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12.1. FÖRSTER RESONANCE ENERGY TRANSFER 
Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic 

excitation from a donor molecule to an acceptor molecule:   

 * *D A D A+ → +  (12.1) 

This electronic excitation transfer, whose practical description was first given by Förster,* arises 

from a dipole-dipole interaction between the electronic states of the donor and the acceptor, and 

does not involve the emission and re-absorption of a light field.  Transfer occurs when the 

oscillations of an optically induced electronic coherence on the donor are resonant with the 

electronic energy gap of the acceptor.  The strength of the interaction depends on the magnitude 

of a transition dipole interaction, which depends on the magnitude of the donor and acceptor 

transition matrix elements, and the alignment and separation of the dipoles. The sharp 1/r6 

dependence on distance is often used in spectroscopic characterization of the proximity of donor 

and acceptor.  

To describe FRET, there are four electronic states that must be considered: The electronic 

ground and excited states of the donor and acceptor. We consider the case in which we have 

excited the donor electronic transition, and the acceptor is in the ground state. Absorption of light 

by the donor at the equilibrium energy gap is followed by rapid vibrational relaxation which 

dissipates the reorganization energy of the donor λD over the course of picoseconds. This leaves 

the donor in a coherence that oscillates 

at the energy gap in the donor excited 

state ( )D
eg D Dq dω = . The time-scale for 

FRET is typically nanoseconds, so this 

preparation step is typically much 

faster than the transfer phase.  For 

resonance energy transfer we require a 

resonance condition, so that the 

oscillation of the excited donor 

                                                 
*  Th. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolecularen Uebergangs von 

Electronenanregungsenergie,” Z. Naturforsch, 4a, 321 (1949); “Zwischenmoleculare Energiewanderung und 
Fluoreszenz,” Ann. Physik 2, 55 (1948); “Transfer Mechanisms of Electronic Excitation,” Discussions Faraday 
Soc. 27, 7 (1959).  
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coherence is resonant with the ground state electronic energy gap of the acceptor ( )0A
eg Aqω = . 

Transfer of energy to the acceptor leads to vibrational relaxation and subsequent acceptor 

fluorescence that is spectrally shifted from the donor fluorescence. In practice, the efficiency of 

energy transfer is obtained by comparing the fluorescence emitted from donor and acceptor.  

 Since the donor and acceptor are weakly coupled, we can write our Hamiltonian for this 

problem in a form that can be solved by perturbation theory 

 
0

0
* * * *

D A

H H V

H D A H D A A D H A D

= +

= +

 (12.2) 

Here DH  is the Hamiltonian of the system with the donor excited, and AH  is the Hamiltonian 

with the acceptor excited.  *D A  represents the electronic and nuclear configuration for both 

donor and acceptor molecules, which could be more properly written *
*

AD
d n a n .  The 

interaction between donor and acceptor takes the form of a dipole-dipole interaction:  

 ( )( )
3

3 A D A Dˆ ˆr r
V

r
μ ⋅ μ ⋅ −μ ⋅μ

= , (12.3) 

where r is the distance between donor and acceptor dipoles and r̂  is a unit vector that marks the 

direction between them. The dipole operators here are taken to only act on the electronic states 

and be independent of nuclear configuration, i.e. the Condon approximation. We write the 

transition dipole matrix elements that couple the ground and excited electronic states for the 

donor and acceptor as 

 * *
* *

A AA A A
A A A Aμ = μ + μ  (12.4) 

 * *
* *

D DD D D
D D D Dμ = μ + μ  (12.5) 

For the dipole operator, we can separate the scalar and 

orientational contributions as  

 ˆA A Auμ μ=  (12.6) 

This allows the transition dipole interaction in eq. (12.3) to be 

written as   

 3
* * * *

A BV D A A D A D D A
r
κ ⎡ ⎤= μ μ +⎣ ⎦  (12.7) 

All of the orientational factors are now in the term κ: 
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 ( )( )3 A D A Dˆ ˆ ˆ ˆ ˆ ˆu r u r u uκ = ⋅ ⋅ − ⋅ . (12.8) 

We can now obtain the rates of energy transfer using Fermi’s Golden Rule expressed as a 

correlation function in the interaction Hamiltonian:   

 ( ) ( ) ( )2
2 2

2 1 0k k k I Iw p V dt V t V
+∞

−∞

π
= δ ω −ω =∑ ∫  (12.9) 

Note that this is not a Fourier transform! Since we are using a correlation function there is an 

assumption that we have an equilibrium system, even though we are initially in the excited donor 

state.  This is reasonable for the case that there is a clear time scale separation between the ps 

vibrational relaxation and thermalization in the donor excited state and the time-scale (or inverse 

rate) of the energy transfer process.  

Now substituting the initial state *D A=  and the final state *k A D= , we find 

 ( ) ( ) ( ) ( )
2

2 6

1 0 0* *
ET D A D Aw dt D A t t D A

r
+∞

−∞

κ
= μ μ μ μ∫  (12.10) 

where ( ) D DiH t iH t
D Dt e eμ μ −= .  Here, we have neglected the rotational motion of the dipoles. 

Most generally, the orientational average is 

 ( ) ( )2 0tκ = κ κ . (12.11) 

However,  this factor is easier to evaluate if the dipoles are static, or if they rapidly rotate to 

become isotropically distributed.  For the static case 2 0 475.κ = . For the case of fast loss of 

orientation: ( ) ( ) 22 0 2 3K Ktκ → = κ = .   

Since the dipole operators act only on A  or *D , and the D  and A  nuclear coordinates 

are orthogonal, we can separate terms in the donor and acceptor states. 

 
( ) ( ) ( ) ( )

( ) ( )

2

2 6

2

2 6

1 0 0

1

* *
ET D D A A

* *D D AAC t C t

w dt D t D A t A
r

dt
r

+∞

−∞

+∞

−∞

κ

κ

= μ μ μ μ

=

∫

∫
 (12.12) 

The terms in this equation represent the dipole correlation function for the donor initiating in the 

excited state and the acceptor correlation function initiating in the ground state. That is, these are 

correlation functions for the donor emission (fluorescence) and acceptor absorption. 
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Remembering that *D  represents the electronic and nuclear configuration *
*

Dd n , we can use 

the displaced harmonic oscillator Hamiltonian or energy gap Hamiltonian to evaluate the 

correlation functions. For the case of Gaussian statistics we can write  

 ( )
( )2 2

* * *D D

*
D D*DD

DD

i t g t
C t e

⎛ ⎞
⎜ ⎟
⎝ ⎠

− ω − λ −
= μ  (12.13) 

 ( ) ( )2
*AA

*AA
AA

Ai t g t
C t e

− ω −
= μ . (12.14) 

Here we made use of 

 2* * DD D DD
ω = ω − λ , (12.15) 

which expresses the emission frequency as a frequency shift of 2 Dλ  relative to the donor 

absorption frequency. 

The dipole correlation functions can be expressed in terms of the inverse Fourier 

transforms of a fluorescence or absorption lineshape:   

 ( ) ( )1
2* *

i t D
fluorD D

C t d e
+∞ − ω

−∞
= ω σ ω

π ∫  (12.16) 

 ( ) ( )1
2

i t A
AA absC t d e

+∞ − ω

−∞
= ω σ ω

π ∫ . (12.17) 

To express the rate of energy transfer in terms of its common practical form, we make use of 

Parsival’s Theorem, which states that if a Fourier transform pair is defined for two functions, the 

integral over a product of those functions is equal whether evaluated in the time or frequency 

domain: 

 ( ) ( ) ( ) ( )1 2 1 2
* *f t f t dt f f dω ω ω

∞ ∞

−∞ −∞

=∫ ∫ . (12.18) 

This allows us to express the energy transfer rate as an overlap integral JDA between the donor 

fluorescence and acceptor absorption spectra:   

 ( ) ( )
2

2 2

2 6

1
* *

A D
ET abs fluorDD AA

w d
r

+∞

−∞

κ
= μ μ ω σ ω σ ω∫ . (12.19) 

Here σ  is the lineshape normalized to the 

transition matrix element squared: 
2/σ = σ μ .  The overlap integral is a 
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measure of resonance between donor and acceptor transitions. 

So, the energy transfer rate scales as 6r− , depends on the strengths of the electronic 

transitions for donor and acceptor molecules, and requires resonance between donor fluorescence 

and acceptor absorption. One of the things we have neglected is that the rate of energy transfer 

will also depend on the rate of excited donor state population relaxation. Since this relaxation is 

typically dominated by the donor fluorescence rate, the rate of energy transfer is commonly 

written in terms of an effective distance R0, and the fluorescence lifetime of the donor Dτ : 

 
6

01
ET

D

Rw
r

⎛ ⎞= ⎜ ⎟τ ⎝ ⎠
 (12.20) 

At the critical transfer distance R0 the rate (or probability) of energy transfer is equal to the rate 

of fluorescence.  R0 is defined in terms of the sixth-root of the terms in eq. (12.19), and is 

commonly written as  

 ( ) ( )2
fluor6

0 5 4 4
0

9000ln(10)
128

D
D AR d

n N
φ κ σ ν ε ν

ν
π ν

∞

= ∫  (12.21) 

This is the practical definition which accounts for the frequency dependence of the transition-
dipole interaction and non-radiative donor relaxation in addition to being expressed in common 
units. ν  represents units of frequency in cm-1. The fluorescence spectrum D

fluorσ must be 
normalized to unit area, so that ( )fluor

Dσ ν  is expressed in cm (inverse wavenumbers). The 
absorption spectrum ( )Aε ν must be expressed in molar decadic extinction coefficient units 
(liter/mol⋅cm). n is the index of refraction of the solvent, N is Avagadro’s number, and φD is the 
donor fluorescence quantum yield.  


