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A Proofs

A.1 Results Applying to All Models

We begin with some formal development that applies to both variants of the model.

Recall that each candidates has quality ✓, independently drawn from distribution F with

strictly positive density f . As we observed in the main text, an equilibrium will involve

two cuto↵s, ✓̂M and ✓̂W . The interpretation is that a male candidate runs if and only if

his quality ✓ is greater than or equal to ✓̂M , and a female candidate runs if and only if her

quality is greater than or equal to ✓̂W .

Given these entry decisions, we can calculate the share of women and men in the pool

of candidates. If women potential candidates use the cuto↵ ✓̂W , then the number of female

candidates is:

�W =
1

2

⇣
1� F (✓̂W )

⌘
. (1)

Similarly, the number of male candidates is:

�M =
1

2

⇣
1� F (✓̂M )

⌘
. (2)

The total number of candidates is:

� = �W + �M . (3)

So the share of female candidates is
�W

�
and the share of male candidates is

�M

�
.

If potential candidates with gender � 2 {W,M} use cuto↵ ✓̂� , the probability a candidate

has quality less than or equal to ✓ conditional on being of gender � is:

F
�(✓) =

8
<

:
0 if ✓ < ✓̂�

F (✓)�F (✓̂�)

1�F (✓̂�)
if ✓ � ✓̂� .

The associated density is:

f
�(✓) =

8
<

:
0 if ✓ < ✓̂�

f(✓)

1�F (✓̂�)
if ✓ � ✓̂� .

(4)

It will also be useful to be able to discuss the distribution of quality plus noise, ✓ + ✏,

conditional on running. The usual convolution formula for sums of independent random
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variables gives the cdf for the sum:

H
�(✓) ⌘

Z
F

�(✓ � ✏)g(✏) d✏. =

Z
G(✓ � ✏)f�(✏) d✏.

This cdf is strictly increasing in ✓ since G is. H� has a density given by:

h
�(✓) =

Z
f
�(✓ � ✏)g(✏) d✏.

We will use several facts about how these distributions are stochastically ordered. Let x̃

and ỹ be random variables with distributions Fx and fy, respectively, and densities fx and fy,

respectively. Recall that x̃ (strictly) first-order stocahstically dominates ỹ if Fx(z)  Fy(z)

for all z (with strict inequality for some z). In this case, for any nondecreasing function u,

we have
R
u(z) dFx(z) �

R
u(z) dFy(z), with strict inequality if u is strictly increasing on

an interval containing a z where Fx(z) < Fy(z).

We start with a pair of general results. The first is relatively standard, but we include

a proof because the usual references assume the two random variables have a common

support.

Lemma 2 Suppose x̃ and is a random variable with distribution F and density f that is

strictly positive on [x,1), and ỹ is a random variables with distribution G and density g

that is strictly positive on [y,1). If x > y and, for all z > z
0,

f(z)g(z0) � f(z0)g(z), (5)

then z > y implies F (z) < G(z).

Proof. Notice first that, for z 2 (y, x], we have G(z) > 0 = F (z). Thus is su�ces to show

the inequality for z > x.
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Integrate to get:

f(z)G(z) =

Z z

�1
f(z)g(z0) dz0

=

Z z

y
f(z)g(z0) dz0

>

Z z

x
f(z)g(z0) dz0

�

Z z

x
f(z0)g(z) dz0

=

Z z

�1
f(z0)g(z) dz0

= F (z)g(z),

where the strict inequality is from x > y and the weak inequality is from 5.

A similar argument gives:

(1� F (z))g(z) =

Z 1

z
f(z00)g(z) dz00 �

Z 1

z
f(z)g(z00) dz00 = f(z)(1�G(z)).

Since z > x, neither G(z) nor 1 � G(z) are zero. Thus we can combine these two

displayed inequalities to get

1� F (z)

1�G(z)
�

f(z)

g(z)
>

F (z)

G(z)
.

Cross-multiply to get:

G(z)� F (z)G(z) > F (z)� F (z)G(z),

or F (z) < G(z)

Lemma 3 For ✓ > ✓
0,

f
W (✓)fM (✓0) � f

W (✓0)fM (✓).

Proof. There are four cases.

1. If ✓ < ✓̂W , then both sides of the inequality are zero.

2. If ✓ > ✓̂W and ✓
0
< ✓̂M , then both sides of the inequality are zero.
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3. If ✓ > ✓̂W and ✓
0
2 [✓̂M , ✓̂W ), then the left-hand side of the inequality is positive and

the right-hand side is zero.

4. If ✓ > ✓̂W and ✓
0
� ✓̂W , then the two sides of the inequality are both positive and

they are equal.

Lemmas 2 and 3 immeditely yield:

Corollary 1 If ✓̂W > ✓̂M , then, for all ✓ > ✓̂M , we have F
W (✓) < F

M (✓).

Lemma 4 Suppose x̃ and ỹ are random variables and x̃ (strictly) first-order stochastically

dominates ỹ. If " is a random variable that is independent of x̃ and ỹ, then x̃+ " (strictly)

first-order stochastically dominates ỹ + ".

Proof. Let Fx, Fy, and F" be the CDFs of the random variables. Using the convolution

formula to get the CDFs of x̃+ " and ỹ + ", we to show that, for all z:

Z
Fx(z � ") dF"(") 

Z
Fy(z � ") dF"(").

Which is true because x̃ (strictly) first-order stochastically dominates ỹ implies Fx(z� ") 

Fy(z � "), for all z and ".

A.2 Election Aversion and/or Perception Gap

This section proceeds as follows. First, we characterize the equilibrium cuto↵s and show

that ✓̂W > ✓̂M with either di↵erential costs or the perception gap. Second, we derive the

distributions of quality conditional on election and on a tie, and show that the distribution

of qualities for women is better in each case. Third, we use these results to prove Proposition

1.

Lemma 5 The pair (✓̂W , ✓̂m) are equilibrium cuto↵s if and only if:

�W

�

Z
F

W (�W (✓̂W )� ✏)g(✏) d✏+
�M

�

Z
F

M (�W (✓̂W )� ✏)g(✏) d✏ = c
W (6)

�W

�

Z
F

W (�M (✓̂M )� ✏)g(✏) d✏+
�M

�

Z
F

M (�M (✓̂M )� ✏)g(✏) d✏ = c
M (7)

Proof. Fix cuto↵s (✓̂W , ✓̂M ).
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A candidate with perceived quality ✓ and preference shock µ believes they defeat an

opponent with perceived quality ✓
0 and preference shock ⌫

0 if and only if:

✓ + ⌫ � ✓
0 + ⌫

0
.

Recalling that ✏ = ⌫
0
� ⌫, we can rewrite this condition as:

✓ � ✓
0 + ✏.

Recall that ✏ has density g. Thus the probability that a candidate of perceived type ✓

believes they win, conditional on being selected, is:

Pr(Elected | ✓) =
�W

�

Z
F

W (✓ � ✏)g(✏) d✏+
�M

�

Z
F

M (✓ � ✏)g(✏) d✏, (8)

where �W , �M , and � are as in Equations 1–3.

A potential candididate of gender � and type ✓ runs if and only if Pr(Elected | �
�(✓))�

c
�
� 0. Since each F

� and �
� are continuous and strictly increasing in ✓, so is Pr(Elected |

�
�(✓)). Thus (✓̂W , ✓̂M ) are equilibrium cuto↵s if and only if Pr(Elected | �

�(✓̂�)) = c
� for

both �.

Lemma 6 For any x and y,

sgn

✓Z
(F (x� ✏)� F (y � ✏)) g(✏) d✏

◆
= sgn(x� y).

Proof. When x = y, the integrand is the zero function, so the integral is zero. Di↵erentiate

with respect to x to get: Z
(f(x� ✏)) g(✏) d✏ > 0,

where the inequality follows from f being strictly positive on its support.

Lemma 7 If

1. c
W

> c
M and �

�(✓) = ✓ for all ✓ and all �;

2. c
W = c

M and �
W (✓) < �

M (✓) for all ✓;

3. c
W

> c
M and �

W (✓) < �
M (✓) for all ✓,

then ✓̂W > ✓̂M .
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Proof. Substitute in the definitions of �W and �M from Equations 1 and 2, and subtract

Equation 7 from Equation 6 to get:

1

2�

Z ⇣
F (�W (✓̂W )� ✏)� F (�M (✓̂M )� ✏)

⌘
g(✏) d✏ = c

W
� c

M
.

Now consider the three cases:

1. Since the right-hand side is positive and � > 0, the integral must be positive. Thus

Lemma 6 implies ✓̂W > ✓̂M .

2. Since the left-hand side is zero, the integral must be zero. Thus Lemma 6 implies

�
W (✓̂W ) = �

M (✓̂M ). Since �
W (✓) < �

M (✓) for all ✓, this requires ✓̂W > ✓̂M .

3. Follows from combining the two arguments above.

Now we derive the relevant conditional densities. Conditional on winning an election,

the quality of a candidate of gender � has a distribution with density:

f
�(✓ | Elected) =

Pr(Elected | ✓)f�(✓)
R
Pr(Elected | ✓̃)f�(✓̃) d✓̃

. (9)

Lemma 8 Fix ✓ > ✓
0.

f
W (✓ | Elected)fM (✓0 | Elected) � f

W (✓0 | Elected)fM (✓Elected).

Proof. Substituting from Equation 9, the inequality is equivalent to:

f
W (✓)fM (✓0) � f

W (✓0)fM (✓).

The result now follows from Lemma 3.

Conditioning on a tie between a woman and a man is more delicate, since ties have

probability zero. Thus Bayes’ rule does not apply directly. Instead, we define f
�(✓ | Tie)

as follows:

f
�(✓ | Tie) = lim

�!0
f
�(✓ | �� < ✓ � ✓

0
� ✏ < �).
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This yields:

f
W (✓ | Tie) =

h
M (✓)fW (✓)

R
hM (✓̃)fW (✓̃) d✓̃

and

f
M (✓ | Tie) =

h
W (✓)fM (✓)

R
hW (✓̃)fM (✓̃) d✓̃

.

Lemma 9 For ✓ > ✓
0,

f
W (✓ | Tie)fM (✓0 | Tie) � f

W (✓0 | Tie)fM (✓ | Tie).

Proof. There are four cases.

1. If ✓ < ✓̂W , then both sides of the inequality are zero.

2. If ✓ > ✓̂W and ✓
0
< ✓̂M , then both sides of the inequality are zero.

3. If ✓ > ✓̂W and ✓
0
2 [✓̂M , ✓̂W ), then the left-hand side of the inequality is positive and

the right-hand side is zero.

4. If ✓ > ✓̂W and ✓
0
� ✓̂W , then the two sides of the inequality are both positive and

they are equal.

Now we can prove Proposition 1.

Proof of Proposition 1.

1. Lemma 7 immediately implies �W < �M .

2. From Equation 8, the probability of being elected conditional on ✓, Pr(Elected | ✓),

does not depend on gender. The measure of winners of gender �, then, is:

�
�
Z 1

✓̂�

Pr(Elected | ✓)f�(✓) d✓.

Canceling �
� and the denominator of f� , this can be rewritten:

1

2

Z 1

✓̂�

Pr(Elected | ✓)f(✓) d✓.
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Now the result follows from ✓̂M < ✓̂W .

3. Lemmas 2 and 8 imply that FW (✓ | Elected) < F
M (✓ | Elected) for all ✓ > ✓̂M . Thus

R
✓̃ dF

W (✓̃ | Elected) >
R
✓̃ dF

M (✓̃ | Elected).

4. A candidate with quality ✓ wins with probability Pr(Elected | ✓), defined in Equation

8. This probability is strictly increasing in ✓. The result then follows from Lemmas 2

and 3.

A.3 Voter Discrimination at the Ballot Box

This section proceeds as follows. First, we characterize the equilibrium cuto↵s and show

that ✓̂W = ✓̂M + b (Lemma 1 from the main text). Second, we derive a stochastic order

result under the additional assumption that F has an increasing hazard rate. Third, we

prove the remaining results from the main text.

Lemma 10 The pair (✓̂W , ✓̂M ) are equilibrium cuto↵s in the model with voter discrimina-

tion at the ballot box if and only if:

�W

�

Z
F

W (✓̂W � ✏)g(✏) d✏+
�M

�

Z
F

M (✓̂W � b� ✏)g(✏) d✏ = c (10)

�W

�

Z
F

W (✓̂M + b� ✏)g(✏) d✏+
�M

�

Z
F

M (✓̂M � ✏)g(✏) d✏ = c (11)

The proof closely follows that of Lemma 5, modified to account for the e↵ect of bias on the

probability of winning.

Proof. Fix cuto↵s (✓̂W , ✓̂M ).

Consider a female candidate with quality ✓ and preference shock ⌫. She defeats a female

opponent with quality ✓
0 and preference shock ⌫

0 if and only if:

✓ + ⌫ � ✓
0 + ⌫

0
.

She defeats a male opponent with quality ✓
0 and preference shock ⌫

0 if and only if:

✓ + ⌫ � ✓
0 + b+ ⌫

0
.
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Thus, the probability a female candidate with quality ✓ wins is:

Pr(Elected | ✓,W ) =
�W

�

Z
F

W (✓ � ✏)g(✏) d✏+
�M

�

Z
F

M (✓ � b� ✏)g(✏) d✏. (12)

A similar argument shows that the probability a male candidate of type ✓ wins is:

Pr(Elected | ✓,M) =
�W

�

Z
F

W (✓ + b� ✏)g(✏) d✏+
�M

�

Z
F

M (✓ � ✏)g(✏) d✏. (13)

A potential candidate of gender � runs if and only if Pr(Elected | ✓, �) � c � 0. Since

each F
� is continuous and strictly increasing in ✓, so are each Pr(Elected | ✓, �). Thus

(✓̂W , ✓̂M ) are equilibrium cuto↵s if and only if Pr(Elected | ✓̂� , �) = c for both �.

Proof of Lemma 1. The left-hand sides of Equations 10 and 11 are equal if

✓̂W = ✓̂M + b.

Moreover, for any ✓̂M , there is at most one ✓̂W such that Equation 11 holds. Therefore, any

solution to this system of equations must have ✓̂W = ✓̂M + b.

For the next results, we will need an expression for the expected quality of a candidate

of gender �, conditional on that candidate having quality greater than or equal to some

number ↵. Denote that quality by E� [✓ | ✓ � ↵].

Denote the maximum of ✓̂� and ↵ by ✓̂� _ ↵. Then:

E� [✓ | ✓ � ↵] =

Z 1

✓̂�_↵
✓̃

f(✓̃)

1� F (✓̂� _ ↵)
d✓̃.

Immediately from this equation, we get:

Lemma 11 1. E� [✓ | ✓ � ↵] is increasing in ↵, strictly so if ↵ > ✓̂�.

2. Suppose ↵ < ✓̂W . Then:

EW [✓ | ✓ � ↵] > EM [✓ | ✓ � ↵].
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3. Suppose ↵ � ✓̂W . Then:

EW [✓ | ✓ � ↵] = EM [✓ | ✓ � ↵].

To win election, a woman’s quality must be greater than some hurdle. This hurdle

depends on whether she faces a woman or man opponent. If she faces a woman of quality

✓, the hurdle is ✓+ ✏. If she faces a man, the hurdle is ✓+ b+ ✏. Thus, the hurdle a woman

faces has CDF:

H̃
W (✓) = �W

Z
F

W (✓ � ✏)g(✏) d✏+ �M

Z
F

M (✓ � b� ✏)g(✏) d✏.

Similarly, the hurdle a man faces has CDF:

H̃
M (✓) = �W

Z
F

W (✓ + b� ✏)g(✏) d✏+ �M

Z
F

M (✓ � ✏)g(✏) d✏.

Denote the densities associated with each of these as h̃W and h̃
M .

Lemma 12 H̃
W strictly FOS-dominates H̃

M .

Proof. Define a function H : R3
! R by

H(✓,�1,�2) = �W

Z
F

W (✓ + �1 � ✏)g(✏) d✏+ �M

Z
F

M (✓ � �2 � ✏)g(✏) d✏.

Since
R
F

�(z� ✏)g(✏) d✏ is strictly increasing in z, H is strictly increasing in �1 and strictly

decreasing in �2.

But H̃W = H(·, 0, b) and H̃
M = H(·, b, 0). Thus, for all z, H̃W (z) < H̃

M (z).

We can now prove Proposition 2.

Proof of Proposition 2.

1. Follows immediately from Lemma 1.

2. The measure of winners of gender � is:

�
�
Z 1

✓̂�

Pr(Elected | ✓, �)f�(✓) d✓.
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Canceling �
� and the denominator of f� , we can rewrite this as

1

2

Z 1

✓̂�

Pr(Elected | ✓, �)f(✓) d✓.

The result now follows from the following chain of inequalities:

Z 1

✓̂M

Pr(Elected | ✓,M)f(✓) d✓ >

Z 1

✓̂W

Pr(Elected | ✓,M)f(✓) d✓

>

Z 1

✓̂W

Pr(Elected | ✓,W )f(✓) d✓,

The first inequality follows from ✓̂M > ✓̂W . The second inequality follows from the

fact that, for a fixed ✓, Pr(Elected | ✓,W ) < Pr(Elected | ✓,M), which is immediate

from a comparison of Equations 12 and 13.

3. The expected quality of a woman winner is
R
EW [✓ | ✓ > ↵]h̃W (↵) d↵. The expected

quality of a man winner is
R
EM [✓ | ✓ > ↵]h̃M (↵) d↵. We have:

Z
EW [✓ | ✓ > ↵]h̃W (↵) d↵ >

Z
EW [✓ | ✓ > ↵]h̃M (↵) d↵

>

Z
EM [✓ | ✓ > ↵]h̃M (↵) d↵,

where the first inequality is Lemma 12 and the second inequality if Lemma 11.

4. The probability a candidate of type ✓ and gender � wins conditional on running, is

Pr(Elected | ✓, �), defined in Equations 12 and 13.

We can write the probability of election, conditional on gender, as:

Pr(Elect | W ) =
�W

�

Z 1

✓̂W

H
W (✓)fW (✓) d✓ +

�M

�

Z 1

✓̂W

H
M (✓ � b)fW (✓) d✓

Pr(Elect | M) =
�W

�

Z 1

✓̂M

H
W (✓ + b)fM (✓) d✓ +

�M

�

Z 1

✓̂M

H
M (✓)fM (✓) d✓.

Write the di↵erence in probability of reelection as:

� =


�W

�

Z 1

✓̂W

H
W (✓)fW (✓) d✓ +

�M

�

Z 1

✓̂W

H
M (✓ � b)fW (✓) d✓

�

�


�W

�

Z 1

✓̂M

H
W (✓ + b)fM (✓) d✓ +

�M

�

Z 1

✓̂M

H
M (✓)fM (✓) d✓

�
.
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And write the di↵erence in probability of reelection if behavior by politicians is as

in equilibrium when voters discriminate at the ballot box, but the voters do not

discriminate, as:

�̃ =


�W

�

Z 1

✓̂W

H
W (✓)fW (✓) d✓ +

�M

�

Z 1

✓̂W

H
M (✓ � 0)fW (✓) d✓

�

�


�W

�

Z 1

✓̂M

H
W (✓ + 0)fM (✓) d✓ +

�M

�

Z 1

✓̂M

H
M (✓)fM (✓) d✓

�
.

We can now decomponse the probability of reelection, writing it as the sum of a direct

e↵ect and a selection e↵ect:

� = �� �̃| {z }
direct e↵ect

+ �̃|{z}
selection e↵ect

. (14)

To see that the direct e↵ect is negative, subtract and cancel like terms to get that

�� �̃ is equal to:

�M

�

Z 1

✓̂W

�
H

M (✓ � b)�H
M (✓)

�
f
W (✓) d✓�

�W

�

Z 1

✓̂M

�
H

W (✓ + b)�H
W (✓)

�
f
M (✓) d✓.

This is negative because H
M and H

W are strictly increasing.

To see that the selection e↵ect is positive, rewrite �̃ as:

�̃ =

Z 1

✓̂W

✓
�W

�
·H

W (✓) +
�M

�
·H

M (✓)

◆
f
W (✓) d✓

�

Z 1

✓̂M

✓
�W

�
·H

W (✓) +
�M

�
·H

M (✓)

◆
f
M (✓) d✓.

Since HM and H
W are strictly increasing, ✓ 7!

�W
� ·H

W (✓)+ �M
� ·H

M (✓) is increasing.

And from Corollary 1, fW FOS dominates f
M , which establishes that the selection

e↵ect is positive.

All that remains, then, is to show that there exist parameters such that either e↵ect

dominates. Notice, this is equivalent to showing that there exist parameters such that

� is positive and such that � is negative. We show this with two examples.

Example 1 Let b > 0 and F have an increasing hazard rate—that is, the function
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⇤F mapping z to ⇤F (z) =
f(z)

1� F (z)
is increasing. We show that, in this case, � is

negative.

We will use the following result.

Lemma 13 Suppose F has an increasing hazard rate. Then a random variable with

distribution F
M (x � b) first-order stochastically dominates a random variable with

distribution F
W (y).

Proof. A random variable with distribution F1 hazard rate dominates a random

variable with distribution F2 if ⇤F1(z)  ⇤F2(z) for all z or, equivalently, if the ratio

1� F1(z)

1� F2(z)

is increasing. Hazard rate dominance implies, but is not implied by, first-order stochas-

tic dominance (Wolfstetter, 1999).

Let x̃ be a random variable with distribution F
M (x � b), and let ỹ be a random

variable with distribution F
W (y). If F has an increasing hazard rate, then x̃ hazard

rate dominates ỹ. To see this, observe that

1� F
M (z � b)

1� FW (z)
=

1� F (✓̂W )

1� F (✓̂M )
·
1� F (z � b)

1� F (z)
.

Di↵erentiate the log of the right-hand side to see that the function is increasing if and

only if
f(z)

1� F (z)
�

f(z � b)

1� F (z � b)
.

Combining terms, using the fact that ✓̂W = ✓̂M +b, and doing a change of variables to

put them on the same support, we can rewrite the probabilities of election conditional

on running as:

Pr(Elect | W ) =
1

�

Z 1

✓̂M+b

�
�WH

W (✓) + �MH
M (✓ � b)

�
f
W (✓) d✓

Pr(Elect | M) =
1

�

Z 1

✓̂M+b

�
�WH

W (✓) + �MH
M (✓ � b)

�
f
M (✓ � b) d✓.

13



The result now follows from the fact that � is the di↵erence of these two probabilities,

Lemma 13, and the fact that �WH
W (✓) + �MH

M (✓ � b) is increasing in ✓.

Example 2 Let b = 0.25, c = 0.2, F be Pareto with minimum 0.1 and shape param-

eter q = 3.7, and G be standard normal. Here we will show that � is positive.

Calculation shows that, in this case, a man who runs wins with marginal probability

in the interval (0.4503, 0.4504), while a woman who runs wins with a larger marginal

probability, in the interval (0.4508, 0.4509).8

A.4 Regression Discontinuity

Proof of Proposition 3.

1. In the model with di↵erential costs and/or the perception gap, Lemmas 3 and 9 imply

that FW (✓ | Tie) < F
M (✓ | Tie) for all ✓ > ✓̂M . Thus

R
✓̃ dF

W (✓̃ | Tie) >
R
✓̃ dF

M (✓̃ |

Tie).

2. Write the di↵erence in expected quality of a woman and main who win a tied election

as:

�0 =

R
✓h

M (✓ � b)fW (✓) d✓R
hM (✓ � b)fW (✓) d✓

�

R
✓h

W (✓ + b)fM (✓) d✓R
hW (✓ + b)fM (✓) d✓

.

And write the di↵erence in expected quality condition on a tie if entry decisions are as

they are in equilibrium with voters discriminating, but voters don’t in fact discriminate

at the ballot box as:

�̃0 =

R
✓h

M (✓)fW (✓) d✓R
hM (✓)fW (✓) d✓

�

R
✓h

W (✓)fM (✓) d✓R
hW (✓)fM (✓) d✓

.

We can decompose the di↵erence in expected ability conditional on a tie as:

�0 = �0
� �̃0

| {z }
direct e↵ect

+ �̃0
|{z}

selection e↵ect

. (15)

The same proof as point 1 of this proposition shows that �̃0
> 0, so the selection

e↵ect is positive.

8Mathematica code for all calculations available in the replication archive.
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All that remains, then, is to show that there exist parameters such that �0 is positive

and such that �0 is negative. We show this with two examples.

Example 3 Let b > 0 and f and g be log-concave. We show that, in this case, �0 is

positive.

We will use the following results. Let f�(✓ | Tie) be the density of ability of candidates

of gender �, conditional on a tie election. We start by establishing some stochastic

order results for fM (✓ | Tie) and f
W (✓ | Tie).

Lemma 14 Suppose f is log-concave. Then z > z
0 implies:

f
M (z � b)fW (z0) � f

M (z0 � b)fW (z),

with strict inequality if z0 � ✓̂W .

Proof. If z0 < ✓̂W , then Lemma 1 implies both sides of the inequality are zero. So

suppose z > z
0
� 0, and define the function `(z) by:

`(z) =
f
M (z � b)

fW (z)
.

The result follows from the claim that ` is strictly increasing.

To prove that claim, note that:

`(z) =
(1� F (✓̂W ))

(1� F (✓̂M ))
·
f(z � b)

f(z)
.

Take logs and di↵erentiate the right-hand side to get:

f
0(z � b)

f(z � b)
�

f
0(z)

f(z)
> 0,

where the inequality follows from logconcavity and b > 0.

Lemma 15 Suppose f and g are logconcave. Then h
W and h

M are logconcave.
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Proof. Logconcavity of f implies logcavity of f
W and of f

M , by Bagnoli and

Bergstrom (2005, Theorem 7). Logconcavity of fW (fM ) and of g implies logcon-

cvity of hW (hM ), by Miravete (2011, Lemma 2).9

Corollary 2 Suppose f and g are logconcave. Then the function z 7!
h(z)

h(z + b)
is

increasing.

Lemma 16 Suppose f and g are logconcave. Then the function z 7!
h
M (z � b)

hW (z)
is

increasing.

Proof. Let x̃ be a random variable with density f
M (x � b), and let ỹ be a random

variable with density f
W (y). Lemma 14 says x̃ dominates ỹ in the likelihood ratio

order. Thus x̃+✏ likelihood ratio dominates ỹ+✏ (Keilson and Sumita, 1982, Theorem

2.1(d)).

Lemma 17 In the model with voter discrimination at the ballot box, ✓ > ✓
0 implies

f
W (✓ | Tie)fM (✓0 | Tie) � f

W (✓0 | Tie)fM (✓ | Tie).

Proof. There are four cases.

(a) If ✓ < ✓̂W , then both sides of the inequality are zero.

(b) If ✓ > ✓̂W and ✓
0
< ✓̂M , then both sides of the inequality are zero.

(c) If ✓ > ✓̂W and ✓
0
2 [✓̂M , ✓̂W ), then the left-hand side of the inequality is positive

and the right-hand side is zero.

(d) If ✓ > ✓̂W and ✓
0
� ✓̂W , then the two sides of the inequality are both positive,

and we can rewrite the target inequality as:

f
W (✓ | Tie)

fM (✓ | Tie)
�

f
W (✓0 | Tie)

fM (✓0 | Tie)
. (16)

9Miravete (2011) has compact support as a maintained assumption, but the arguments do not rely on
that fact. See Miravete (2002).
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To establish this, define a function ` by:

`(z) =
f
W (✓ | Tie)

fM (✓ | Tie)
.

Substitute from the definitions of the two densities to get:

`(z) = K
h
M (z � b)fW (z)

hW (z + b)fM (z)

= K
h
M (z � b)

hW (z)

h
W (z)

hW (z + b)

f
W (z)

fM (z)
,

where K is a constant. The function z 7!
h
M (z � b)

hW (z)
is increasing by Lemma

16. The function z 7!
h
W (z)

hW (z + b)
is increasing by Corollary 2. The function

z 7!
f
W (z)

fM (z)
is increasing by Lemma 3. All three of these functions are positive

on [✓̂W ,1), so ` is increasing on that interval.

In the model with voter discrimination at the ballot box, conditioning on a tie, the

densities of candidate quality by gender are:

f
W (✓ | Tie) =

h
M (✓ � b)fW (✓)

R
hM (✓̃ � b)fW (✓̃) d✓̃

and

f
M (✓ | Tie) =

h
W (✓ + b)fM (✓)

R
hW (✓̃ + b)fM (✓̃) d✓̃

.

Lemmas 3 and 17 imply that if the densities are log-concave, then F
W (✓ | Tie) <

F
M (✓ | Tie) for all ✓ > ✓̂M . Thus

R
✓̃ dF

W (✓̃ | Tie) >
R
✓̃ dF

M (✓̃ | Tie), which implies

that �0 is positive.

Example 4 Let b = 0.5, c = 0.2, F be Pareto with minimum 0.1 and shape parameter

q = 3, and G be standard normal. Here we will show that �0 is negative.

Calculation shows that, in this case, a man who wins in a tie has expected quality in

the interval (4.55, 4.56), while a woman who wins in a tie has expected quality in the

interval (4.33, 4.34), so �0 is negative.
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B Computational Examples

Example 5 Voter Discrimination at the Ballot Box Alone

Consider the model with voter discrimination at the ballot box but no di↵erential costs

or perception gap. Suppose the distribution of ✓ is Pareto with minimum 0.1 and shape

parameter q. This distribution has a decreasing hazard rate for all values of q. The noise ✏

is distributed standard normal, and so has a log-concave density. Let b = 0.25 and c = 0.2.

If q = 3.7, then a man who runs wins with marginal probability in the interval (0.4503, 0.4504),

while a woman who runs wins with a larger marginal probability, in the interval (0.4508, 0.4509).10

If q = 3.8, then a man who runs wins with marginal probability in the interval (0.4491, 0.4492),

while a woman who runs wins with a smaller marginal probability, in the interval (0.4490, 0.4491).

Thus a continuity argument ensures us that for some q 2 (3.7, 3.8), men and women win

with identical probability, conditional on running.

Example 6 Combined Model

Consider a version of the model with both voter discrimination and di↵erential costs (we

could do the same with a perception gap). Suppose the distribution of both ✓ and ✏ are

distributed standard normal, and so have increasing hazard rates. Let b = 0.25.

If women and men use cuto↵s ✓̂W = 1.12 and ✓̂M = 0.5, respectively, then the probability

that a woman wins (conditional on running) if her quality is exactly ✓ = ✓̂W = 1.12 is in the

interval (0.38, 0.39) and the probability a man wins (conditional on running) if his quality

is exactly ✓ = ✓̂M = 0.5 is in the interval (0.265, 0.27). Thus a continuity argument shows

that there is a pair (cW , c
M ) with 0.38 < c

W
< 0.39 and 0.265 < c

M
< 0.27 such that

there is an equilibrium with ✓̂W = 1.12 and ✓̂M = 0.5. Given such an equilibrium, we can

calculate the probability a man wins conditional on running minus the probability a woman

wins conditional on running. Doing so shows that it is contained in (0.004, 0.005). So, at

this equilibrium, men win at a slightly higher rate than women.

If women and men use cuto↵s ✓̂W = 1.14 and ✓̂M = 0.5, respectively, then the probability

that a woman wins (conditional on running) if her quality is exactly ✓ = ✓̂W = 1.14 is in the

interval (0.39, 0.4) and the probability a man wins (conditional on running) if his quality

is exactly ✓ = ✓̂M = 0.5 is in the interval (0.26, 0.265). Thus a continuity argument shows

that there is a pair (cW , c
M ) with 0.39 < c

W
< 0.4 and 0.26 < c

M
< 0.265 such that there is

10Mathematica code for all calculations available in the replication archive.
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an equilibrium with ✓̂W = 1.12 and ✓̂M = 0.5. Given such an equilibrium, we can calculate

the probability a man wins conditional on running minus the probability a woman wins

conditional on running. Doing so shows that it is contained in (�0.0005,�0.0004). So, at

this equilibrium, men win at a slightly lower rate than women.

Continuity now immediately implies that there is some (cW , c
M ) such that there is an

equilibrium with ✓̂W 2 (1.12, 1.14) and ✓̂M = 0.5 where women and men win at the exact

same rate. In such an equilibrium, women are clearly under-represented in the pool of

available candidates and have higher average quality conditional on winning. Hence, this

example shows that a model with both di↵erential costs and voter discrimination at the

ballot box can account for all three empirical facts.
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