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The story of Gentzen’s original consistency proof for first-order number
theory (Gentzen 1974),1 as told by Paul Bernays (Gentzen 1974), (Bernays
1970), (Gödel 2003, Letter 69, pp. 76-79), is now familiar: Gentzen sent
it off to Mathematische Annalen in August of 1935 and then withdrew it
in December after receiving criticism and, in particular, the criticism that
the proof used the Fan Theorem, a criticism that, as the references just
cited seem to indicate, Bernays endorsed or initiated at the time but later
rejected. That particular criticism is transparently false, but the argument of
the paper remains nevertheless invalid from a constructive standpoint. In a
letter to Bernays dated November 4, 1935, Gentzen protested this evaluation;
but then, in another letter to him dated December 11, 1935, he admits that
the “critical inference in my consistency proof is defective.” The defect in
question involves the application of proof by induction to certain trees, the
‘reduction trees’ for sequents (see below and §1), of which it is only given that
they are well-founded. No doubt because of his desire to reason ‘finitistically’,
Gentzen nowhere in his paper explicitly speaks of reduction trees, only of
reduction rules that would generate such trees; but the requirement of well-
foundedness, that every path taken in accordance with the rule terminates, of
course makes implicit reference to the tree. Gentzen attempted to avoid the
induction; but as he ultimately conceded, the attempt was unsatisfactory.

∗My understanding of the philosophical background of Gentzen’s work on consistency
was enhanced by reading the unpublished manuscript “ On the Intuitionistic Background
of Gentzen’s 1936 Consistency Proof and Its Philosophical Aspects” by Yuta Takahashi.

1The paper first appeared in print via an appendix to the translation of (Gentzen 1936)
in (Gentzen 1969). A somewhat revised version of it is presented in (Bernays 1970) and
the full text, together with an introduction by Bernays, in (Gentzen 1974).
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Brouwer’s Bar Theorem has generally been cited as what is needed to
repair the argument.2 The Bar Theorem does indeed suffice to close the
gap between the well-foundedness of a reduction tree and proof by induction
on it, but we will see that Brouwer’s argument for the Bar Theorem in the
context in question involves an argument for the claim that a proof of the
well-foundedness of a reduction tree for a sequent can only be based on
having the corresponding deduction tree of the sequent. The deduction tree
in question is obtained by reading the reduction tree, which is constructed
‘bottom-up’, as ‘top-down’. Deduction trees are built up inductively and
so proof by induction on them is valid. Moreover, given a deduction tree
for a sequent, the corresponding reduction tree can be constructed; but the
converse is constructively invalid. So—and this is the main point of this
paper—the gap in Gentzen’s argument is filled, not by the Bar Theorem,
but by taking as the basic notion that of a deduction tree in the first place
rather than that of a reduction tree. These deduction trees are well-known
objects, namely cut-free deductions in a formalization of first-order number
theory in the sequent calculus with the ω-rule.

The formalization of number theory in the original paper as well as in the
1936 paper ultimately takes as the logical constants ¬,∧ and ∀. Deductions
are of sequents of the form Γ ` A, where A is a formula and Γ a possibly null
sequence of formulas. The rules of inference are the natural deduction rules:
the introduction and elimination rules for the logical constants are only for
the succedent formula (so that a deduction of the sequent Γ ` A corresponds
to a deduction of A in natural deduction whose assumption formulas are all
in Γ). I will refer to this system as the formal system of first-order number
theory in natural deduction. The precise details don’t really concern us,
since the non-trivial parts of Gentzen’s argument do not really concern these
natural deductions.

His consistency argument in the original version aims at showing that a
natural deduction of a sequent Γ ` A is a code for constructing a reduction
tree for the sequent. Since there is no reduction tree for the sequent ` 1 = 2,
for example, consistency is implied. As we noted and will see, reduction trees
can be replaced everywhere in the argument by the corresponding deduction
trees.

In the 1936 version of the consistency proof, the notion of a reduction tree

2Could Bernays’ references to the ‘Fan Theorem’, all over thirty years later, have been
the result of a confusion of the Fan Theorem with the Bar Theorem?
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plays no role in the proof of consistency: that proof is obtained by means of
the notion of a reduction procedure for deductions of sequents in the formal
system of first-order number theory in natural deduction and an assignment
of ordinals to these deductions such that each reduction step results in a
decrease in ordinal. A reduction tree for a deduced sequent, along with an
ordinal measure of the height of the subtrees, simply falls out of the proof.
Of course, the assignment of ordinals to the subtrees allows the reduction
tree to be identified with the corresponding deduction tree (since induction
on the tree can be expressed by induction on the ordinals).

In the original paper, on the contrary, the notion of a reduction rule for a
sequent plays an essential role: the non-trivial part of the argument—and the
source of difficulty—is Gentzen’s argument for his Lemma. As we noted, the
corresponding deduction trees are cut-free deductions in the formal system
of first-order number theory in the sequent calculus with the ω-rule; and the
Lemma states (in terms of deduction trees) that cuts in that system can be
eliminated. This was finally explicitly proved by Lorenzen (1951) and Schütte
(1951). Lorenzen’s proof applied to ramified analysis of finite order but does
not supply ordinal bounds. Schütte’s proof applies to a variant formalization
of the sequent calculus and supplies the ordinal bounds. (Tait 1968) contains
a unified treatment of Schüttes’ result and his later papers on cut-elimination
for ramified analysis (1952, 1964) with the ω-rule, using a simplified form of
the sequent calculus.3

Although the notion of a reduction rule played no part in the consis-
tency proof in (Gentzen 1936), it should be noted that it retained a concep-
tual/philosophical role. Gentzen not only wanted a proof of consistency, he
wanted a way to understand the truth of a sentence of number theory that is
in some sense ‘finitary’ but at the same time supported classical reasoning in
number theory. In this respect, the original paper as well as the 1936 paper
go beyond the original Hilbert program of finding finitary consistency proof
for formal systems. Indeed, Gödel’s incompleteness theorems would seem to
demand such an extension. Consistency of a particular formal system is of
less interest when we know that the system, if consistent, is also incomplete.
A ‘finitist’ interpretation of classical mathematical propositions that guar-
antees their consistency transcends any particular formal system. Gentzen’s

3(Gentzen 1938) contains a version of the consistency proof for number theory framed in
the sequent calculus which could quite easily be transformed into a proof of cut-elimination
for the sequent calculus with the ω-rule. See (Buchholz 1997) for a detailed description of
the relation between (Gentzen 1938) and Schütte’s 1951 result.
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candidate for such an interpretation was this: A is true precisely if we can
state a ‘reduction rule’ for ` A, i.e. a rule for constructing a reduction tree.4

Like Gödel, Gentzen had discovered the double negation interpretation
of classical first-order number theory in the corresponding intuitionistic ver-
sion. If from a ‘finitist’ point of view one were satisfied with the intuition-
istic system, i.e. Heyting arithmetic, this result would provide the desired
interpretation—and would certainly diminish the significance of a consis-
tency proof for a finitist. But, also like Gödel in (1938a), Gentzen rejected
the intuitionistic conception of logic as presented by Heyting as non-finitist.
The difficulties they had with it centered on the intuitionistic meaning of im-
plication. The ‘circularity’ that Gentzen found in Heyting’s account of the
meaning of → in propositions A → B, where A contains → (1936, §11.1),
disappears when one adopts the type-theoretic approach of Curry-Howard.
But, of course, when A contains→, its proofs are no longer to be understood
as concrete finitary objects on the type-theoretic conception; rather they
themselves are already objects of higher type and so it would be a stretch to
regard proofs of A→ B, i.e. operations transforming proofs of A into proofs
of B, as in any sense ‘finitist’.

Gentzen’s interpretation of the sentences of arithmetic in terms of reduc-
tion rules has a somewhat alien flavor. But it evolved into two different and
more homely interpretations of classical reasoning in number theory: the
no-counterexample interpretation in the hands of Gödel (1938a)5 and Kreisel
(1951, 1952) and a game-theoretic interpretation by Coquand (1995), ac-
cording to which a reduction rule is a winning strategy in a certain 2-person
game. These two interpretations are discussed in (Tait 2001, Tait 2005a) and
I will not discuss them here.

1. Reduction Rules. A sequent is of the form Γ ` A, where Γ is a set
of formulas and A is a formula. Gentzen defines the notion of a reduction
rule for sequents of arbitrary formulas. If free variables occur in formulas
in the sequent, the reductions of the sequent begin with replacing one of

4The rule is, in itself, just a rule for constructing a certain tree—I call it a ‘pre-reduction
rule’ below. It is a reduction rule in virtue of the tree being well-founded. So, to know
that A is true would mean, not simply to possess the rule, but also to know that the
tree is well-founded. One might have some difficulty in labeling knowledge of this kind as
‘finitary’.

5That Gödel had anticipated the no-counterexample interpretation in these notes was
first noticed by C. Parsons and W. Sieg in their introductory note.
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them throughout the sequent by an arbitrarily chosen numeral. If the se-
quent consists just of sentences and some formula in it contains a closed
term f(t1, . . . , tn), then a reduction consists in replacing such a term by the
numeral k̄ for its value. We can eliminate these reduction steps by considering
only sequents of sentences and by identifying the sentence A(f(t1, . . . , tn))
with A(k̄). Since the reductions of sequents of sentences yields only sequents
of sentences, we can also cut down on the number of forms of sentences that
must be treated separately by treating A∧B and ∀xA(x) as special cases of
conjunctive sentences

∧
iAi: namely

A0 ∧ A1 =
∧
i<2

Ai ∀xA(x) =
∧
i<ω

A(̄i).

Concerning the atomic sentences, Gentzen included only decidable sentences,
i.e. built up from 0̄, the successor function constant, constants for other
computable functions and decidable relation constants.6 We will write

⊥

to denote any false atomic sentence, such as 1 = 2 (Gentzen’s favorite): they
are interchangeable.

A sequent Γ ` A of sentences is called an axiom sequent just in case either
A is a true atomic sentence or it is a false atomic sentence and Γ contains a
false atomic sentence. The rules of inference we will consider are

∧
−R

· · · Γ ` Aj · · ·
(all j)

Γ `
∧
iAi

and
∧
−L

Γ,
∧
iAi, Aj `⊥

Γ,
∧
iAi `⊥

for
∧

; and ¬ −R
6When in (Gentzen 1943) he comes to the problem of determining the bound on the

provable ordinals, he needs to essentially redo the argument for the case that the atomic
formulas also include t ∈ V , where V stands for an indeterminate set of numbers and t a
numerical term. But it is obvious how to treat this extension. The atomic sentences must
be extended to include the expressions n ∈ V and the axiom sets, defined below, has to
be extended to include sequents of the form Γ, n ∈ V ` n ∈ V .
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Γ, A `⊥
Γ ` ¬A

and ¬ − L
Γ,¬A ` A
Γ,¬A `⊥

for ¬. The explicitly listed composite sentence in the conclusion of an infer-
ence is called its principal sentence.

Definition A pre-reduction rule R for a sequent Γ ` A of sentences effectively
determines, for each n, the R-admissible sequences 〈Γ0 ` A0, . . . ,Γn ` An〉
of sequents of sentences as follows:

• 〈Γ ` A〉 is the only R-admissible sequence of length 1.

• All R-admissible sequences of length n+ 2 are one-element extensions
of R-admissible sequences of length n + 1. Let 〈Γ ` A, . . . ,∆ ` B〉 be
R-admissible. We specify its R-admissible one-element extensions.

– If ∆ ` B is an axiom sequent, then there are no R-admissible
extensions.

– If ∆ consists only of true atomic sentences and B is a false atomic
sentence, then 〈Γ ` A, . . . ,∆ ` B,∆ ` B〉 is its only R-admissible
one-element extension.

– Otherwise R determines an inference with conclusion ∆ ` B and
〈Γ ` A, . . . ,∆ ` B,Θ ` C〉 is R-admissible for every premise
Θ ` C of that inference.

A pre-reduction rule R for Γ ` A is a reduction rule for Γ ` A iff every
ω-sequence 〈Γ ` A,∆ ` B,Θ ` C, . . .〉 of sequents of sentences contains a
finite initial segment that is not R-admissible. �

Our definition of a sequent Γ ` A differs from Gentzen’s in that, for him,
Γ is a sequence of sentences rather than a set. But that makes no difference in
the definition of a reduction rule. Notice that the inferences specified above
have the property that the antecedent of the conclusion is a subset of the
antecedent of each premise. Gentzen also allows another form of both ∀−L
and ¬ − L, namely
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Γ, Aj `⊥
Γ,

∧
iAi `⊥

and

Γ,` A
Γ,¬A `⊥

But, since adding a sentence to the antecedent of each premise and the con-
clusion of any inference in our sense is again an inference, it is clear that a
reduction rule for Γ ` A in the wider sense of Gentzen can be transformed
into one in our sense.

Let R be a reduction rule for Γ ` A, where Γ ` A is not an axiom sequent.
Then there is a unique inference

. . . Γi ` Ai . . .
Γ ` A

such that the R-admissible sequences of length 2 are precisely 〈Γ ` A,Γi `
Ai〉 of length 2. The principal sentence of this inference is called the principal
sentence of R and the sequents Γi ` Ai are called the reducts of Γ ` A
determined by R.

If R is a pre-reduction rule for Γ ` A, the reduction tree TR for Γ deter-
mined by R has as its nodes the R-admissible sequences, where, for nodes µ
and ν, µ <TR ν means that µ is a proper initial segment of the R-admissible
sequence ν. The root of the tree is of course the one-element sequence
〈Γ ` A〉. The condition that the pre-reduction rule R be a reduction rule is
precisely that TR be a well-founded tree.

Let 〈Γ ` A, . . . ,∆ ` B〉 be an R-admissible sequence. R determines
a reduction rule R′ for ∆ ` B: the R′-admissible sequences are just those
〈∆ ` B . . . ,Θ ` C〉 such that 〈Γ ` A, . . . ,∆ ` B . . . ,Θ ` C〉 is R-admissible.
We say in this case that R′ is a reduction sub-rule of R. Note that TR′ is
isomorphic to the subtree TR,µ = {ν|µ ≤TR ν}, where µ = 〈Γ ` A, . . . ,∆ `
B〉. We will sometimes confuse the two.

Given the reduction rule R for Γ ` A and a set Θ of sentences, we may
obtain a reduction rule R′ for Γ ∪ Θ ` A: the R′ admissible sequences are
the sequences 〈Γ ∪ Θ ` A, . . . ,∆ ∪ Θ ` B〉 such that 〈Γ ` A, . . . ,∆ ` B〉
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is R-admissible. TR′ is of course isomorphic to TR and we will sometimes
confuse them.

Let R be a reduction rule for the sequent Γ ` A of sentences. To each node
〈Γ ` A, . . . ,∆ ` B〉 of TR assign the set ∆. Then the connection between
the assignments to successive nodes is given by the rules of inference. Note
that when

∧
iAi = ∀xA(x) the rule for conjunctions is the ω-rule. Since TR

is well-founded, every path upward through it terminates in an axiom set.
Moreover, the root of TR, the bottom-most node 〈Γ ` A〉, is assigned Γ ` A.
Thus, from a classical point of view, TR is a cut-free deduction of Γ ` A in a
sequent calculus formalization of first-order number theory with the ω-rule.

2. Induction on Trees. From a constructive standpoint the situation is
more complicated. Deductions are top-down, starting with axiom sequents
and passing from premises to conclusion and finally to the sequent deduced.
In this form, proof by induction on the deduction tree (or on its height) is
fully justified. But reduction trees for Γ ` A are built bottom-up, starting
with Γ ` A and passing up from conclusion to premises and finally to axiom
sets. They are to be well-founded, but that does not constructively justify
the principle of induction applied to them. That is exactly the problem that
Gentzen failed to avoid in the original consistency proof.

We say that a property P defined on the nodes of a connected tree T
is T -inductive if P (ν) for every ν immediately above µ implies P (µ). The
principle of induction on T states that every T -inductive property defined
on its nodes holds for all of its nodes.

If a tree T satisfies the principle of induction, then it is well-founded. (For
the property P (µ) of a node µ of T that the subtree Tµ = {ν ∈ T | µ ≤T ν}
is well-founded is an inductive property.) Classically, we can easily infer from
the well-foundedness of a tree T that it satisfies the principle of induction. If
not, choose an inductive property P which is not possessed by every node of
T and, having defined µ0 < . . . < µn where the µi do not have the property
P , the inductiveness of P implies that there is a µn+1 > µn which also fails
to have P . Iterating this construction, we obtain an infinite path of nodes up
through the tree that do not have the property P . Constructively, however,
this argument of course fails: from the fact that µn does not have P it follows
from the inductiveness of P that it is not the case that all successor nodes µ
of µn have the property P ; but that does not imply that there exists such a
successor node which does not have P .

Call a tree inductive if it is in the least class I of connected trees such
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that whenever 0 ≤ α ≤ ω and Ti ∈ I for all i < α, then the connected tree
with whose immediate subtrees are precisely the Ti is inductive. Inductive
trees obviously satisfy the principle of induction.

One example is the constructive ordinals of the second number class. Let
T0 and T1 be connected trees. T0 ⊆ T1 means that T0 is a substructure of T1,
i.e. that each node of T0 is a node of T1 and that µ <T0 ν implies µ <T1 ν.
T0 ≺ T1 means that T0 ⊆ (T1)µ for some node µ in T1 other than its root. 0 is
the one-node tree with node ∅, α+ 1 is the connected tree with root {α} and
whose only immediate subtree is α, and when αn ≺ αn+1 for each n, limn αn
is the connected tree with root {αn | n < ω} and whose immediate subtrees
are the distinct αn. α + β is defined as usual by induction on β:

α + 0 = α α + (β + 1) = (α + β) + 1 α + lim
n
βn = lim

n
(α + βn).

We can always assign ordinal bounds |T | on the height of an inductive
tree T , with |T ′| < |T | when T ′ is a proper subtree of T : let Ti for i < α be
its immediate subtrees and assume |Ti| is defined for each i < α. If α < ω
set |T | = |T0 + · · ·+ |Tα−1|+ 1. Otherwise, |T | = limn(|T0|+ · · ·+ |Tn|+ 1).
Conversely, let T be any tree and suppose that we have assigned an ordinal
|Tµ| to each subtree Tµ of T so that |Tµ| < |Tν | when µ <T ν. Then T
satisfies the principle of induction, since it can be reduced to the principle of
induction on the ordinals.

The immediately relevant example of inductive trees is given by what we
are calling the deduction trees. If Γ ` A is an axiom sequent, then a one-
node tree with node Γ ` A is a deduction tree. If Γ ` A is the conclusion of
an inference and Di is a deduction of the ith premise, i < α, then the tree
with root {Di | i < α} and immediate subtrees Di (i < α) is a deduction of
Γ ` A.7

Corresponding to the notion of a reduction rule, we also have the notion
of a deduction rule for Γ ` A. Such a rule R determines a deduction tree
DR for Γ ` A as follows: if Γ ` A is an axiom sequent then DR is the one-
node tree with node Γ ` A. Otherwise, R determines an inference with the
conclusion Γ ` A and a deduction rule Ri for each premise Γi ` Ai of the
inference. DR is a tree with root {DRi | i < α} and immediate subtrees DRi .

7It is not excluded that some premise of an inference is identical with the conclusion.
Therefore, we have to distinguish the node of a deduction tree from the sequent attached
to it. For simplicity, I have defined the nodes of deduction trees to be in general infinitary
objects. The finitist will want to replace these with suitable codes.
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A deduction rule R for Γ ` A determines a reduction rule R′ for Γ ` A
as follows. The construction is by induction on DR. If Γ ` A is an axiom
set, 〈Γ ` A〉 is R′-admissible. Otherwise, R′ determines an inference with
conclusion Γ ` A and a deduction rule R′ for each premise Γi ` Ai. The R′-
admissible sequences are of the form 〈Γ ` A,Γi ` Ai, . . . ,∆ ` B〉 such that
〈Γi ` Ai, . . . ,∆ ` B〉 is R′i-admissible. Notice that the converse construction,
of a deduction rule R from a reduction rule R′, is not constructively valid,
since induction on TR′ is not valid.

While we are on the subject of induction on trees, let me mention a
construction to which we will refer below. Suppose T0 and T1 are trees. We
define T = T0 × T1 as follows: its nodes are µ = (µ0, µ1), where µe is a node
of Te.

µ <T ν ⇐⇒ [µ0 <T0 ν0 & µ1 ≤T1 ν1] or [µ0 ≤T0 ν0 & µ1 <T1 ν1.]

Observe that, if both T0 and T1 satisfy the principle of induction, then so
does T0 × T1.

3. Gentzen’s Lemma. The only non-trivial step in Gentzen’s demon-
stration that a reduction rule for a sequent can be extracted from a natural
deduction of it is the proof of the following:

Lemma (Gentzen 1974, §14.44, §14.6). If there are reduction rules R0 for
Γ, D ` C and R1 for Γ ` D, then there is a reduction rule for Γ ` C.

The proof of the Lemma is familiar if we think of deductions rather than
reductions. It proceeds by induction on the rank |D| of D, where |A| = 0
when A is atomic and

|¬A| = |A|+ 1 |
∧
i

Ai| = sup
i

(|Ai|+ 1).

The inductive assumption is that the Lemma holds for all B with |B| < |A|,
and then we want to conclude from this that it holds also for A. The proof
of this involves an induction within the induction on the rank of A; namely
an induction on the tree TR0 . In the original paper, Gentzen tried to avoid
this induction, and so I will put each case of its application below in square
brackets.
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Case 1. Γ, D ` C is an axiom sequent. Then C is atomic. If it is true, then
Γ ` C is an axiom sequent. So assume C is false. If D is also a false atomic
sentence, then the reduction rule R′1 for Γ is obtained replacing D by C in
R1.

Case 2. Γ, D ` C is not an axiom sequent.

Case 2a. D is not the principal sentence of R0. Then the reducts of
Γ, D ` C determined by R0 have the form Γi, D ` Ci with the proper sub-
reduction rule Ri

0. [By induction on TR0 , we may assume that there is a
reduction rule Ri for Γi,Γ ` Ci. The R-reduction tree for Γ ` C has as its
immediate sub-trees the TRi .]

Case 2b. D is the principal sentence of R0. Thus, C =⊥.

Case 2bi. D = ¬E. Then the unique reduct is Γ, D ` E. [By the induction
hypothesis, we may assume that there is a reduction rule R′ for Γ ` E.] R1

reduces Γ ` D to Γ, E ` C with immediate sub-rule R′1. |E| < |D| and so by
induction on |D| applied to R′ and R′1, there is a reduction rule R for Γ ` C.

Case 2bii. D =
∧
iDi and R0 reduces Γ, D ` C to Γ, D,Dj ` C with

corresponding sub-reduction rule R′0. [By induction on TR0 , we may assume
that there is a reduction rule R′ for Γ, Dj ` C.] The reducts of Γ ` D
determined by R1 are the Γ ` Di for each i, with sub-reduction rules Ri

1.
Since |Dj| < |D|, the induction hypothesis on rank applied to R′ and Rj

1

yields R. �

As we indicated, the square-bracketed parts of the argument, explicitly
invoking induction on TR0 , do not appear in Gentzen’s original paper. His
argument rather is as follows: with the rule R1 for Γ ` D fixed, we reduce
the problem of finding a reduction rule for Γ ` C to that of finding one for
a reduct Γ′ ` C ′ of Γ, D ` C as determined by R0. If Γ′, D ` C ′ is not
an axiom sequent, then we reduce this problem of finding a reduction rule
for Γ′′ ` C ′′, where Γ′′, D ` C ′′ is a reduct of Γ′, D ` C ′ as determined by
R0—and so on:

Continuing in this way, we must reach the end in finitely many
steps, i.e. the completion of the proof. (Gentzen 1969, §14.63)
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This may sound convincing as a constructive argument until we ask: how
many steps? Of course there is no answer to this because it depends upon
which path we take. In particular, if we reach stage n and C(n) in Γ(n), D `
C(n) is of the form

∧
iCi, then the n + 1st stage Γ(n), D ` Cj depends on

the ‘free choice’ of j. In the November 4, 1935 letter to Bernays, Gentzen
seems to have been arguing that, because the choice of j is free, we are
really thinking about a generic path 〈Γ, D ` C,Γ′, D ` C ′, . . .〉 through TR0

which therefore presumably has a generic finite length x. Γ(x) ` C(x) has a
reduction rule and so, working backward, so has Γ ` C. But as we noted in
the inroductory remarks, Gentzen soon gave up on this argument.

4. The Bar Theorem. Gentzen’s reference to ‘free choices’ seems to
point to Brouwer’s function theory; but Gentzen seems to have ignored the
one feature of Brouwer’s theory that would ground his argument: the Bar
Theorem. Whether or not he explicitly rejected it, he certainly did not
employ it in his argument. The setting for the Bar Theorem is the notion of
a spread law.

Definition A spread law S effectively determines, for each n, the S-admissible
sequences 〈a0, . . . an〉 of elements of a decidable set M as follows:

• S determines for which a ∈ M the one-element sequence 〈a〉 is S-
admissible.

• All S-admissible sequences of length n + 2 are one-element extensions
of S-admissible sequences of length n + 1. Given the S-admissible
sequence 〈a0, . . . , an〉, S determines for which a ∈ M 〈a0, . . . , an, a〉 is
S-admissible.

Moreover, it is required that every S-admissible sequence have a proper ex-
tension. We will consider only connected spread laws S, i.e. such that there
is exactly one one-element S-admissible sequence 〈a0〉, called its root. �

If S satisfies all the conditions of being a spread law except the condition
that every S-admissible sequence have an S-admissible extension, we can turn
it into a spread law S# by the condition that every S-admissible sequence
is S#-admissible and, if 〈a, . . . , b〉 is either maximal S-admissible or contains
#, then 〈a, . . . , b,#〉 is S#-admissible.
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Let S be a spread law. An S-sequence is an ω-sequence 〈a, b, . . .〉 such
that each finite initial segment is S-admissible. [S] denotes the set of all S-
sequences. A bar on S is a set B of S-admissible sequences such each θ ∈ [S]
has an initial segment in B. When B is decidable, we can assume that the
initial segment is unique. TS the tree of S-admissible sequences.

Bar Theorem. If

i. B is a decidable bar on the connected spread S with root 〈a0〉,

ii. Every element of B has the property P ,

iii. P is inductive on TS,

then P (〈a0〉). �

We can apply the Bar Theorem to validate the induction on TR0 in the
proof of Gentzen’s Lemma. The spread law S in this case is R#

0 . So we
have a connected spread with root Γ, D ` C. The assertion that R0 is a
reduction rule for Γ, D ` C and in particular is well-founded implies that the
set [R0] of maximal R0-admissible sequences is a decidable bar on S. (Here
we are using the fgact that a reduction rule is to be effective.) Let P be the
property of S-admissible sequences σ that, if σ is the R0-admissible sequence
〈Γ, D ` C, . . .Γ′, D ` C ′〉, then there is a reduction rule for Γ′,Γ ` C ′.
Every element 〈Γ ` C, . . .Γ′ ` C ′〉 of the bar [R0] has the property P , since
Γ′D ` C ′ is an axiom sequent. (If C ′ is a true atomic sentence or Γ′ contains
a false atomic sentence other than D, Γ′,Γ ` C ′ is an axiom set. If C ′ and D
are both false atomic, a reduction rule for Γ′,Γ ` C ′ is easily obtained from
the reduction rule R1 for Γ ` D.) Gentzen proved that P is inductive on TS.
So by the Bar Theorem, 〈Γ, D ` C〉 has the property P , i.e. Γ ` C has a
reduction rule.

But a cynic might wonder at Brouwer’s magic: simply by calling [R#
0 ]

a ‘spread’ he could conclude from the fact that TR0 is well-founded that it
satisfies the induction principle. But lets look at Brouwer’s argument for the
Bar Theorem. It begins with the doctrine that a proof of such an implication
consists in a method of transforming a proof of the antecedent [conditions
i)-iii)] into a proof of the conclusion. (This simply reflects the intuitionistic
meaning of implication.) Now consider the condition i). We say that B bars
the S-admissible sequence σ if each θ ∈ [S] of which σ is an initial segment
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has an initial segment in B. So condition i) states that B bars 〈a0〉. Brouwer
argues—and this is the crucial step—that ultimately the only way to prove
that B bars 〈a0〉 is by using the axioms

B bars σ

for each σ ∈ B and the inferences:

· · · B bars σi · · ·
(all i)

B bars σ

where the σi are all the S-admissible one-element extensions of σ. Thus,
to have a proof that B is a bar on S is to have an (in general infinitary)
deduction tree D using just these axioms and inferences. So then, using
the conditions ii) and iii) of the Bar Theorem, the proof of its conclusion is
obtained by replacing the property ‘B bars x’ by the property P (x) in the
deduction. This is proved by induction on D. This is permissible because
deductions, unlike reduction trees, satisfy the principle of induction.

Of course, in our case we concluded i), i.e. that [R0] is a bar on S = R#
0 ,

not by such a deduction of the statement that [R0] bars 〈Γ, D ` C〉, but from
the fact that TR0 is well-founded. But, whether or not one finds the crucial
step in Brouwer’s argument for the Bar Theorem convincing in general, its
application in this instance requires that the proof of well-foundedness of TR0

ultimately be a deduction D in the above sense that [R0] is a bar on R#
0 . This

is what is presupposed by an application of the Bar Theorem to the proof of
Gentzen’s Lemma.

But now let D′ be obtained by replacing

[R0] bars 〈Γ, D ` C, . . . ,Γ′, D ` C ′〉

throughout D by
Γ′, D ` C ′

Then D′ is a deduction tree for Γ, DC. Indeed, it is just the R0-reduction

tree TR0 read top-down. So the application of the Bar Theorem already pre-
supposes a deduction tree for Γ, D ` C. Thus:

It was not the Bar Theorem that Gentzen needed; it was the switch from the
basic notion of a reduction tree to that of a deduction tree. Reading the above
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proof of the Lemma with R0 and R1 understood as rules for deduction rather
than of reduction, the square bracketed inductions are valid.

5. Cut-elimination. Staying within the domain of deduction trees then,
rather than reduction trees, Gentzen’s Lemma is constructively valid. If we
add to the rules of inference given in §1 the cut rule

∆, D ` C ∆ ` D
∆ ` C

then we have one formalization of the rules of inference for first-order num-
ber theory with the ω-rule. D is called the cut-formula of this cut. Call
deductions in this system deduction trees with cuts. By Gentzen’s Lemma,
every deduction tree with cuts can be reduced to one without cuts. Simply
iterate the operation of eliminating the top-most cuts.

In terms of ordinal bounds on the height of the trees, this is not the most
efficient way to eliminate cuts. The more efficient method is essentially the
transfinite version of Gentzen’s Hauptsatz for first-order logic in the sequent
calculus. The cut-degree of a deduction is the least ordinal greater than the
rank |D| of D for all cut-formulas D in it (where |A| = 0 for atomic A,
|¬A| = |A|+ 1, and |

∧
iAi| = lubi(|Ai|+ 1)). If α is the height of the given

deduction of Γ ` A and its cut-degree is some m < ω, the bound we get on
the height of the cut-free deduction is 2αm, where 2α0 = α and 2αn+1 = 22αn .
The efficient proof proceeds by eliminating cuts of maximum rank m + 1,
replacing them with cuts of maximum rank m at the cost of increasing the
height of the deduction from α to 2α. (If the cut-degree is ω, then the bound
is εα.) The bound we get from Gentzen’s Lemma is much higher.

6. The Sequent Calculus and the Set Calculus. If we were to admit
an arbitrary sentence B in the rule of

∧
−L

Γ,
∧
iAi, Aj ` B (some j)

Γ,
∧
iAi ` B

instead of restricting it to B =⊥, the rules of inference would be the natural
cut-free rules for first-order number theory with the ω-rule with the logical
constants ∀,∧,¬. This would of course imply a greater freedom for a reduc-
tion rule R for Γ ` A. Namely the reducts of ∆ ` B could be of the form
∆′ ` B even when B is composite, and not just of the form ∆ ` B′. So,
faced with an admissible 〈Γ ` A, . . . ,∆ ` B〉, where B is composite, R could
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choose the one-element extension 〈Γ ` A, . . . ,∆ ` B,∆′ ` B〉 rather than
being restricted to one of the form 〈Γ ` A, . . . ,∆ ` B,∆ ` B′〉. By induction
on the sentence B, it is easy to see that for all B, if there is a reduction rule
for Γ,

∧
iAi, Aj ` B, then there is one for Γ,

∧
i, Ai ` B. So the general case

of the inference is derivable from the special case.
But why did Gentzen restrict reductions to the case B =⊥? The answer

is that it leads to a simpler proof of his main lemma—or more accurately, in
view of the gap in his argument, it seems fair to answer rather that it made
it easier for him to convince himself that there was no gap. Let D =

∧
iDi,

R0 be a reduction rule for Γ, D ` C and R1 a reduction rule for ∆ ` D
and suppose that R0 chooses the reduct Γ, D,Dj ` C. By induction (which
we have now justified by replacing the reduction trees by the correspond-
ing deduction trees) we obtain a reduction rule for Γ, Dj,∆ ` C. Now, on
Gentzen’s more restricted notion of reduction, the only possible reductions
of ∆ ` D are all the sequents ∆ ` Di, including the case of ∆ ` Dj. So
now the cut is reduced to the simpler cut-formula Dj. But with the more
liberal notion of a reduction, the reduct of ∆ ` D that R1 chooses might
be of the form ∆′ ` D. Clearly, in this case, the proof that cuts can be
eliminated involves more symmetry between R0, the deduction of Γ, D ` C
and R1, the deduction of ∆ ` D. In fact it requires induction, not on TR0 ,
but on TR0 × TR1 . Gentzen’s attempt to avoid/disguise the induction would
certainly have been even less plausible in this case.

The symmetry that is revealed by taking the more general form of
∧

-
elimination is made even more evident with two changes in the formalization.
One is a change in the logical constants, replacing negation ¬ by disjunction ∨
and existential quantifier ∃, except we will admit negation of atomic formulas.
Classically at least, if A is atomic, the choice between A and ¬A as more
basic is arbitrary. We will refer to them both as prime sentences. Similarly,
there is no ground for treating ¬

∧
iAi as more logically complex than

∧
iAi:

for it is expressed by
∨
i ¬Ai, where

A0 ∨ A1 :=
∨
i<2

Ai ∃xA(x) :=
∨
i<ω

A(̄i).

So henceforth, sentences will be built up from prime sentences by means of∨
and

∧
. The complement Ā of a sentence A is defined by

Ā := ¬A ¬A := A
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if A is atomic and ∨
i

Ai :=
∧
i

Ai
∧
i

Ai :=
∨
i

Ai

So negation is no longer a logical constant: it is only used to arbitrarily mark
one of two complementary prime sentences.

The other change is this: there is no reason in the classical sequence cal-
culus to restrict sequents to one succedent; but moreover, there is no reason
to retain sequents at all. The sequent A1, . . . , Am ` B1, . . . , Bn has the same
classical meaning as ` A1, . . . , Am, B1, . . . , Bn, and so we may as well just take
as the units of deduction the corresponding sets {A1, . . . , Am, B1, . . . , Bn}the
set {A1, . . . , Am, B1, . . . , Bn} understood as expressing the disjunction of its
elements. In place of axiom sequents, we now have axiom sets, i.e. sets of
sentences containing a true prime sentence.

The rules of inference now take the simple form:

Γ0,
∨
iAi, Aj (some j)

Γ,
∨
iAi

and

· · · Γj,
∧
iAi, Aj · · ·

(all j)
Γ,

∧
iAi

and the cut-rule takes the form

Γ, A Γ, Ā
Γ

where A is called the cut-formula. Gentzen’s Lemma now takes the form
that, given cut-free deduction D0 of Γ, A and D1 of Γ, Ā, there is a deduction
of Γ involving only cuts with cut-formulas of rank < |A|. The argument is
again essentially Gentzen’s, except that symmetry demands again that the
proof must be by induction on D0 ×D1 rather than on just one of the trees
De. Indeed, the proof is just an extension of Gentzen’s proof of his Hauptsatz
for propositional logic in the framework of the sequent calculus to the case
of infinite disjunctions and conjunctions.
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