The Cyclical Behavior of Labor Markets

Robert Shimer
University of Chicago

May 21, 2005
Outline

- Develop six facts to guide theoretical models.
- Discuss the quantitative failures of existing models.
- Highlight recent research that promises to overcome these failures.
Relevant Papers

- “Reassessing the Ins and Outs of Unemployment,” 2005.

- Work by Robert Hall and many others.
Relevant Papers

• “Reassessing the Ins and Outs of Unemployment,” 2005.

• Work by Robert Hall and many others.

• Data are available at http://home.uchicago.edu/~shimer/data/
The Job Finding Rate

- Goal: Measure the job finding rate using readily available data.

- U_t is the number of unemployed workers in month t.

- E_t is the number of employed workers in month t.

- U_t^s is the number unemployed for less than one month in month t.
The Job Finding Rate

• Goal: Measure the job finding rate using readily available data.

• U_t is the number of unemployed workers in month t.

• E_t is the number of employed workers in month t.

• U^s_t is the number unemployed for less than one month in month t.

• I use these to construct two variables:

 ◦ The unemployment rate in month t is $\frac{U_t}{U_t + E_t}$.

 ◦ The job finding rate is f_t solving $\exp(-f_t) = \frac{U_{t+1} - U^s_{t+1}}{U_t}$.
Job Finding Rate
Fact 1

The correlation between the cyclical components of the job finding and unemployment rates is -0.97.
The Separation Rate

- Goal: Construct an analogous measure of the separation rate.
- Suppose we know U_t, E_t, and f_t.
- Then the separation rate must solve $U_{t+1} - U_t = E_t s_t - U_t f_t$.
Fact 2

The correlation between the cyclical components of the separation and unemployment rates is 0.65.
In Steady State $E_t s_t = U_t f_t$.

Compare $u_t \equiv \frac{U_t}{U_t + E_t}$ with $\frac{s_t}{s_t + f_t}$.
Unemployment Rate

- u_t
- $\frac{s_t}{s_t + f_t}$
Fact 3

Unemployment is Always in Steady State.
The Effect of f_t and s_t on Unemployment

Compare $\frac{s_t}{s_t + f_t}$ with $\frac{s_t}{s_t + f}$ and $\frac{\bar{s}}{\bar{s} + f_t}$.
Unemployment Rate

\[\frac{s_t}{s_t + f_t} \]
The Job Finding Rate Accounts for 79% of Unemployment Fluctuations.
The Job Finding Rate Accounts for 95% of Unemployment Fluctuations since 1985.
What Causes Job Finding Rate Fluctuations?

Pissarides (1985) posits a stable, CRS matching function \(m(u, v) \).
What Causes Job Finding Rate Fluctuations?

Pissarides (1985) posits a stable, CRS matching function $m(u, v)$.

$$f_t = \frac{m(u_t, v_t)}{u_t} = m(1, \theta_t), \text{ where } \theta_t = \frac{v_t}{u_t}.$$
What Causes Job Finding Rate Fluctuations?

Pissarides (1985) posits a stable, CRS matching function $m(u, v)$.

$$f_t = \frac{m(u_t, v_t)}{u_t} = m(1, \theta_t), \text{ where } \theta_t = \frac{v_t}{u_t}.$$

Measure v_t as the Conference Board Help-Wanted Advertising Index.
Fact 5

The correlation between the cyclical components of the job finding rate and v-u ratio is 0.96.
Vacancies Drive the Unemployment Rate

Construct $\tilde{u}_{t+1} = \tilde{u}_t + (1 - \tilde{u}_t)\bar{s} - m(\tilde{u}_t, \nu_t)$.
Vacancies Drive the Unemployment Rate

Construct $\tilde{u}_{t+1} = \tilde{u}_t + (1 - \tilde{u}_t)\bar{s} - m(\tilde{u}_t, v_t)$.

$m(\tilde{u}_t, v_t) = 0.017\tilde{u}_t^{0.5}v_t^{0.5}$.
Unemployment Rate

u_t
Unemployment Rate

\tilde{u}_t
Unemployment Rate

u_t \tilde{u}_t
Unemployment Rate—Deviation from Trend

u_t
Unemployment Rate—Deviation from Trend

- u_t
- \tilde{u}_t
To explain fluctuations in unemployment, we need to explain fluctuations in vacancies.
Benchmark Model

- Pissarides (1985) with productivity (p) shocks.
- Risk neutral workers supply labor inelastically.
- Profit maximizing firms use a technology that is linear in labor.
- If profitable, they create vacancies to recruit workers.
- The firm keeps a fraction $1 - \beta$ of the value of match surplus.
- There are shocks to the productivity of all jobs.
Benchmark Model

- Recursive equation for the value of match surplus:

\[rV(p) = p - (z + f(\theta(p))\beta V(p)) - sV(p) + \lambda(\mathbb{E}(V(p')|p) - V(p)). \]
Benchmark Model

- Recursive equation for the value of match surplus:

\[rV(p) = p - (z + f(\theta(p))\beta V(p)) - sV(p) + \lambda(\mathbb{E}(V(p')|p) - V(p)). \]

- Free entry condition for vacancies:

\[c = \frac{f(\theta(p))}{\theta(p)} (1 - \beta)V(p). \]
Benchmark Model

Standard Deviations

<table>
<thead>
<tr>
<th></th>
<th>U.S. Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Productivity</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Log V-U Ratio</td>
<td>0.382</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Critical assumption: $z = 0.4\bar{p}$.
How Can the Benchmark Model Be Fixed?

- Make wages more rigid
 - This definitely makes the v-u ratio more volatile.
How Can the Benchmark Model Be Fixed?

- Make wages more rigid
 - This definitely makes the v-u ratio more volatile.

- But are wages too flexible in the benchmark model?
 - Look at data on real output and compensation per worker.
Log output per worker
Index

Log compensation per worker

Log output per worker

How Can the Benchmark Model Be Fixed?

Standard Deviations

<table>
<thead>
<tr>
<th></th>
<th>U.S. Data</th>
<th>Model*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Productivity</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Log V-U Ratio</td>
<td>0.382</td>
<td>0.035</td>
</tr>
<tr>
<td>Log Compensation</td>
<td>0.016</td>
<td>0.020</td>
</tr>
</tbody>
</table>

*Assumes wages are continually renegotiated.
How Can the Benchmark Model Be Fixed?

Standard Deviations

<table>
<thead>
<tr>
<th></th>
<th>U.S. Data</th>
<th>Model*</th>
<th>Model†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Productivity</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Log V-U Ratio</td>
<td>0.382</td>
<td>0.035</td>
<td>0.035</td>
</tr>
<tr>
<td>Log Compensation</td>
<td>0.016</td>
<td>0.020</td>
<td>0.005</td>
</tr>
</tbody>
</table>

*Assumes wages are continually renegotiated.
†Assumes wages are bargained only in new matches.
How Can the Benchmark Model Be Fixed?

- Introduce realistic features into the model:
 - Risk-aversion and intertemporal substitution.
 - Wage smoothing restricted by limited commitment.
How Can the Benchmark Model Be Fixed?

• Introduce realistic features into the model:
 ◇ Risk-aversion and intertemporal substitution.
 ▶ Wage smoothing restricted by limited commitment.
 ◇ Curvature in the production function.
How Can the Benchmark Model Be Fixed?

- Introduce realistic features into the model:
 - Risk-aversion and intertemporal substitution.
 - Wage smoothing restricted by limited commitment.
 - Curvature in the production function.
 - Shocks to the productivity of new jobs only.
How Can the Benchmark Model Be Fixed?

- Introduce realistic features into the model:
 - Risk-aversion and intertemporal substitution.
 - Wage smoothing restricted by limited commitment.
 - Curvature in the production function.
 - Shocks to the productivity of new jobs only.
 - On-the-job search.
How Can the Benchmark Model Be Fixed?

- Introduce realistic features into the model:
 - Risk-aversion and intertemporal substitution.
 - Wage smoothing restricted by limited commitment.
 - Curvature in the production function.
 - Shocks to the productivity of new jobs only.
 - On-the-job search.
 - Asymmetric Information.
The Cyclical Behavior of Labor Markets

Robert Shimer
University of Chicago

May 21, 2005