∃xF (x) and ∀x[F (x) −→ A] and |p|, |t′| < |t|. CASE 1b. Let p : B ∧ C.
Then t′ = λx : Bλy : C.s(x, y) is a normal deduction of B −→ [C −→ A]. A
is first-order deducible from B ∧ C and B −→ [C −→ A] and |p|, |t′| < |t|.
CASE 1c. Let p : B∨C. p1 : 2 and p2 : 〈B,C〉(p1). Let u be a new variable of
sign B and v a new variable of sign C. There are special terms r(u) and r′(v)
of types 〈B,C〉> and 〈B,C〉⊥, respectively. So t′ = λx : B.s(>, r(x)) and
t′′ = λy : B.s(⊥, r(y)) are deductions of B −→ A and C −→ A, respectively.
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But A is first-order deducible from B ∨ C, B −→ A and C −→ A. It thus
suffices to note that |p|, |t′|, |t′′| < |t|.

CASE 2. t contains no parts p1 or p2 where p is a term. CASE 2a. If t
is any of N(A, s), fs, (s, s′)
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