Chapter 2

Constrained Optimization

2.1 Introduction

This chapter introduces and explains the fundamental mathematical tools
that we will need to study consumer theory. It is a self contained sum-
mary of multivariable calculus and constrained optimization. It assumes
familiarity with calculus of a single variable.

Multivariable calculus is a pre requisite to understanding constrained
optimization which is the fundamental technique that economists use to
analyze economic problems. Consider the economic problem faced by con-
sumers, the subject of Part I. Consumers are rational in the sense that
they use their limited resources to obtain the maximum amount of hap-
piness that they can. They must choose the combination of consumption
that grants them the highest possible level of utility. Choice and trade-ofts
are at the root of any economic problem. If consumers were to get utility
from only one good, the solution to the economic problem would be triv-
ial: consume as much as possible. In order to have a meaningful economic
problem, we need to provide consumers with a choice. In this case the
solution to the economic problem is not as obvious. Constraints illustrate
the fact that resources are limited and the Calculus is the tool that we use
to implement the rationality of consumers. Constrained optimization is,
therefore, the way in which we study the interaction between scarcity and
rational choice.

We will discuss two solution methods to a constrained optimization
problem. First, we will study the substitution method, which essentially
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16 CHAPTER 2. CONSTRAINED OPTIMIZATION

eliminates the constraint and one variable; then, we will proceed to study
the method of Lagrange multipliers which introduces an extra variable
and treats the constraint explicitly. We will also explain why these two
methods are equivalent. That is, why they give the same solution to well
posed economic problems. However, we will highlight the benefit of each
solution method, in terms of the economic intuition that we derive from
each one.

We will use techniques from the Calculus to attack the problem of com-
parative statics next. Comparative statics concerns the effect that a
change in parameters has on the solution to our problem.

2.2 Partial Derivatives

Suppose that we have a function of two variables. Call it f (z,y). We want
to know how rapidly the function changes when the variables change. The
problem is that if both variables change at the same time, it may be difficult
to isolate the effect of, say, the change in z. Partial derivatives allow us
to quantify the effect on a function of the change in one variable when all
others held constant.

Suppose we take the function f (z,y), but we evaluate it at a fixed value
of y, say y. Now we have a function of only one variable, since now the value
of y is fixed, and all the differentiation rules from single variable calculus
apply. Our function is now equal to:

f(z,y=1y).

Suppose that I want to know how rapidly the function is changing in the
x direction. Then, I take the derivative with respect to z of f (z,y =v) :

fo— of (x,y) _df (z,y=9)
‘ Oz dx '

Notice that what we are doing is holding the value of y constant and
taking the derivative with respect to x. The derivative will, in general, be
a function of both z and y. This means that the magnitude of f, depends
on the value of y at which we evaluate f,.

Example 1 Suppose the f (z,vy) = z*y* . Then,

0
— 8_£ — axozflylfa

fe
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and

9,
fy= 8_£ =(1—a)z™y ~.

Notice how we hold constant one of the variable and then we look for
the magnitude of change in the direction of the other variable, treating the
function as if it were a single variable function.

2.3 Total Derivatives

Suppose, now, that both x and y change simultaneously.. We want to find
the effect of this change on f. We will compute the total derivative of f
by decomposing the total change in f as the sum of two partial changes.
First, hold z fixed and compute the change in the direction of y. This is
fy. Multiply f, by the magnitude of the change, say, dy. Then, f,dy is the
magnitude of the change in f due to the change in y holding x constant.
To find the total change, add to this quantity the effect of the change in z
holding y constant: f.dz. The total differential is equal to:

df = fodz + f,dy.

Suppose that we divide both sides by dz :

df dy

de fo =1y dz’

This expression tells us that the total change in f due to a change in x
is the sum of a direct effect and an indirect effect. The direct effect,
fz, holds y fixed. The indirect effect is the extra change that arises from
the effect that x may have on y, Z—g, and the subsequent effect that y has
on f, holding x constant, f,. Suppose that we take y to be constant as we
do in partial differentiation. Then, Z—z = 0 and the indirect effect vanishes.
The change in f is simply given by the direct effect which is the partial

derivative with respect to x :

4@ _

dz = fa

the total effect is simply the partial effect.
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2.4 The Substitution Method

The standard constrained optimization problem is given by:

[P]: max f(z,y)
{z,y}
s.t. g(z,y)=m

Notice that there are three variables in this problem. We wish to select
the control variables {z,y} to make the objective function, f (z,y), as
large as possible, as long as when we plug these values into the constraint,
g (x,y), we obtain exactly m. The third variable, m, is a parameter, which
we may take as a given of the problem.

The substitution method is very intuitive. First we solve the con-
straint for one of the control variables, say y, as a function of the other
control variable, z, and the parameter m:

y=h(x,m).

Next we substitute y out of the problem to obtain the following optimization
problem, which we label [S]:

[S]: max f(z, h(z,m))
The substitution method allows us to convert a problem that we are not
quite sure how to solve into a single variable calculus problem that we can
solve by taking a derivative. The first order condition of this problem is
given by the following expression:

@]: fot fyl2

Notice that we use the chain rule to obtain the first order condition. We
need it because the constraint does not allow us to select z and y inde-
pendently of each other; any optimal choice must satisfy the constraint.
Therefore, when we vary z a little bit, we need to consider the effect that
varying x has on our choice of y. In other words, because the solution must
satisfy the constraint the effect that changing x has on the feasible value of
y (this happens through %) must affect our choice of x.

There are several points that deserve special mention. First, two letters
appear in the first order condition: z and m. But, remember that m is a



2.4. THE SUBSTITUTION METHOD 19

parameter so it is given to us and we consider it a number. Therefore, the
solution to the problem is given by the value of z that makes the first order
condition exactly equal to 0. It turns out that since we do not have a value
for the parameter m, the maximizing value of x will be a function of m.
Also, we will place a star on the maximizing value of z, z*, to indicate that
x* is a number. Therefore, the maximizing value of x is written as z* (m)
and it solves the following equation:

dh

To obtain the maximizing value of y, we plug z* into the implicit function
we obtained above:
Y (m)=h(z" (m),m).

Therefore, the solution to [P] when we use [S] is given by two equations:

dh
Yy (m) = h(z"(m),m).
The first condition determines the maximizing value of x and the second
utilizes the constraint to obtain the maximizing value of y. It is important
to note that we use the constraint twice. First we use it in the maximization
to replace the value of one variable. Second, we use it to recover the optimal

value of the variable we substituted out.
Consider the following simple example.

Example 2 Suppose we want to solve the following maximization problem:

max log (z) + log (y)
T,y
s.t. rt+y=m

Then,
f(z,y) = log(x)+log(y)
g(z,y) = Tty

Solving for h (x,m), we obtain

y=m—z=h(z,m),



20 CHAPTER 2. CONSTRAINED OPTIMIZATION

and substituting for y we obtain the following equivalent maximization prob-

lem:
max log (z) + log (m — x)

The first order condition for this problem is

z]: L+-1-(-1) = 0.

m—x

and solving for x* we obtain

. m
r=—.
2
Then, we use y = h (r,m) =m — x to obtain the optimal value of y :
.. m
Yy = 5

Notice that as we stated previously, the solution expresses the choice vari-
ables, in this case x and y, as functions of the parameters, in this case
m.

Alternatively we could substitute in for z after taking the first order
conditions. We show the equivalence of both procedures in the following
example.

Example 3 Consider the same maximization as in the previous example.
In the text we derived the two conditions that determine the optimum values
of x and y, which we reproduce below for convenience:

Yy (m)=h(z"(m),m)
dh
«+ fy—=0.
fe - fu dz
The first condition is a simple manipulation of the constraint, evaluated at
the optimal value. The second is the first order condition with respect to
x, also evaluated at the optimum. In our simple maximization problem the
first condition is given by
y* —m — IE*

and the second is given by

1 1

—+—(-1)=0.
oy
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If we substitute for y* in the second condition, the equations determining
the optimum values of x and y are given by:

1

x* m— x*

(—1)=0

which 1s precisely the first order condition that with respect to x of the
previous problem.

2.5 The Method of Lagrange Multipliers

Instead of replacing the constraint into the objective function, the method
of Lagrange multipliers introduces one more variable, A, into the prob-
lem. This variable is known as the Lagrange multiplier and has an
important economic interpretation which we will get to later. The method
of Lagrange relies on maximizing an associated function, called the La-
grangian. We form the Lagrangian by adding A times the constraint to the
objective function and maximizing over the control variables and also the
Lagrange multiplier:

[L]: max f(z,y)+A(m—g(x9))
{2y}

In order to maximize the Lagrangian, we take partial derivatives with
respect to the three control variables:

Yl fy_Agy
Al m—g(z,y)

and to obtain the maximizing values of the controls, z*, y*, \*, we set these
equations equal to zero and solve them simultaneously.

First we note that this method treats the constraint explicitly, therefore,
there is no chain rule effect in the first order conditions. In the process
of taking first order conditions, we treat all variables except the control
variable at hand as constant. Thus, we take only partial derivatives and not
total derivatives. In this case, the solution satisfies the constraint because
the constraint is one of the conditions that must be explicitly satisfied.
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Example 4 Consider the same maximization problem that we solved via
the substitution method in the previous section. That ism suppose we want
to solve

max log (x) + log (y)

@y

s.t. rt+ty=m

using Lagrange multipliers. First we form the Lagrangian
L] : {maf\c} log () +1log (y) +A(m—z—y)
x7y7

Now we find the first order conditions by taking derivatives with respect to
z, y, and A and setting them equal to 0 :

x] : xi —AN*=0

y]: yL —-A'=0

Al m—z—y =0.
Now we obtain the optimality condition by eliminating \™ from [x] and [y] :

=y

This give us the relationship between x and y when they are optimally cho-

sen. [A] is the feasibility condition because it pins down the level of x and
y consistent with the available resources:

" +y=m.

We have two equations and two unknowns which we can solve for x* and
y*. The solution is given by:

precisely what we obtained with the substitution method. Recall, however,
that X is also a choice variable and, consequently, we must solve for it too.
We can obtain it either from [x] or [y] :

2
A==
m

Therefore, notice that both methods give us the same solution, but
Lagrange’s method give us more information! In addition to the optimal
values of x and y, it also tells us the value of A. We will explore the reasons
for the equivalence of the two problems in the following section. Then, we
will provide the economic interpretation of the Lagrange multiplier.
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2.6 Equivalence of [S] and [L]

Both methods are equivalent if they yield the same solution to the con-
strained optimization problem. That is we should get the same optimal
values of x and y. This will occur if both methods have the same first or-
der conditions or if we can obtain the first order conditions of one method
from the first order conditions of the other. Certain conditions must be
satisfied in order for the solution to the problem to exist. We will leave
these restrictions unstated but we will provide an example where the solu-
tion method fails after the simple proof. The type of problem that we are
interested in solving will not be problematic so you can use either method
with confidence.

Now, on to the proof. We want to show that [z] and [y] of [L] are
equivalent to [z] of [S]. We will begin by showing that we can get the
necessary conditions of [S] from those of [L]. Therefore we need to eliminate
A and consolidate the remaining conditions into one equation that allows
us to recover the value of the control variable from [S]. Thus, we look for
a value of A that leads both sets of first order conditions to be equivalent.
In both cases, the constraint provides the value of the other control.

First, we set the first order conditions of [L] equal to zero. Let us solve
[y] for A™ and obtain:

£

Gy .
If we plug in this value of A* into [y] for [L] the first order condition holds
trivially:

A=

fy— =gy, =
Yy gyy

because we used that same equation to find A™ so it must hold. If we replace
the value for \* into [z] of [L] we obtain:

f
Je— _ygx
9y
Recall that all partials are functions of z* and y* only.

Now, we look at [S]. The first order condition of this problem is given
by:

dh
fx + fy% - O:
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where
y=h(x,m).

We can use implicit differentiation on the constraint to obtain Z—g. We
know that:
godz + gydy =0

. d .
and solving for 7 we obtain:

B _ g _dh
dv g, dzx

where the last equality follows because we obtained the implicit function
h (z,m) by solving the constraint for y. Notice that there is an implicit
assumption here: g, # 0 must hold everywhere (for every possible z,y
combination) because otherwise we would be dividing by 0 and the entire
procedure would break down.

. d . oy .
Since ¥ = —g—z, we can rewrite the first order condition we obtained
Y
from [S] as:

which we can re-write as:

9y

so the first order condition [z] of [L] holds too. The last piece of information
is provided by the constraint which in [S] we substituted into the first
order condition. We need it to recover the optimal value of y, y*. In [L], we
consider it explicitly and use it, also to obtain the optimal value of y. Thus,
we have shown that we can get [S] from [L]. We can show that we can get
L] from [S] by working backwards. This establishes the equivalence of [S]
and [L].

2.7 The Economic Interpretation of A\

If [S] and [L] are equivalent, then why bother with [L]? The answer to this
question is that A provides important economic information. Remember
that we will be interested in obtaining information about behavior, so that
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we are not done once we have obtained the solution. In addition, we want
to know how the solution varies when we change the parameters of the
problem; that is we wish to compute comparative statics properties. A
is the answer to one such question.

A is often referred to as the shadow value of the constraint (in economic
applications it is called the marginal utility of income). It tells us by how
much the maximum value of the objective function changes when we relax
the constraint by one unit:

daf~
dm

A

We know that the solution to [L] can be written as z* (m) and y* (m), so
that the maximum value of the objective function is obtained by plugging
the maximizers into it:

fr(m) = f(z"(m),y"(m)).
If we take the derivative of the objective function with respect to m, we

obtain: i 1o T
Ly =

but if we recall that [z] and [y] of [L] are given by

dm dm’

22 fi—Ngi=0
i fy—Ng =0

we can re-write the derivative as:

df :A*<*dl’ n *dy>,

dm “dm 9y dm

by solving the first order conditions for f; and f; and, then, substituting

them out in the expression for % above.
We also know that the constraint must hold with equality:

g(z" (m),y" (m)) = m.

Therefore, if we take the derivative of the constraint with respect to m, we

obtain 1o T
« AT L OY
=1
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which we can use to substitute and obtain the desired result:

df

dm

A"

This result is an example of comparative statics. It tells us how the
solution to [P] varies as we vary the parameters of the problem. Throughout
the course we will be interested in studying the properties of a two versions
of [P] : the problems of utility maximization and expenditure minimization.

2.8 The Envelope Theorem

2.8.1 Unconstrained Optimization

Suppose that we solve the following maximization problem:
max f (z;a),

where x is a choice variable and a is a parameter. The first order condition
of this problem is:
fo(50) = 0.

The optimal choice of z is a function of a : z* (a) . Then the maximum value
of f is given by:
[z (a),a),

which is only a function of a.

Now we want to see the effect that a change in a has on f (z* (a),a).
Therefore, we compute the total derivative. We not only want the direct
effect of a, but also the effect that a has on f, through z* :

df dz
da =t gy

Notice, though, that the first order condition of the maximization states
that f, = 0. Therefore,
df

da fa-

That is, the total effect is equal to the partial effect! This happens
because when we vary a we adjust the choice of x* optimally. This requires
that f, = 0 at the new choice. Consequently, the envelope theorem tells
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us that when we look for the derivative of a maximum value function with
respect to a parameter, we do not need to worry about the indirect effects of
this parameter, but we can focus only the direct effect. The reason: choice
variables will adapt to their optimal values, so that first order conditions
will be satisfied at every point of the maximum value function.

2.8.2 Constrained Optimization

Suppose, now, that we have a function of two variables, subject to a con-
straint. Let us verify the envelope theorem in this case. By establishing this
result we will understand the significance of the Lagrange multiplier from
another very useful perspective. Let’s consider the standard maximization
that we have been studying throughout this chapter:

max  f(z,y)
zy

)

st. g(z,y)=m

We wish to consider the effect that varying m has on the maximum attain-
able value of f (z,y).

If we solve the maximization problem using Lagrange multipliers we
form the Lagrangian

[L]: max f(z,y) +A(m—g(z,y))
{z,y,A}

Then we find the first order conditions by taking derivatives with respect
to z, vy, and A and setting them equal to 0 :

[z] 1 fa(z"(m),y™ (M) — A" (m) gz (2" (M), y" (m)) =0
yl: fy (@ (m),y" (m)) — A" (m)gy (z" (m),y" (m)) =0
Al m—x"(m)—y (m)=0.

As the above first order conditions make clear, the solution is the set of
choice variables, z, y, and A, as functions of the parameters, which in this
case is m. These are the values of the choice variables that satisfy the first
order conditions at equality.

If we evaluate the objective function at the optimal values we obtain
the maximum value function:

frm) = f(" (m),y" (m))
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= L"(m).

where the second equality follows because at the optimum the constraint
is satisfied with equality, so we are adding zero to the maximized value of
f (z,y). We wish to determine the eftect that varying m has on f*(m). In
other words, we want to find an expression for%. By the second equality
above, we know that
df* (m) _ dL" (m)
dm dm
The envelope theorem tells us that

dL (z" (m),y" (m))  OL(z" (m),y" (m),\" (m))
dm N om '
In other words, the total effect that a change in m has on the optimized
value of the Lagrangian is equal to the partial effect that m has on the
optimal value of the Lagrangean. Since at the optimum the maximum
value of the Lagrangian is equal to the maximum value of f, the envelope
theorem, applied to the Lagrangian establishes that:

df* (m) _ dL* (m)
dm  dm
Let’s explore why the envelope theorem holds. If we take the total
derivative of L (z*(m),y* (m), A" (m)) with respect to m, we obtain must
consider the direct and the indirect effects. The total derivative would,
then, be the sum of both. The total derivative is given by:
dL(z" (m),y" (m),\"(m)) OL"dxz"(m) OL"dy (m) OL"dX (m) OL”
dm 9z dm +8y dm +8)\ dm +8m'
where the first three terms are the indirect effect —they quantify the effect
that changing m has on L* through xz, y, and A — while the last term is the
direct effect that m has on L*. However, the first three terms must equal

zero because they precisely the three first order conditions evaluated at the
maximum:

=" (m).

oL~

o fe 9e
8L* * * ok

oy fy—Xg,=0
oL
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Also, note that the direct effect is:
oL*
om

Putting all these results together, the envelope theorem for con-
strained optima tells us that:

dL*(m) OL" (m)
dm —  Om

=\"(m).

But, since at the maximum the optimal value of the Lagrangian equal the
optimized value of the objective function:

df*(m) OL"(m)
dm Om

Since the direct effect is simply the multiplier we obtain the envelope the-
orem in its usual form: .
df* (m)

dm

Economically speaking the Lagrange multiplier can be interpreted as
the shadow price associated with the constraint. It tells us how much we
would be willing to pay to have one more unit of m. Alternatively, it tells
us the cost of violating the constraint infinitesimally. It tells us the cost of
using slightly more m or, equivalently, it tells us the cost of using all but a
tiny little bit of m.

Finally, one remark on the mathematical argument we have just used
to establish our result. We did not use any math that we did not use in the
unconstrained case. The key insight is to realize that since at the optimum
the constraint must hold with equality, we can look at the total derivative
of the optimized Lagrangian instead of the optimized value of the objective
function. This key step allows us to transform a constrained problem into
an unconstrained one! We learned how to analyze this problem in the
previous section.

= A" (m)

Example 5 Let’s continue with the problem we have been solving through-
out this chapter.

2.9 Second Order Conditions

To be completed.
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2.10 The Kuhn-Tucker Theorem

To be completed.

2.11 Exercises

Exercise 2.11.1 In the text we solved

max log (x) + log (y)
T,y
s.t. rt+ty=m

via the substitution method and via Lagrange’s method. Follow the proof
of the equivalence of both methods to establish equivalence in the context of
this problem. That is, show that you can obtain the first order conditions
of [S] from the first order conditions of [L] and vice-versa.



