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The authors propose a strategy for studying the effects of time-varying instruc-
tional treatments on repeatedly observed student achievement. This approach
responds to three challenges: (a) The yearly reallocation of students to class-
rooms and teachers creates a complex structure of dependence among
responses; (b) a child’s learning outcome under a certain treatment may depend
on the treatment assignment of other children, the skill of the teacher, and the
classmates and teachers encountered in the past years; and (c) time-varying
confounding poses special problems of endogeneity. The authors address these
challenges by modifying the stable unit treatment value assumption to identify
potential outcomes and causal effects and by integrating inverse probability of
treatment weighting into a four-way value-added hierarchical model with pseu-
dolikelihood estimation. Using data from the Longitudinal Analysis of School
Change and Performance, the authors apply these methods to study the impact
of ‘‘intensive math instruction’’ in Grades 4 and 5.
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1. Introduction

Instructional practice is the proximal cause of students’ academic learning.

Identifying effective instructional interventions has therefore been a central aim

of educational research and one that has attracted especially widespread interest
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recently (Cohen, Raudenbush, & Ball, 2003). Causal-comparative studies of

instruction tend to be bounded by a single academic year. Although understand-

ing instructional effects during a single year is necessary, it is essential to under-

stand how sequences of instruction extending over 2 or more years cumulatively

affect learning. The effect of a multiyear sequence of instructional experiences

cannot logically be equated to the sum of the effects of instruction occurring

each year. For example, if the instruction in a later year builds effectively on

students’ instructional experiences in the earlier years, the benefit of the

sequence may substantially exceed the sum of the yearly effects.

Our aim in this article is to adapt causal inference concepts and methods

based on potential outcomes (Holland, 1986; Neyman, 1923/1990; Rubin, 1978;

see also Haavelmo, 1943; Heckman, 2005) to the nonexperimental study of

time-varying instructional treatments. For illustration, we estimate the causal

effect of a sequence of intensive math instructional treatments on student learn-

ing in Grades 4 and 5. Data are from the Longitudinal Evaluation of School

Change and Performance (LESCP). The novel treatment exposes children to

instruction that emphasizes comparatively high-level content and devotes sub-

stantial classroom time to mathematics. We ask: (a) What is the effect of inten-

sive math instruction in Grade 4 on Grade 4 outcome? (b) What is the effect of

this treatment in Grade 4 alone on Grade 5 outcome? (c) What is the effect of

intensive math instruction in Grade 5 alone on Grade 5 outcome? (d) Does

experiencing intensive math instruction again in Grade 5 enhance the effect of

intensive math instruction received in Grade 4?

The case study provides a typical example for evaluating multiyear instruc-

tional sequences, posing three characteristic methodological challenges.

1. Complex multilevel structure. Longitudinal studies of classroom treatments

are complicated by the reassignment of students to teachers and classes at the

beginning of each year. As a result, repeated assessments of students are cross-

classified by teachers who are in turn typically nested within schools. Model

specification and statistical adjustment pose tricky problems in the context of

this complex data structure. We develop a four-way hierarchical linear model to

be analyzed via pseudolikelihood estimation.

2. Violation of stable unit treatment value assumption. In causal comparative

studies, it is common to assume that each participant has a single potential out-

come under each treatment. This is the stable unit treatment value assumption

(SUTVA), articulated by Rubin (1986). SUTVA requires that a participant’s

potential outcome under a given treatment should not depend on the treatment

assignment of other participants and that the causal effect of a treatment should

not depend on the assignment mechanism. In our application, a teacher delivers

intensive math instruction to a class of students within a year. Hence, a child’s

learning outcome may depend on the teacher and classmates as well as the school

context during that year. A child’s learning outcome may also depend on the
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teachers and classmates that the child has encountered in the previous years, gen-

erating, in principle, a vast number of potential outcomes per student per treat-

ment. To cope with this problem, we propose a weaker form of SUTVA that

allows potential outcomes to depend on current and past school and class assign-

ments. We offer a rationale for this approach based on theory and empirical

evidence.

3. Time-invariant and time-varying confounding. The assignment of a class to

receive intensive math instruction may depend on a host of factors including

school and teacher characteristics, class composition of student demographic char-

acteristics, their instructional histories, and past learning outcomes. Standard

methods of adjustment, though sufficient for removing observed time-invariant

confounding, can lead to bias in the presence of time-varying confounders,

defined as covariates that are outcomes of prior treatments but also predictors of

later treatment assignments. To cope with this problem, we adapt inverse prob-

ability of treatment weighting (IPTW) as developed by Robins (2000) to complex

multilevel data.

In Section 2 we present our theoretical approach to defining the potential out-

comes, causal effects, and causal estimands under a relaxed version of SUTVA.

Section 3 embeds the potential outcomes and causal effects in a growth model for

children who are moving across classrooms that are in turn nested within schools.

Section 4 defines the model for the observed data. Section 5 provides a rationale

for IPTW to remove observed confounding in the multilevel context and describes

our pseudolikelihood approach to estimation. Section 6 applies the model and

the adjustment method to the case study data. Section 7 revisits key assumptions

made in case study and highlights some unsolved methodological issues.

2. Defining Potential Outcomes and Causal Effects of Instruction

Single-Year Treatments

We first consider the potential outcomes causal framework in its general form

for a single-year study. Let z= 1 denote intensive math instruction and z= 0 for

conventional instruction. Formally, with N units in the population, we have the

1 by N vector of possible treatment assignments, z= (z1, z2, . . . , zN). Unless we

impose constraints, student i’s potential outcome Yi (z) may depend on the treat-

ment assignments for all the N units. Hence the general causal estimand takes

the form E½YðzÞ− Yðz0Þ�, where z and z0 are alternative treatment assignment

vectors. Under this setup, student i’s potential outcome under each treatment

can be affected by a shift in the treatment assignment of any other student. With-

out further simplification, causal inference becomes intractable. So our first

challenge is to place sensible constraints on the potential outcomes.

SUTVA has been invoked in the past to simplify the causal effect of interest

by stipulating that Yi(z)= Yi(zi). When applied to school settings, this strong
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assumption ignores the interactions between teacher and students in a class and

therefore fails to reflect the nature of instruction and its effect on student learn-

ing. Recent work has extended Rubin’s causal model by invoking weaker and

relatively more plausible assumptions that support causal inference in multilevel

settings in a single time period (Gitelman, 2005; Hong & Raudenbush, 2006;

Sobel, 2006).

Our current study is focused on instructional treatments assigned to classes

within schools. Following Hong and Raudenbush (2006), we adopt a weaker

form of SUTVA appropriate to the school setting. We assume that generaliza-

tion of causal inferences is restricted to current school assignments (i.e., intact

schools) and that there is no interference between schools. In addition, when the

class-level treatment is given, a child’s learning outcome depends mainly on the

teacher and classmates that the child directly encounters and is unlikely affected

by teachers and students in other classes. Hence, it seems reasonable to assume

no interference between classes within an intact school. Under these assump-

tions, we have the generic potential outcome for student i attending classroom j

in school k as Yijkðzjk). In words, a student’s potential outcome value is assumed

stable given the school assignment and class assignment and given the treatment

assigned to the class. We are interested in causal effects having the form

Yijk(1)− Yijk(0), holding constant the class and school attended. We are not

interested, for example, in causal effects of the form Yijkð1Þ− Yij0k0 (0) for j 6¼ j0

or k 6¼ k0.

Multiyear Sequences of Treatments

Let us now consider the causal effects of a 2-year sequence of instructional

treatments. The logic can easily be extended to treatments over more than 2

years. A student’s learning outcome depends not only on the current year’s

instructional treatment but also on the treatments received in the earlier years. In

our current study, in addition to assuming intact schools and no interference

between schools, we also assume that a student’s potential outcome values asso-

ciated with a treatment sequence can be affected only by the sequence of tea-

chers and classmates that the student has directly encountered. In the discussion

section, we consider conditions under which such an assumption may become

unreasonable.

Instructional treatments over several years might be prescribed as a manda-

tory sequence regardless of students’ intermediate status. This would happen,

for example, if Year 1 and Year 2 teachers were to follow a standard curriculum.

In an alternative scenario, teachers in a school may follow a common set of

dynamic rules in assigning instructional treatments given students’ current cog-

nitive status. For example, one might assign all students scoring above a cutoff

point on a test to receive intensive math instruction while those scoring below

that cutoff point would receive conventional math instruction.
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However, schooling in the United States has been characterized as a ‘‘loosely

coupled system’’ (Weick, 1976) in which elementary school teachers in particu-

lar have considerable autonomy in determining the pace and difficulty level of

instruction. Moreover, analysis of our data suggests considerable uncertainty in

predicting which classes will receive intensive math instruction given past test

scores, past treatments, and other background characteristics of students. In par-

ticular, given that future treatment assignment is not strongly predicted by past

observable outcomes, we reason that instructional assignments reflected in our

data are neither prescribed nor entirely dynamically adaptive and that all differ-

ent combinations of Year 1 and Year 2 treatments are possible for most

students.

Potential Outcomes and Causal Effects

We formalize the treatment assignment process in a 2-year study as follows.

Year 1. In the fall of Year 1 of the study, student i attending school k, having

been assigned to teacher j0k in the previous year, is now assigned to teacher j1k

who decides whether to adopt intensive math instruction (zij1k = 1) or nonintensive

math instruction (zij1k = 0). The teacher’s decision can be influenced by teacher,

school, and child characteristics captured in the covariate vector X1j1k and by her

students’ past math achievement Y0j1k. The conditional probability that the teacher

will adopt the intensive instruction is a function hðz1j1k = 1|X1j1k, Y0j1kÞ= h1j1k of

the aforementioned factors. This process generates for each student two potential

outcomes Y1ij0 j1k(z1j1k) for z1j1k ∈ f0, 1g. The difference between these is the

child-specific causal effect D1ij0 j1k = Y1ij0 j1k(1)− Y1ij0 j1k(0). The causal estimand

d1 =E(D1) defines the average causal effect of intensive math instruction in Year 1

on Year 1 outcome, which answers our first causal question.

Year 2. In the fall of Year 2 of the study, student i attending school k is now

assigned to teacher j2k. The Year 2 teacher may observe not only past covariates

X1j2k but also a vector of time-varying covariates X2j2k in addition to the past treat-

ment experiences Z1j2k and past achievement records Y0j2k and Y1j2k of all her

students. She therefore selects intensive math instruction for her class with probabil-

ity hðz2j2k = 1|X1j2k, X2j2k, Y0j2k, Y1j2k, Z1j2kÞ= h2j2k. This process generates for

child i in her class four potential outcomes having the form Y2ij0j1j2k (z1j1k, z2j2k)

for z1j1k, z2j2k ∈ 0, 1f g. Three child-specific causal effects of interest to us are

D21ij0 j1j2k=Y2ij0 j1j2kð1,0Þ−Y2ij0 j1j2kð0,0Þ; D22ij0 j1j2k=Y2ij0 j1j2kð0,1Þ−Y2ij0 j1j2kð0,0Þ;
and D∗

ij0 j1j2k=Y2ij0 j1j2kð1,1Þ−Y2ij0 j1j2kð0,0Þ−D22ij0 j1j2k− D21ij0 j1j2k. The causal

estimands d21=E(D21), d22=E(D22), and d∗=E(D∗), taking expectations over all

the children and all their past and current teacher/class assignments in all schools,

correspond to causal Questions 2 through 4, respectively. Specifically, d21 is the

average causal effect of intensive math instruction in Year 1 alone on Year 2 out-

come; d22 is the average causal effect of intensive math instruction in Year 2 alone
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on Year 2 outcome; and d∗ is the average amplifying effect of having a second year

of intensive math instruction given that the child also received it in Year 1.

3. Embedding the Causal Effects in a Four-Way Hierarchical Linear Model

Value-Added Model

In the current study, repeated assessments of students are cross-classified by chil-

dren and teachers who are in turn nested within schools. We therefore formulate a

value-added model that reflects classroom contributions to student growth (Rauden-

bush & Bryk, 2002, chapter 12, example 2). Suppose that over the 3 study years, stu-

dent i in school k encountering typical classmates and teachers would display a linear

growth trajectory. Indeed, extensive exploratory analysis of our data yielded no evi-

dence against this assumption. However, this person-specific straight-line trajectory

can be deflected by experiences in classrooms j0k during the pretreatment year, j1k

during the first treatment year, and j2k during the second treatment year. We represent

these deflections with additive random teacher/class effects vj0k, vj1k, and vj2k

assumed to be cumulative (see McCaffrey, Lockwood, Koretz, Louis, & Hamilton,

2004, for a discussion of the cumulative effects assumption). Thus, the value-added

model in the absence of specific intervention effects is

Ytij0...jtk = b0ik + b1ikðt − 1Þ+
Xt

m= 0

vjmk + etik ð1Þ

for t= 0, 1, 2 in the current study. Here b0ik is the child’s status at t = 1, b1ik is

the child’s growth rate, and etik is a random error assumed independently and

identically distributed as N(0,s2). The child-specific intercepts and growth rates

may vary within and between schools as a function of school random effects

u0k, u1k and child random effects r0ik, r1ik:

b0ik = g0 + u0k + r0ik ,

b1ik = g1 + u1k + r1ik:
ð2Þ

Here uk = ðu0k, u1kÞT ∼N(0, ω) and rik = (r0ik, r1ik)T ∼N(0, τ), where ω and τ

are positive-definite 2 by 2 covariance matrices. We assume uk, rik, and etik to

be mutually independent.

Causal Effects of Interventions in a Value-Added Model

We are interested in the impact of a 2-year sequence of instructional interven-

tions. At the end of Year 0, no treatment has been implemented, so we write

Y0ij0k = b0ik − b1ik + vj0k + e0ik: ð3Þ
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During the treatment years, the random effects associated with teachers and stu-

dents may depend on treatment assignments. The model for the two potential

outcomes in Year 1 is

Y1ij0 j1kðz1j1kÞ= b0ik + d1z1j1k + vj0k + vj1kðz1j1kÞ+ e1ikðz1j1kÞ ð4Þ

for z1j1k = 0, 1, and the model for the four Year 2 potential outcomes is

Y2ij0j1j2kðz1j1k , z2j2kÞ= b0ik + b1ik + d21z1j1k + d22z2j2k + d∗z1j1kz2j2k

+ vj0k + vj1kðz1j1kÞ+ vj2kðz2j2kÞ+ e2ikðz1j1k, z2j2kÞ ð5Þ

for z1j1k = 0, 1 and z2j2k = 0, 1. For simplicity, the teacher-specific and student-

specific increments are assumed additive. The random effects vj0k, vj1kðz1j1kÞ,
vj2kðz2j2kÞ, e1ikðz1j1kÞ, e2ikðz1j1k, z2j2kÞ are assumed to have zero means. To facili-

tate statistical inference, we impose further distributional assumptions about

these random effects in the next section.

4. Model for the Observed Data

Selection of the Observed Data From the Potential Outcomes

In defining the model for a specific child, we will omit subscripts i, j0, j1, j2,

and k. For example, we will use z1 to represent z1j1k and use y2 for y2ij0j1j2k. For

each student, we can observe only one potential outcome in each year. Equa-

tion 3 defines the Year 0 outcome. In the following years, the observed outcome

depends on treatment assignment. We write the observed Year 1 outcome as a

function of the random variable Z1 that can take on values z1 ∈ f0, 1g:

Y1 = 1− Z1 Z1ð Þ Y1ð0Þ
Y1ð1Þ

� �
= g0 + u0 + r0 + d1Z1 + v0 + v1 + e1 ð6Þ

where v1 = Z1v1ð1Þ+ ð1− Z1Þv1ð0Þ and e1 = Z1e1ð1Þ+ ð1− Z1Þe1ð0). In Year 2,

we observe:

Y2 = ð1− Z1Þð1− Z2Þ Z1ð1− Z2Þ ð1− Z1ÞZ2 Z1Z2½ �

Y2ð0, 0Þ
Y2ð1, 0Þ
Y2ð0, 1Þ
Y2ð1, 1Þ

0
BBB@

1
CCCA

= g0 + u0 + r0 + ðg1 + u1 + r1Þ+ d21Z1 + d22Z2 + d∗Z1Z2 + v0 + v1 + v2 + e2 ð7Þ

where v2=Z2v2ð1Þ+ð1−Z2Þv2ð0) and e2=ð1−Z1Þð1−Z2Þe2ð0,0Þ+Z1ð1−Z2Þ
e2ð1,0Þ+ð1−Z1ÞZ2e2ð0,1Þ+Z1Z2e2ð1,1Þ. Under randomization, Z1 and Z2 are
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independent of Y1ðz1Þ,Y2ðz1,z2Þ,v1ðz1Þ,v2ðz2Þ, e1ðz1Þ, and e2ðz1,z2Þ. Therefore,

we have that 0=E½vtðztÞ�=E½vtðztÞ|Zt�=E½vt|Zt� for t=1, 2; and similarly,

E½e2|Z1,Z2�=E½e1|Z1�=0.

Mixed Model Formulation

The observed outcomes specified by Equations 3, 6, and 7 can be collected in

the form of a four-way hierarchical linear model:

Y0

Y1

Y2

0
B@

1
CA=

1 −1 0 0 0 0

1 0 Z1 0 0 0

1 1 0 Z1 Z2 Z1Z2

2
64

3
75

g0

g1

d1

d21

d22

d∗

2
666666664

3
777777775

+
1 0 0

1 1 0

1 1 1

2
64

3
75

v0

v1

v2

2
64

3
75+

1−1

1 0

1 1

2
64

3
75 u0

u1

� �
+

1−1

1 0

1 1

2
64

3
75 r0

r1

� �
+

e0

e1

e2

2
64

3
75:

Or, we express the model in matrix terms, bringing back subscripts for child i in

school k,

Yik =AFikθF +Avikvk +Auikuk +Arikrik + εik , ð8Þ

where Yikis a 3 by 1 vector of observed outcomes, AFik is a 3 by 6 fixed effects

design matrix, θF is a 6 by 1 vector of fixed effects, Avik is a 3 by 3 design

matrix for teacher random effects, vk is a 3 by 1 vector of teacher random

effects, Auik is a 3 by 2 design matrix for school random effects, uk is a 2 by 1

vector of school random effects ;Arik is a 3 by 2 design matrix for child random

effects, rik is a 2 by 1 vector of child random effects, and εik is a 3 by 1 vector

of time-specific random errors. Stacking person-specific models (Equation 8)

formulates a school-level model

Yk =AFkθF +Avkvk +Aukuk +Arkrk + εk,

vk ∼Nð0,c2IÞ, uk ∼Nð0, ωÞ, rk ∼Nð0, I� τÞ, εk ∼Nð0,s2IÞ ð9Þ

where Yk = ðYT
1k, YT

2k, . . . , YT
nkkÞ

T
, AFk = ðAT

F1k, AT
F2k, . . . , AT

FnkkÞ
T
, Auk = ðAT

u1k,

AT
u2k, . . . , AT

unkkÞ
T
, Ark = ⊕nk

i= 1
Arik, rk = ðrT

1k, rT
2k, . . . , rT

nkkÞ
T
, and εk = ðεT

1k, εT
2k,

. . . , εT
nkkÞ

T
. The assumption that vk and εk have zero means is valid when treat-

ment assignments are independent of potential outcomes (see text following
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Equation 7). The matrix Avk has a special form that links students to the teachers

they have encountered. Let Tik be the number of time-series observations

recorded for student i in school k. Let Jk denote the number of teachers in school

k. The matrix Avk is
Pnk

i= 1

Tik by Jk. Each of its elements is an indicator taking on a

value of unity if student i has ever encountered teacher j by time t.

Remark. We maintain the assumption here that the teacher and student ran-

dom effects have homogenous variance, keeping in mind that heterogeneity

may be of interest substantively, especially as it reflects differential effects of

treatment on teacher and student random effects, and that a failure of the homo-

geneity assumption may distort standard error estimates. To reduce this risk, we

develop Huber-White robust standard errors (see Appendix B) that account for

both heteroscadasticity and clustering at the school level.

Model 9 can in turn be regarded as a special case of the general mixed

model

Yk =AFkθF +ARkθRk + εk , θRk ∼Nð0, ΩÞ, εk ∼Nð0,s2IÞ, ð10Þ

where ARk = Avk Auk Arkð ), θRk = vT
k uT

k rT
k

� �T
and

Ω=
c2I 0 0

0 ω 0

0 0 τ

2
4

3
5: ð11Þ

This general form is useful in derivations and general proofs, as illustrated in

the next section.

5. Endogeneity and IPTW for Multilevel Settings

Sequential Strong Ignorability

Estimation of Equation 10 by conventional means would yield unbiased esti-

mates of the causal effects defined earlier if the sequences of treatments Z1 and

Z2 were assigned at random to classrooms within schools. When the data are

nonexperimental, causal inferences may nonetheless be possible if the assump-

tion of sequential strong ignorability holds. Under this assumption, treatment

assignment in each year is independent of all the future potential outcomes

given past observables. In our example, for the Year 1 treatment,

Z1? Y1ð0Þ, Y1ð1Þ, Y2ð0, 0Þ, Y2ð1, 0Þ, Y2ð0, 1Þ, Y2ð1, 1Þ|X1, Y0;

0< Pr Z1 = z1|X1, Y0ð Þ< 1:
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For the Year 2 treatment, we have that

Z2? Y2 ð0, 0Þ, Y2ð1, 0Þ; Y2ð0, 1Þ, Y2ð1, 1Þ|X1, X2, Y0, Y1, Z1;

0<Pr Z2 = z2|X1, X2, Y0, Y1, Z1ð Þ< 1:

The Problem of Statistical Adjustment

Under strong ignorability, the estimation of d1 does not pose a problem using

standard methods of statistical adjustment. That is, pooling the association

between Z1 and Y1 within levels of h1 = Pr Z1 = 1|X1, Y0ð ) would yield an

unbiased estimate of d1. Unfortunately, conventional adjustment methods can-

not be relied on for estimating d21, d22, and d∗ in the context of time-varying

confounding without invoking much stronger and often implausible assump-

tions. Next we discuss, when using conventional methods, what one can esti-

mate under sequential strong ignorability and what additional conditions are

required for making inferences about the causal estimands of interest to us.

Average effect of Z1 on Y2. Using conventional methods, one might estimate

the association between Z1 and Y2 within levels of h1 without regard to Z2. This

would yield an estimate of E E½Y2ðz1 = 1Þ|Z1 = 1, h1�−E½Y2ðz1 = 0Þ|Z1 = 0,f
h1�g, which under strong ignorability Z1? Y2ðz1, z2Þ|h1, is equivalent to E½Y2

ðz1 = 1Þ− Y2ðz1 = 0Þ�. Simple algebra reveals its association with our causal

estimands d21 and d∗:

E½Y2ðz1 = 1Þ− Y2ðz1 = 0Þ�= ðd21 + d∗Þ× PrðZ2 = 1Þ+ d21 × PrðZ2 = 0Þ
= d21 + d∗ × PrðZ2 = 1Þ:

Although this estimand may be of scientific interest, it does not correspond to

our goal of separating the effect of receiving Year 1 treatment alone (that is, d21)

from the amplifying effect of receiving the treatment both years (that is, d∗). To

achieve this separation, one might be tempted to estimate the association

between Z1 and Y2 within levels of h1 separately for Z2 = 0 and Z2 = 1. How-

ever, this approach of conditioning on Z2, itself an intermediate outcome of Z1,

Y1, and X2, would bias the estimate of the effect of Z1 (alone or interaction with

Z2) on Y2 (Rosenbaum, 1984).

Conditional effects of Z2 on Y2. We might use conventional methods to esti-

mate the association between Z2 and Y2 pooled within levels of h2 = Pr (Z2 = 1|
X1, X2, Y0, Y1, Z1) for units assigned to Z1 = 0: Under strong ignorability

Z2? Y2ðz1, z2Þ|h2, this estimates

E E½Y2ð0, 1Þ|Z1 = 0, Z2 = 1, h2�−E½Y2ð0, 0Þ|Z1 = 0, Z2 = 0, h2�f g=EðD22|Z1 = 0Þ:

However, EðD22|Z1 = 0) would not in general be equivalent to d22. This is

because we cannot assume that Z1?Y2ðz1, z2Þ|h2 when h2 is a function of X2 and
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Y1 that are plausibly outcomes of Z1. The previous result would equal d22 only

under the overly strong assumption of a constant treatment effect for all units.

Following the same logic, we might estimate

E E½Y2ð1, 1Þ|Z1 = 1, Z2 = 1, h2�−E½Y2ð1, 0Þ|Z1 = 1, Z2 = 0, h2�f g=EðD22 +D∗|Z1 = 1Þ

as the association between Z2 and Y2 pooled within levels of h2 for units

assigned to Z1 = 1: However, this quantity would not in general be equivalent to

d22 + d∗ except when the treatment effect is constant for all units.

One may notice that when d∗ = 0, conventional methods may generate an

unbiased estimate of d21, which becomes equal to the average effect of Z1 on

Y2. Also, one may obtain an unbiased estimate of d22 as a weighted average of

the conditional effects of Z2 on Y2 for units assigned to Z1 = 0 and for those

assigned to Z1 = 1 weighted by the proportion of units in each z1 group. How-

ever, to proceed with analyzing a main effects model would require empirical

evidence indicating that the effect of having a second-year treatment does not

depend on the previous year’s treatment assignment.

Inverse Probability of Treatment Weighting

The IPTW method proposed by Robins and his colleagues (Robins, Greenland,

& Hu, 1999; Robins, Hernán, & Brumback, 2000) provides a viable solution to the

endogeneity problem in single-level nonexperimental settings. The weighted esti-

mates are consistent for the marginal treatment effects of interest given sequential

strongly ignorable treatment assignment with no need to assume constant treatment

effects. Robins (2000) showed that in single-level settings, a weight that is inversely

proportional to the probability of one’s assigned treatment sequence creates a pseu-

dosample that approximates data from a sequential randomized experiment. In

essence, the expected value of the weighted score function for the nonexperimental

data is equivalent to the unweighted score function in a randomized study. By sol-

ving the weighted score equation, we obtain consistent estimates of the causal

effects of time-varying treatments on time-varying outcomes. Once the treatment

groups have been equated through weighting, there is no need for direct condition-

ing on the time-varying covariates in the outcome models. In principle, this solves

the dilemma left unresolved by conditional statistical adjustment through linear

regression or propensity stratification.

To see why and how the IPTW method applies to multilevel educational data,

consider now the case in which student i or the class student i attends in school

k is assigned at random to treatments z1 at Time 1, z2 at Time 2, . . . , and zT at

Time T . Treatment assignment at Time t is a random variable Ztik taking on values

ztik ∈ 0, 1f g, t = 1, . . . , T . The entire vector of treatment assignments

Zik = ðZ1ik, Z2ik, . . . , ZTikÞT takes on values zik = ðz1ik, z2ik, . . . , zTikÞT . Sequential

strong ignorability implies that treatment assignment at Time t is independent of

all potential outcomes given the past observables:
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hðz|x, yzÞ=
YT

t = 1

hðzt|z1, . . . , zt−1, x1, . . . , xt, y1, . . . , yt−1Þ, ð12Þ

where yz is the vector of potential outcomes over all time points; z is the support

for Z; h(z|x, yz)is the joint probability of the entire sequence of treatment assign-

ments given all covariates and potential outcomes.

Definition. Consider the general model (Equation 10) for the observed out-

comes. We regard (Y, θR) to be the augmented data as contrasted with the

observed data Y. The ‘‘augmented data score’’ SADtik is the score for child i in

school k at time t where the data include the observed data Y as well as the

unobserved random effects θR:

SADtik = d

dϕ
−s− 2ðYtik −AT

FtikθF −AT
RtikθRkÞ−O−1θRk=Tik

� �
; ð13Þ

where ϕ= θT
F θT

R1 . . . θT
RK

� �T
; AT

Ftik and AT
Rtik are, respectively, the itth rows of

AFk and ARk; Tik is the number of time series observations for student i within

school k (see Appendix A for details).

Theorem. In a nonrandomized study with sequential strongly ignorable treat-

ment assignment (Equation 12), given variance components s2, O, solution to

the weighted estimating equation

XK

k = 1

Xnk

i= 1

XTik

t = 1

wtikSADtik = 0 ð14Þ

jointly for θF and θR will ensure consistent estimation of θF . Here nk is the num-

ber of children in school k. We define the weight to be

wtik = hðz1ikÞ
hðz1ik|x1ikÞ

× hðz2ik|z1ikÞ
hðz2ik|z1ik , x1ik , x2ik , y1ikÞ

× � � � × hðztik|z1ik , . . . , zt−1, ikÞ
hðztik|z1ik , . . . , zt−1, ik , x1ik , . . . , xtik,y1ik, . . . , yt−1, ikÞ

: ð15Þ

Our proof (see Appendix A) follows Robins (2000) for single-level data and

extends the logic to multilevel models that require solving for the augmented-

data score rather than simply solving for the observed data score. Under rando-

mization, the conditional expectation of the augmented data score taken over

the joint distribution of z, x, and yz is zero. We reveal the exact structure of the

needed weight (Equation 15) for multilevel nonexperimental data when the

sequential treatment assignments are strongly ignorable.
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Estimation via Maximum Pseudolikelihood for Hierarchical Linear Models

Application of our theorem (Equations 14 and 15) assumes knowledge of cov-

ariance components s2 and O. The results will hold if we substitute consistent

estimates of s2 and O into the solution of the estimating equations (Equation 14).

To optimize efficiency, we adopt a maximum pseudolikelihood approach in the

spirit of Pfefferman, Skinner, Homes, Goldstein, and Rasbash (1998). Using this

approach, we maximize

LwðθF,s2,O; YÞ=
YK
k = 1

Z
fwðYk|θF, θRk,s2ÞpwðθRk|OÞdθRk ð16Þ

where Lw(θF ,s2;O; Y) is the weighted marginal likelihood of Y (i.e., integrating

out the random effects), fw(Yk|θF , θRk,s2) is the weighted conditional likelihood

of Yk given the random effects for school k, and pw(θRk|O) is the weighted mar-

ginal density of the random effects as defined in (10) for school k. The results,

derived in Appendix B, yield point estimates of the fixed effects

θ̂F =B
XK

k = 1

AT
FkMkYk ð17Þ

with model-based standard errors equal to the square roots of the diagonal

elements of

Varmbðθ̂FÞ=B
XK

k = 1

AT
FkMkVkMkAFkB ð18Þ

where B= PK
k= 1

AT
FkMkAFk

� �−1

, Mk =Wk −WkAT
FkWkARkC−1

k AT
RkWkAFkWk,

Ck =AT
FkWkARk+s2Ω−1, Vk =ARkΩAT

Rk +s2I, and Wk = diagfwtikg: The

robust standard errors are the diagonal elements of

Varrobðθ̂FÞ=B
XK

k = 1

AT
FkMk êk êT

k MkAFkB; ð19Þ

where êk =Yk −AFkθ̂F .

6. Case Study

Data

Data for this study were collected by the U.S. Department of Education’s

Planning and Evaluation Service for the Longitudinal Evaluation of School

Change and Performance in 1997, 1998, and 1999 (Westat, 2001). LESCP drew
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its sample from 67 Title I schools located in 18 school districts in seven states.

Our sample includes a longitudinal cohort of 4,216 students who progressed

from Grade 3 to Grade 5 during the 3 study years. We use as a measure of stu-

dents’ math learning the Stanford Achievement Test 9 administered at the end

of each year. Test scores in different years have been equated on the same scale

so that we can assess the learning growth over years. We present in Table 1 the

descriptive information of all the student, teacher, and school measures. Table 2

shows mean math achievement by missing data pattern over the three grade

levels.

We construct a binary treatment variable (Z) for each grade level, with Z = 1

indicating a teacher’s use of intensive math instruction characterized by empha-

sis on both instructional time and content difficulty and Z = 0 otherwise (see

Raudenbush, Hong, & Rowan, 2002, for details). Among the 147 Grade 4 tea-

chers, 36 of them provided intensive math instruction to their students. In Grade

5, 58 out of 147 teachers adopted the intensive math instruction in their class-

rooms. About 15% of the students received intensive math instruction in both

Grade 4 and Grade 5, 8% of them had the treatment in Grade 4 only, 32% of

them had it in Grade 5 only, and 45% of them had this treatment in neither of

the 2 years.

Statistical Adjustment Procedure

Following Equation 15, we construct a weight wtik for child i in school k in

year t. Here t= 0, 1, 2 correspond to Grades 3, 4, and 5. Weights in Grade 3 are

1.0. To estimate the weights in Grade 4 and Grade 5, we compute for each class-

room in each year the predicted probability of intensive math instruction given

the past observed covariates, treatments, and outcomes. Predictors of the Grade

4 treatment include Grade 4 classroom-aggregated student background charac-

teristics, Grade 3 instructional experiences, Grade 3 math test scores, and prior

school and teacher characteristics. Predictors of the Grade 5 treatment include

Grade 5 classroom aggregates of student background characteristics, the propor-

tion of students who received intensive math instruction in Grade 4, average

Grade 4 math test score, and teacher and school characteristics. These propen-

sity models are estimated at the classroom level with logistic regression. We use

missing indicators to represent the missing information in the predictors. Table 3

lists the results of Grade 4 and Grade 5 propensity analyses. Despite the large

number of covariates entered in each of these two propensity models, neither of

them shows strong explanatory power. The proportion of area under the ROC

curve is .83 for the Grade 4 analysis and only .79 for the Grade 5 analysis. We

assess the impact of potential unmeasured confounders through sensitivity

analysis.

In analyzing the causal effects of intensive math instruction, we include all

the students regardless of their response pattern and construct nonresponse

weights to adjust for various missing patterns (see Appendix C for details). We
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TABLE 1
Descriptive Statistics

Variable M SD

Students (N= 1, . . ., 4,216)

Free lunch (1= yes; 0= no) 0.723

African American (1= yes; 0= no) 0.440

Hispanic (1= yes; 0= no) 0.102

White (1= yes; 0= no) 0.429

Other ethnic groups (1= yes; 0= no) 0.029

Gender (1=male; 0= female) 0.492

Title I (1= yes; 0= no) 0.672

Individualized education program (1= yes; 0= no) 0.061

Limited English proficiency (1= yes; 0= no) 0.052

Migrant (1= yes; 0= no) 0.017

English as a second language (1= yes; 0= no) 0.049

Teachers/classrooms (J= 386)

Grade (1=Grade 4; 0=Grade 5) 0.497

Grade 4 teacher gender (1=male; 0= female) 0.171

Grade 5 teacher gender (1=male; 0= female) 0.212

Grade 4 teacher African American (1= yes; 0= no) 0.289

Grade 4 teacher Hispanic (1= yes; 0= no) 0.000

Grade 4 teacher White (1= yes; 0= no) 0.658

Grade 4 teacher other ethnic groups (1= yes; 0= no) 0.053

Grade 5 teacher African American (1= yes; 0= no) 0.259

Grade 5 teacher Hispanic (1= yes; 0= no) 0.034

Grade 5 teacher White (1= yes; 0= no) 0.660

Grade 5 teacher other ethnic groups (1= yes; 0= no) 0.047

Grade 4 teacher degree (1=master’s or above;

0= bachelor’s or below)

0.435

Grade 5 teacher degree (1=master’s or above;

0= bachelor’s or below)

0.405

Grade 4 teacher teaching experience 13.900 8.605

Grade 5 teacher teaching experience 13.652 8.437

Grade 3 math content difficulty –0.190 0.840

Grade 3 math instructional time 0.022 0.802

Grade 3 proportion of low achievers in class 0.221 0.219

Grade 4 proportion of low achievers in class 0.240 0.294

Grade 5 proportion of low achievers in class 0.248 0.296

Grade 3 class size 17.214 7.539

Grade 4 class size 15.898 7.035

Grade 5 class size 15.877 7.094

Grade 4 intensive math (1= yes; 0= no) 0.245

Grade 5 intensive math (1= yes; 0= no) 0.395

Grade 4 class average pretest score 589.211 27.985

Grade 5 class average pretest score 610.148 27.238

(continued)
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estimate model (Equation 10) weighted by the product of the treatment weight

and the nonresponse weight. The computation requires statistical software that

allows the application of weights to a four-level model in which students are

cross-classified by teachers who are nested within schools. We conduct the ana-

lysis using HLM6.4. The program and users’ manual are available on request

from the second author.

Causal Analysis Results

For the purpose of comparison, we present two sets of analytic results along

with their robust standard errors. In both cases, growth modeling provides

TABLE 1 (continued)

Variable M SD

Schools (K= 67)

Year 1 school size 432.299 146.067

Year 1 percentage free lunch 0.731 0.191

Year 1 percentage African American 0.405 0.390

Year 1 percentage Hispanic 0.088 0.159

Year 1 schoolwide Title I (1= yes; 0= no) 0.806 0.398

Year 2 school size 440.239 142.641

Year 2 percentage free lunch 0.726 0.188

Year 2 percentage African American 0.421 0.392

Year 2 percentage Hispanic 0.092 0.159

Year 2 schoolwide Title I (1= yes; 0= no) 0.821 0.386

TABLE 2

Average Math Achievement and Proportion of Free Lunch by Grade and Response
Pattern

Average Math Achievement

Response Pattern n Grade 3 Grade 4 Grade 5

Percentage

Free Lunch

All 3 years 953 597.70 621.17 642.26 .67

Grades 3 and 4 730 593.46 616.51 .74

Grades 3 and 5 127 595.50 636.88 .69

Grades 4 and 5 363 611.80 635.96 .63

Grade 3 only 1,490 585.28 .76

Grade 4 only 435 605.05 .80

Grade 5 only 118 629.10 .72

Total 4,216 591.07 615.38 639.29 .72
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effective adjustment for the bias associated with students’ pretest scores (Bryk

& Weisberg, 1977). The weighted model makes a more comprehensive adjust-

ment for all the observed confounding variables.

Growth modeling with no weighting. We generate the first set of results by

analyzing value-added model (Equation 10) with no weights (see Table 4,

panel 1). Comparing Grade 4 students attending treatment classes and those

attending control classes shows a mean difference of 2.70 (SE= 3.02, t= 0:89)

in Grade 4 outcome. When we compare students who had Grade 4 treatment but

no Grade 5 treatment with those having treatment in neither year, we find a

mean difference of 0.40 (SE= 4.55, t= 0:09) in Grade 5 outcome. Comparing

Grade 5 students in treatment classes and those in control classes shows a mean

difference of 7.79 (SE= 3.07, t = 2:54) in Grade 5 outcome, an effect that does

not depend on Grade 4 treatment.

TABLE 3
Propensity Model Results

Grade 4 Treatment Grade 5 Treatment

Predictor b SE (b) p b SE (b) p

Average Grade 3 content difficulty 1.215 0.501 .015 −.654 0.421 .120

Average Grade 3 math time −.249 0.520 .632 .558 0.466 .231

Percentage having Grade 4

intensive math

— — — 1.171 0.656 .075

Average math pretest score .032 0.223 .885 .090 0.238 .706

Class size −.032 0.049 .517 .137 0.048 .004

Percentage low achievers

receiving services

−.379 0.993 .702 −1.440 0.968 .137

Teacher’s educational degree .046 0.619 .940 .118 0.495 .811

Teaching experience −.046 0.031 .144 .007 0.024 .761

Teacher’s gender −1.566 0.780 .045 .355 0.580 .541

African American teacher .941 0.710 .185 −.092 0.588 .876

Teacher of other non-White ethnicity .761 1.123 .498 .356 0.969 .713

School size −.006 0.003 .015 −.001 0.002 .701

Percentage free lunch students in school −3.392 2.100 .106 .029 0.021 .168

Percentage Black students in school .721 1.094 .510 −.569 0.994 .567

Percentage Hispanic students in school 4.607 1.989 .021 −2.166 1.890 .252

Schoolwide Title I program .043 0.869 .960 .817 0.896 .362

Percentage missing Grade 3

instruction information

−2.969 1.211 .014 −.695 0.859 .419

Percentage missing Grade 4 treatment

information

— — — −1.322 0.739 .073

Missing at least one other covariate −6.799 1.947 .000 3.528 1.792 .049
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Growth modeling with IPTW. The second set of treatment effect estimates

(Table 4, panel 2) is produced by applying inverse probability of treatment

weights to the value-added model. Our point estimate for the causal effect of

Grade 4 treatment on Grade 4 outcome is positive but not significantly different

from zero, d̂1 = 4:80 (SE= 4.09, t = 1:17). The effect size is about a fifth of the

yearly growth rate. If a student is assigned to the control condition in Grade 5,

the carryover effect of Grade 4 treatment on Grade 5 outcome shows an even

smaller magnitude, d̂21 = 2:05 (SE= 4.85, t= 0:42). We find a positive and

nearly significant effect of Grade 5 treatment on Grade 5 outcome, d̂22 = 6:46

(SE= 3.35, t = 1:93), if a student has been in the control condition in Grade 4.

The effect size is about a third of the yearly growth rate. There is no evidence

TABLE 4
Treatment Effect Estimation Results

Unweighted Model Weighted Model

Fixed Effects Coefficient SE t Coefficient SE t

Intercept, g0 609.83 1.96 310.78 609.88 2.96 205.97

Growth rate, g1 20.94 1.13 18.45 20.89 1.22 17.09

Grade 4 treatment on

Grade 4 outcome, d1

2.70 3.02 0.89 4.80 4.09 1.17

Grade 4 treatment on

Grade 5 outcome, d21

0.40 4.55 0.09 2.05 4.85 0.42

Grade 5 treatment on

Grade 5 outcome, d22

7.79 3.07 2.54 6.46 3.35 1.93

Two-way interaction of

Grade 4 and Grade 5

treatments on Grade 5

outcome, d∗

0.59 6.39 0.09 −2.79 5.74 −0.49

Variance Components Estimate Estimate

Within students

s2 303.59 319.93

Between students

tp0 771.88 629.70

tp1 21.65 1.37

Correlation (po, p1) −0.15 −0.10

Between schools

ob00 171.62 136.22

ob10 30.21 20.02

Correlation (b00, b10) 0.39 0.34

Between classrooms

C2(v) 172.20 171.41
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that the impact of the Grade 5 treatment depends on having had Grade 4 treat-

ment, d̂
∗ = −2:79 (SE= 5.74, t= −0:49). These results are displayed graphi-

cally in Figure 1.

Main Effects Model

Under IPTW, the point estimate of the amplifying effect d∗ is nonnegligible

but not statistically significant. The large standard error estimate indicates that

this effect has been estimated with poor precision, a result that is explainable by

the comparatively small number of students experiencing intensive math ins-

truction in Grade 4 but not Grade 5. Such imprecision might have disturbed

other results. So we recompute the analysis with d∗ set to zero. The estimate of

Grade 4 treatment effect on Grade 4 outcome is now significant, d̂1 = 6:26

(SE= 3.00, t= 2:08). The average effect of Grade 4 treatment on Grade 5 out-

come, E½Yð1, z2Þ− Yð0, z2Þ�= d21 when d∗ is zero, has an estimate of 3.75

(SE= 2.82, t= 1:33). The average effect of Grade 5 treatment on Grade 5 out-

come, E½Yðz1, 1Þ− Yðz1, 0Þ�= d22 when d∗ is zero, is estimated to be 9.65

(SE= 3.70, t= 2:61), almost a half of the yearly growth rate.
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FIGURE 1. Predicted treatment effects on linear growth trajectory.
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Sensitivity Analysis

For the estimates of d1 and d22 obtained from analyzing the main effects

model, we test the sensitivity of our inferences to plausible departures from the

strong ignorability assumption (Hong, 2004; Hong & Raudenbush, 2006; Lin,

Psaty, & Kronmal, 1998; Rosenbaum, 1986, 2002). Suppose that an unobserved

time-varying covariate, Ut, has confounded the estimation of the Year t treat-

ment effect on Year t outcome. The association between Ut and the Year t treat-

ment assignment Zt and its association with the Year t outcome Yt are assumed

to be comparable in magnitude to the most important confounding variable

observed. After adjusting for the potential hidden bias associated with Ut, we

obtain a new estimate of the treatment effect and its 95% confidence interval.

The original inference is considered to be insensitive to important omitted con-

founders if additional adjustment for Ut does not change the conclusion.

Among the observed covariates, Grade 4 class average pretest score shows

the strongest confounding effect in estimating d1. We use its respective associa-

tions with the Grade 4 treatment and the Grade 4 outcome as reference values

for the sensitivity parameters of U4. To make additional adjustment for U4, we

subtract the product of the two sensitivity parameters from the original estimate

and obtain 2.69 as a new estimate of d1. Adopting the same standard error as ori-

ginally estimated, we find the 95% confidence interval of the new estimate of d1

to be (−3.31, 8.69), which would lead to a decision of retaining the null hypoth-

esis. Therefore, a conclusion about the positive effect of the Grade 4 treatment

on Grade 4 outcome could be altered if an unmeasured confounder contains an

additional positive bias as severe as that of the most important confounder

observed.

In estimating d22, we find Grade 5 class size to be the strongest observed con-

founder. We imagine that our weighted estimate of d22 could have been posi-

tively biased by U5 in an amount comparable to the confounding effect of

Grade 5 class size. Once we remove the hypothetical bias associated with U5,

our new estimate of d22 is 8.96 and its 95% confidence interval is (1.56, 16.36).

On the basis of this evidence, we conclude that our inference about the Grade 5

treatment effect on Grade 5 outcome is not highly sensitive to the omission of a

confounding variable as important as the strongest observed confounder.

7. Conclusions

Our understanding of the impact of instruction depends ultimately on making

inferences about the causal effects of sequences of instructional treatments. To

study these effects, we have developed here an approach that copes with three

characteristic methodological challenges. First, these effects unfold as students

move across classrooms nested within schools, generating a special crossed-

nested structure and requiring an appropriately complex mixed statistical model

for analysis. Second, the potential outcomes causal framework now widely used
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in medical and social research is applicable to multiyear sequences of instruc-

tion only after careful modification of the stable unit treatment value assump-

tion. Third, experiments that assign students to alternative multiyear sequences

of instruction, though ideal for estimation of causal effects, are difficult to sus-

tain so that inference will typically be based on nonexperimental studies that

must overcome problems of endogenous treatment assignment. Our approach

adapts the IPTW method to the multilevel context of schooling under a modified

SUTVA. In illustrating this approach, we investigated the causal effects of

intensive math instruction in Grades 4 and 5 using data from a recent evaluation

of Title I. Our results suggest that intensive math instruction in Grade 5 leads to

significant improvement in students’ math learning in Grade 5. Here we revisit

key assumptions invoked in the case study.

Intact schools and no interference between schools. Although these assump-

tions will often be plausible, they could be challenged if teachers from separate

schools within districts collaborate closely or if children who are friends attend

different schools. Moreover, if schools are closed and students are reassigned as

a result of large-scale restructuring efforts in some school districts, such restruc-

turing events will need to be modeled as either pretreatment covariates or conco-

mitant treatments.

No indirect interference between classes within a school. We assumed that in

general, a student’s time-varying learning outcomes are not subject to the influ-

ence of teachers and students in other classes within the school. Therefore, a stu-

dent’s learning outcome in Year t is modeled as a function of the cumulative

random effects of teachers/classes that the student has ever directly encountered

up to and including Year t. The assumption would be violated in schools where

teachers frequently exchange instructional information and share student work

or where competition between classes for scarce resources limits students’ learn-

ing opportunities. A possible solution is to explicitly model the fixed effects of

between-class interference (Hong & Raudenbush, 2006).

Class assignment followed by treatment assignment. We reasoned that in

upper elementary math instruction, after students have been assigned to classes

at the beginning of a year, schools and teachers assign instructional treatments

to intact classes. Our propensity modeling at the class level was justified under

this assumption. Alternatively, at the end of each year, some schools may assign

individual students to instructional treatments on the basis of their current per-

formance. Students may then be assigned to classrooms in accordance with their

treatment assignments, often under organizational constraints. This would

require modeling propensity at the student level rather than the class level.

Sequential strong ignorability assumption. Using inverse probability of treat-

ment weights to adjust for measured covariates will yield consistent estimates of

average treatment effects under the assumption that the treatment assignment in
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each year is independent of the potential outcomes given prior observables and

that there is a nonzero probability of receiving alternative treatments for each

observed covariate pattern. Multiple pretreatment and time-varying measures of

covariates in this study provide a reasonably promising basis for a quasi-

experimental design. Meanwhile, we conceive of treatment effects at a given

grade as deflections from a child-specific growth trajectory estimable from the

repeated measures of math achievement. In this way, we were able to make

adjustment for pretreatment growth rates under our modeling assumptions. In

addition, we considered possible consequences of having omitted important con-

founding variables. A sensitivity analysis suggested that our conclusion about

the positive effect of intensive math instruction in Grade 5 on Grade 5 outcome

would be altered only by unmeasured confounders stronger than any of the

observed covariates. However, the estimated positive effect of Grade 4 treat-

ment on Grade 4 outcome was sensitive to unmeasured confounders as strong as

the class average math pretest. If any of the cross-year treatment effects (i.e., d21

and d∗) were estimated to be statistically significant, a sensitivity analysis would

require computing an inverse probability of treatment weight that incorporates

the confounding effect of hypothetical unmeasured time-varying covariates.

In general, the theoretical and analytic approaches illustrated in the case study

are applicable to multiyear studies of time-varying instructional treatments.

Apparently, as the number of time points increases, the number of potential out-

comes per student will increase exponentially. This can be dealt with by focus-

ing on the causal effects of key scientific interest and by placing theoretical

constraints on the analytic models. Examples of such constraints include a main

effects model constraining interaction effects across years to be null or a cumu-

lative treatment effects model assuming no decay of prior treatment effects on

later outcomes.

Appendix A

Inverse Probability of Treatment Weights
for Multilevel Nonexperimental Data

Our aim is to prove that in multilevel nonexperimental data, under the

assumption of sequential strongly ignorable treatment assignment, solving the

weighted augmented data score function (Equation 14) with respect to θF and θR

yields a consistent estimator of θF . The unweighted augmented data score under

randomization has expectation zero over the joint distribution of Z, X, and Yz.

In the absence of randomization but under the assumption of strongly ignorable

treatment assignment, the weighted augmented data score has expectation zero

taken over the same joint distribution. Hence, equating this weighted score to

zero and jointly solving for θF and θR provides consistent estimation of the cau-

sal effects of interest. However, this solution requires a consistent estimate of the

covariance components s2 and Ω, a problem we consider in Appendix B.

Hong and Raudenbush

354

 at UNIV OF CHICAGO on June 16, 2009 http://jebs.aera.netDownloaded from 

http://jeb.sagepub.com


Expected Augmented Data Score Under Randomization

Definition 1. Consider the general model (Equation 10). Define the joint den-

sity of the observed data Y and the random effects θR to be

gðY, θR|θF,s2, ΩÞ= f ðY|θF, θR,s2ÞpðθR|ΩÞ, ðA1Þ

where f (Y|θF , θR,s2) is the density for the observed data Y∼N(AFθF +ARθR,

s2I) and p(θR|Ω) is the prior density for the random effect vector θR ∼N(0, Ω).

Definition 2. Let Nk = Pnk

i= 1

Tik be the total number of observations in school k.

The augmented-data score for ϕ is

SADðϕÞ= d

dϕ

XK

k = 1

Constant − Nk

2
lnðs2Þ− 1

2
lnð|Ω|Þ− 1

2s2
εT

k εk − 1

2
θT

RkΩ
−1θRk

� �

=
XK

k = 1

Xnk

i= 1

XTik

t = 1

SADtikðϕÞ, ðA2Þ

where εk =Yk −AFkθF −ARkθRk: From Equation A2 we can derive Equation 13.

In a randomized experiment, conditional on s2 and Ω, the expected augmen-

ted data score is zero. The expectation is taken over the joint distribution

denoted f ∗(G) where G= (z, yz, x). In this section, we omit subscripts i and k for

ease of presentation. Specifically, with random assignment of an individual unit

to the treatment sequence z= (z1, z2, . . . , zT ),

E
XT

t = 1

SADt

 !
=
Z XT

t = 1

SADt f ∗ðGÞdG= 0: ðA3Þ

This is because

E
XT

t = 1

SADt

 !
=E E

d

dϕ
−
XT

t= 1

s−2 Yt −AT
FtθF −AT

RtθR

� �−O−1θR|Zt

" #( ) !

= d

dϕ
E −s−2

XT

t = 1

E Yt −AT
FtθF −AT

RtθR|Zt

� �−EðO−1θR|ZtÞ
" #

: ðA4Þ

As shown in Equation 9 and the text following it, we have that E θR|Ztð Þ=
E θRð Þ= 0 and E Yt −AT

FtθF −AT
RtθR|Zt

� �=E εt|Ztð Þ=E εtð Þ= 0. The marginal

expectation in Equation A4 is null as a result.
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Weighting the Augmented Data Score

Under randomization to treatment sequences, we have

f ∗ðGÞ= f ∗ðyz, x; zÞ= gðyz|xÞqðxÞh∗ðzÞ: ðA5Þ

Let us now consider the case of sequential strongly ignorable treatment assign-

ments, that is, when randomization at Time t occurs within levels of past treat-

ments, pretreatment covariates, and past observed outcomes. The joint density

of yz, x, and z becomes

f ðGÞ= f ðyz, x, zÞ= gðyz|xÞqðxÞhðz|yz, xÞ: ðA6Þ

Applying Equation 12, we have that

f ðGÞ= gðyz1|x1Þ � � � gðyz, T |x1, . . . xT , yz1, . . . , yz, T − 1Þ× qðx1Þ � � � qðxT |x1, . . . , xT − 1Þ
× hðz1|x1Þhðz2|z1, x1, x2, y1Þ � � � hðzT |z1, . . . , zT − 1, x1, . . . , xT , y1, . . . , yT − 1Þ:

Following Robins (2000), we multiply and divide Equation A3 by this density:

E
XT

t= 1

SADt

 !
=
Z XT

t = 1

SADt
f ∗ðGÞ
f ðGÞ f ðGÞdG= 0: ðA7Þ

We now make use of the following facts:

(i)
f ∗ðGÞ
f ðGÞ = h∗ðzÞ

hðz|yz, xÞ

= h∗ðz1Þh∗ðz2|z1Þ . . . h∗ðzT |z1, . . . , zT −1Þ
hðz1|x1Þhðz2|z1, x1, x2, y1Þ . . . hðzT |z1, . . . , zT −1, x1, . . . , xT , y1, . . . , yT −1Þ;

(ii) f ðGtÞ is the joint density of the data up to time t,

f ðGtÞ= hðz1|x1Þhðz2|z1, x1, x2, y1Þ � � � hðzt|z1, . . . , zt − 1, x1, . . . , xt, y1, . . . , yt− 1Þ
× gðyz1|x1Þ � � � gðyz, t|x1, . . . xt, yz1, . . . , yz, t − 1Þ× qðx1Þ � � � qðxt|x1, . . . , xt − 1Þ;

(iii)
RR

. . .
R

f ∗ðG>tÞdzt + 1 � � � dzT dxt + 1 � � � dxT dyz, t + 1 � � � dyz, T = 1, where

f ∗ðG>tÞ= h∗ðzt + 1|z1, . . . , ztÞ � � � h∗ðzT |z1, . . . , zT − 1Þ
× gðyz, t + 1|x1, . . . xt+ 1, yz1, . . . , yz, tÞ � � � gðyz, T |x1, . . . xT , yz1, . . . , yz, T − 1Þ
× qðxt + 1|x1, . . . , xtÞ � � � qðxT |x1, . . . , xT − 1Þ:
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Thus, we have

E
XT

t=1

SADt

 !
=
Z XT

t=1

SADt
f ∗ðGÞ
f ðGÞ f ðGÞdG

=
XT

t=1

Z Z
� � �
Z

SADt
h∗ðzÞ

hðz|yz, xÞ
×hðz|yz, xÞgðyz|xÞqðxÞdz1 � � �dzTdx1 � � �dxTdyz1 � � � dyz, T

=
XT

t=1

Z Z
� � �
Z

SADt

h∗ðz1Þh∗ðz2|z1Þ � � � h∗ðzt|z1, . . . , zt−1Þ
hðz1|x1Þhðz2|z1, x1, x2, y1Þ � � �hðzt|z1, . . . , zt−1, x1, . . . , xt, y1, . . . , yt−1Þ

×hðz1|x1Þhðz2|z1, x1, x2, y1Þ � � �hðzt|z1, . . . , zt−1, x1, . . . , xt, y1, . . . , yt−1Þ
×h∗ðzt+1|z1, . . . , ztÞ � � �h∗ðzT |z1, . . . , zT−1Þ
×gðyz1|x1Þ � � � gðyz, t|x1, . . . xt, yz1, . . . , yz, t−1Þ

gðyz, t+1|x1, . . . xt+1, yz1, . . . , yz, tÞ � � �gðyz, T |x1, . . . xT , yz1, . . . , yz, T −1Þ
×qðx1Þ � � � qðxt|x1, . . . , xt−1Þqðxt+1|x1, . . . , xtÞ � � �qðxT |x1, . . . , xT −1Þ
×dz1 � � � dztdzt+ 1 � � �dzTdx1 � � �dxtdxt+1 � � �dxTdyz1 � � �

dyz, tdyz, t+1 � � �dyz, T

=
XT

t=1

Z Z
. . .

Z
SADtwt f ðGtÞ

Z Z
. . .

Z
f ðG>tÞdzt+1 � � � dzTdxt+1 � � � dxTdyz, t+1 � � �dyz, T

� �
dz1 � � � dztdx1 � � �dxtdyz1 � � �dyz, t

=
XT

t=1

Z Z
. . .

Z
SADtwt f ðGtÞdz1 � � � dztdx1 � � �dxtdyz1 � � � dyz, t

=0, ðA8Þ

where wt is the weight for an individual unit at time t as in Equation 15.

Assuming that ŵt converges in probability to the true wt as n→∞, the esti-

mated sum of the weighted augmented data score in Equation A7 will converge

in expectation to 0, ensuring consistent estimation of θF in the case of sequential

strongly ignorable treatment assignment.

Solutions to the Augmented Data Score Equations

The weighted augmented data score is

WSAD =
XK

k = 1

Xnk

i= 1

XTik

t = 1

wtikSADtik ðA9Þ
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where SADtik is given by Equation A2, yielding the augmented data score equation

WSAD = d

dϕ
− 1

2s2

XK

k = 1

Xnk

i= 1

XTik

t= 1

wtike2
tik −

XK

k = 1

w̄kθ
T
RkΩ

−1θRk

" #
= 0, ðA10Þ

where w̄k = Pnk

i= 1

PTik

t = 1

wtik=Nk. Solving Equation A10 for elements of θF and θRk

yields the equations

θ̂F =
XK

k = 1

Xnk

i= 1

XTik

t = 1

wtikAFtikAT
Ftik

 !−1XK

k = 1

Xnk

i= 1

XTik

t = 1

wtikAFtikðYtik−AT
RtikθRkÞ,

θ̂Rk =
Xnk

i= 1

XTik

t = 1

wti|kARtikAT
Rtik +s2O−1

 !−1Xnk

i= 1

XTik

t = 1

wti|kARtikðYtik −AT
FtikθFÞ, ðA11Þ

where wti|k =wtik=w̄k. Substituting θ̂Rk for θRk yields the useful Equation 18

for θF .

Appendix B

Pseudolikelihood Estimation

Appendix A showed that given the covariance components s2 and Ω, solving

the weighted augmented data score for the elements of θF and θRk, k = 1, . . . , K

will provide consistent estimation of the causal effects of time-varying instruc-

tional treatments (Equation A11) under the assumption of sequential strongly

ignorable treatment assignment. This demonstration, although essential, is not

sufficient to clarify how to compute the estimates for two reasons. First, Equation

A11 is expressed in terms of the general model (Equation 10) and must be trans-

lated back into the terms of the problem at hand, which involves the four-way

model given by Equation 9. Second, Equation A11 requires knowledge of the

variance components. In this appendix we make the needed translation and show

how to apply pseudomaximum likelihood estimation to produce consistent esti-

mates of the variance components and therefore of the causal effects of interest.

Translating Back to the Four-Way Model

Based on Equation 9, the joint density of the observed data and the random

effects in the four-way model is
QK

k= 1

f ðYk|θF , vk, uk, rk,s2Þpðvk, uk, rk|c2, ω, τ),

yielding the logarithm of the joint density L= PK
k= 1

Pnk

i= 1

PTik

t= 1

Ltik, where
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Ltik = constant− 1

2
logðs2Þ− 1

2
e2

tik=s
2 − Jk

2Nk
logðc2Þ− 1

2Nk
logð|ω|Þ− nk

2Nk
logð|τ|Þ

− 1

2Nk

XJk

j = 1

v2
jk=c

2 − 1

2Nk
uT

k ω−1uk − 1

2Tik
rT

ikτ
−1rik: (B1)

Applying weights yields the weighted log-joint density

WL=
XK

k=1

Xnk

i=1

XTik

t=1

wtikLtik

=constant− N

2
logðs2Þ− 1

2

XK

k=1

Xnk

i=1

XTik

t=1

wtike2
tik=s

2 − J

2
logðc2Þ− K

2
logð|ω|Þ

− n

2
logð|τ|Þ− 1

2

XK

k=1

XJk

j=1

w̄kv2
qk=c

2 − 1

2

XK

k=1

w̄kuT
k ω−1uk − 1

2

XK

k=1

Xnk

i=1

w̄ikrT
ikτ

−1rik , (B2)

where J= PK
k=1

Jk, the total number of teachers, and w̄ik = PTik

t=1

wtik=Tk. We have

normalized the weights as follows. First, we normalize wtik to sum to N, the total

number of observations. Next, we compute the mean of wtik for each student

and normalize these means w̄ik to sum to n, the total number of students. We

then normalize the school means w̄k to sum to K, the total number of schools.

Our approach to pseudolikelihood estimation works by recognizing Equation

B2 as the log density of a four-way model having Level-1 variance s2=wtik, tea-

cher random effects variance c2=w̄k, school-level variance-covariance matrix

ω=w̄k, and child-level variance–covariance matrix τ=w̄ik. This would be equiva-

lent to a model having the form

Ytik =AT
FtikθF + ð 1ffiffiffiffiffi

w̄k

p ÞAT
vtikvk + ð 1ffiffiffiffiffi

w̄k

p ÞAT
utikuk + ð 1ffiffiffiffiffiffi

w̄ik

p ÞAT
rtikrk + ð 1ffiffiffiffiffiffiffi

wtik
p Þεk

vk ∼Nð0,c2IÞ, uk ∼Nð0, ωÞ, rk ∼Nð0, τÞ, εk ∼Nð0,s2IÞ: (B3)

To maximize the weighted log density, we rescale the design matrices so that

A∗
vtik = ð 1ffiffiffiffi

�wk
p ÞAvtik, A∗

utik = ð 1ffiffiffiffi
�wk
p ÞAutik, A∗

rtik = ð 1ffiffiffiffiffi
w̄ik

p ÞArtik, and we assume the

Level-1 variance to be s2=wtik. We then apply the expectation-maximization

algorithm as described in Raudenbush and Bryk (2002, chapter 14). The result-

ing point estimates are consistent based on the results of Appendix A. However,

the conventional standard error estimates are inappropriate. We instead apply

Equation 18 for model-based standard errors or Equation 19 for Huber-White

robust standard errors.
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Appendix C

Inverse Probability of Nonresponse Weights

We create a nonresponse weight to adjust for various missing patterns in the

time-varying outcomes. Let atik = 1 if child i in school k has response data in

Year t and 0 otherwise. The nonresponse weight is inversely proportional to his

or her estimated probability of having the observed response pattern given the

observed covariate history. We define f ðaÞ and f ða|:) to be marginal and condi-

tional distributions of a. The nonresponse weight ftik in its general form is

ftik = f ða0ikÞ � � � f ðatik|a0ik , � � � , at−1, ikÞ
f ða0ik|x0ikÞ � � � f ðatik|a0ik , � � � , at−1;ik, x0ik, � � � , xtik, y0ik, � � � , yt−1, ik , z1ik , . . . , zt−1Þ

:

(C1)

Using nonresponse weights yields consistent estimation of Equation 10 under

the assumption that the probability of missingness is unrelated to unobserved

covariates given the covariates included in Equation C1.
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