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KEYWORDS Summary The populations of pathogens in individual hosts have many of the characteristics of
Host—parasite co- multicellular organisms, or individuals. These populations go through a life cycle within a host and
evolution; they reproduce by founding daughter populations in new hosts. Natural selection shapes the life

history characteristics of pathogen populations—life expectancy, trade-offs in the allocation of
resources between growth, survival, and fecundity, and aging—in ways that maximize the
reproductive fitness of the pathogens. In turn, these life history characteristics shape the natural
histories of infectious diseases. Transmissibility and virulence may be thought of as properties of
pathogen populations rather than as properties of the constituent microorganisms within these
populations. The poor correlation of virulence with pathogen fitness is a major obstacle to the
development of a theory of virulence. Consideration of the life histories of pathogen populations
complements the traditional epidemiological focus on host populations and provides a valuable
perspective for understanding human infectious diseases.
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Introduction and they reproduce—specifically, by founding daughter popu-
lations in new hosts. Moreover, the microorganisms in these
populations exhibit a variety of social or cooperative beha-

viors that give the populations some degree of internal

Before the rise of bacterial genetics, bacteriologists were
interested in such aggregate properties as colony growth and

morphology, and thought of bacterial cultures as organisms.
Later, when attention shifted to bacterial cells, colonies
were considered simply collections of cells." But the older
focus on bacterial colonies as organisms was not misdirected.
Populations of bacteria (and other pathogens, or parasites) in
individual hosts have many of the characteristics of multi-
cellular organisms, or individuals.? These populations have
spatiotemporal boundaries, they are isolated from pathogen
populations in other hosts, they progress through a life cycle,
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integration. Bacteria exchange genetic information, they
cooperate to construct biofilms and to evade host defenses,
and they secrete, share, and respond to a variety of mole-
cules, including quorum sensors, toxins, and siderophores.2~>
Likewise, populations of viral genomes in infected cells may
cooperate in the production and utilization of viral RNAs and
proteins.® Pathogenic microorganisms, like social insects, can
survive and transmit genes (either their own or those of
genetically similar organisms) only as members of popula-
tions with these individual-like characteristics.”

If pathogen populations are thought of as individuals,
the natural histories of infectious diseases can be under-
stood in terms of the life history characteristics of these
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populations—life expectancy, allocation of resources between
growth, survival, and fecundity, and aging.® These life history
characteristics are shaped by natural selection in ways that
maximize the reproductive fitness of the pathogens. Analysis
of the life histories of pathogen populations complements the
traditional epidemiological focus on host populations.

Models of pathogen transmission

Standard models of pathogen transmission focus on the basic
reproductive ratio of the parasite (Ry), the average number
of secondary infections produced by the introduction of one
infectious individual into a population of susceptible hosts.’
Hosts progress at specified rates from susceptible (S) to
infectious (/) and then to recovered (R) states (SIR models).
For directly transmitted pathogens, Ry can be expressed in
terms of the size (or density) of the host population (N), a
parasite transmission rate (8, the probability of transmission
per susceptible host per unit time), and the duration of
infectivity (D):

Ro=N-ﬂ-D

The duration of infectivity is determined by the background
and disease-induced host mortality rates, and the rate at
which hosts recover from infections. If Ry > 1, the pathogen
will spread in the host population, producing an epidemic. As
it spreads, however, its reproduction decreases, because
fewer and fewer hosts remain susceptible. The net repro-
ductive ratio, R, is given by:

a3

where (5/N) is the fraction of susceptible hosts in the popula-
tion. At endemic equilibrium, a constant percentage of the host
population remains susceptible; under these conditions, R =1,
and (S/N) = 1/R,. Inanendemic situation, Ryisa measure of the
reproductive fitness of the parasite; natural selection will be
expected to maximize Ry and thereby maximize the percentage
of hosts that is colonized by the parasite. Although the value of
Ro determines whether or not a pathogen will spread in a host
population, it does not by itself provide information about the
rate at which this spread will occur, because the basic repro-
ductive ratio expresses the spread of a parasite per generation,
not per unit time, and only rarely is the generation time of the
pathogen population (the average age at which these popula-
tions give rise to new infections) specified.

These standard epidemiological models consider patho-
gen transmission in terms of properties of the host popula-
tion. Pathogen transmission can also be understood in terms
of the life histories of pathogen populations. The growth of
pathogen populations—the increase in the number of hosts
who are infected by the parasite—can be analyzed in terms of
age-specific schedules of pathogen survival and reproduc-
tion. If [(x) is the probability that a pathogen population will
survive to age x and m(x) is the average number of daughter
populations produced by a population of age x, then r, the
intrinsic growth rate of the pathogen in the host population
(the rate of increase of infected hosts), is given by the Euler—
Lotka equation:'®

> e ™i(x)m(x) = 1

where the summation is carried out over the entire period of
infectiousness. Roughly,

(InR)

~
~

t

where R is the net reproductive ratio of the parasite popula-
tion and t is the generation time.""

r is another measure of reproductive fitness. Natural
selection will be expected to maximize r, subject to ecolo-
gical constraints,’> and so will maximize the survival of
pathogen populations through their infectious period and
their fecundity, the number of daughter populations they
produce. Under endemic conditions, when r = 0, selection for
early reproduction will reflect selection for reproduction
before the pathogens are cleared from the host. Pathogens
that spread in epidemics (r > 0) will also undergo selection
for shorter latent periods, or earlier reproduction, indepen-
dent of the rate of pathogen clearance.® There may also be
selection for traits that enable the pathogen to survive
between epidemics (production of latent infections, for
example), since these traits also contribute to fitness.

Several authors have considered aspects of the life his-
tories of infectious diseases within the framework of SIR
models. Day has discussed the timing of disease life-history
events and the evolution of virulence in terms of the evolu-
tionary theory of aging. ' Disease life-history traits can affect
the interactions between multiple strains of a pathogen'” as
well as the emergence of novel pathogens.'® Analysis of the
life histories of pathogen populations is the counterpart of
the analysis of the life histories of diseases in the host
population: these two perspectives highlight different
aspects of host—pathogen interactions.'*17~1°

Life histories and life expectancies

The life histories of pathogen populations include a latent or
pre-infectious period, an infectious or reproductive period,
and, for some, a post-reproductive period. Life histories are
shaped by the rates at which organisms suffer extrinsic, or
environmentally induced, mortality; successful pathogens
must evolve life history strategies that enable them to
reproduce before they die. Pathogens grow in the environ-
ment provided by their hosts and they die because of the
immune defenses or the death of their hosts. Pathogens can
be divided into three broad groups, based on their interac-
tions with the host’s immune system. Some pathogens—rhi-
noviruses and other respiratory viruses, for example—are
killed by the innate immune mechanisms that are activated
immediately upon contact with a parasite. Many respiratory
viruses cause infections with latent and infectious periods of
only a few days each; although infected hosts may develop
immunity to the strain of virus with which they were
infected, the viruses are probably cleared by innate immune
mechanisms before adaptive immunity develops.

Many viral and bacterial pathogens are not killed by innate
immune defenses but are susceptible to the adaptive immune
responses of the host, which take days to become manifest
and weeks or months to become fully developed.?’ These
pathogens produce acute infections with time-limited latent
and infectious periods; typically, they are cleared from the
host within two to four weeks.® The infectious periods of
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many of these pathogens appear to be normally distributed
with relatively small variances, suggesting that they are
under strong selection—selection on the pathogen for an
early onset of infectiousness and selection on the host for
an early termination of the infection.?'

A third class of pathogens has evolved mechanisms to
evade or resist host defenses and so cause long-lasting
infections that may persist for the life of the host. These
organisms may have long infectious periods—Treponema pal-
lidum and Plasmodium falciparum, for example, may be
transmissible for months or years, and Mycobacterium tuber-
culosis is commonly transmitted from reactivated infections
decades after the initial infection.

Growth, survival, and fecundity

Pathogens acquire nutrients and other resources from their
hosts. Natural selection will optimize the allocation of
these resources between replication (growth of the popula-
tion in an individual host), survival of the population, and
reproduction (transmission and formation of daughter colo-
nies in new hosts). Although replication and reproduction
will frequently co-vary, as an increase in the pathogen
population will often be accompanied by an increase in
the formation of propagules, there may be trade-offs in the
utilization of resources for growth, survival, and fecundity.
Reproduction, or transmissibility, will be affected by the
fraction of the parasite population that is released in, or
converted to, propagules. Pathogens that are cleared by
innate host defenses typically cause only localized infec-
tions of epithelial tissues and devote their resources almost
entirely to reproduction; the parasites are restricted to the
sites at which propagules are formed and, presumably, a
relatively large fraction of the parasite population is
released in propagules. In contrast, pathogens that escape
these innate defenses often cause systemic disease and thus
allocate more resources to survival and replication in their
hosts.

Some parasites have evolved mechanisms to vary their
allocation of resources between survival and fecundity. '? This
trade-off is clearly seen with malaria—parasites balance the
production of merozoites, which maintain the parasite popu-
lation, with the production of gametocytes, which are neces-
sary for parasite transmission, and presumably do so in ways
that optimize their reproductive fitness.2?

Aging

Many parasites produce infectious propagules and continue
to reproduce from the onset of infectivity until they are
cleared from the host or the host dies. As immune defenses
develop, however, fewer and fewer populations survive to
older and older age classes, and the surviving populations
become smaller; after infectivity has peaked, these surviv-
ing populations make smaller and smaller contributions to
the gene pool of subsequent generations. As the expected
future reproduction of these populations decreases, the
force of natural selection acting to prevent their death
also decreases.'?'7'23 As a result, pathogen populations,
like most multicellular eukaryotic organisms, may undergo
aging or senescence.'” One manifestation of aging is a

decline in infectiousness. Pathogens such as T. pallidum,
which have evolved mechanisms of immune evasion, may
survive and replicate within infected hosts after infectivity
has waned and the pathogen’s reproductive period has
ended.

Superinfection, cooperation, and cheating

Many pathogens can cause superinfections, in which a host is
infected simultaneously by multiple strains of the same
parasite. Parasites would be expected to resist superinfec-
tion and to minimize the sharing of host resources with
unrelated strains. On the other hand, superinfection may
be an important feature of the life histories of pathogens
because it allows genetic or sexual recombination between
pathogen strains.2* Perhaps for this reason pathogens may
not prevent superinfection completely and so may be forced
to cooperate with superinfecting strains.

Pathogens may incur a cost in producing the factors that
enhance survival, replication, or reproduction. To the extent
that these processes entail cooperative behavior (sharing
bacterial or viral products, for example), there will be
selection for ‘cheaters’, parasites that reap the benefit of
cooperation without paying the cost. Successful parasite
lineages must have evolved mechanisms to ‘purify’ the
population by removing or decreasing the frequency of these
and other parasite variants whose replication decreases the
fitness of the population.?> One such mechanism is the
founding of new populations from a relatively small nhumber
of parasites. Although only a single parasite may be sufficient
to initiate a new infection, infectious propagules typically
contain many organisms. Because parasites cannot comple-
tely exclude cheaters or superinfecting strains from propa-
gules, they are not as fully integrated individuals as are
multicellular organisms that go through an obligatory sin-
gle-cell stage in their life cycle.?®

Diversity of life histories

The host populations that pathogens colonize are charac-
terized by diversity. Hosts are heterogeneous with respect
to genetics, age, immune status, nutrition, health, and
behavior. Many pathogens exhibit a diversity of life his-
tories in different hosts; they may cause acute infections
of some hosts and persistent infections of others, or they
may cause mild or localized infections in some hosts and
severe or systemic infections in others. This diversity in the
life histories of parasites is due in large part to the
heterogeneity of the hosts they infect;?” genetic factors
appear to be especially important determinants of the
susceptibility of humans to parasites.?® Natural selection
will act most strongly, and will therefore shape the proper-
ties of parasite populations, in those classes of hosts
(that is, those environments) in which they have the
greatest expected reproductive success.'”’?° Pathogens
that cause the so-called childhood infections are presum-
ably adapted for maximal transmission between children.
The severe diseases caused by the measles and varicella-
zoster viruses in susceptible adults are probably the unfor-
tunate byproducts of natural selection acting on these
viruses in children.
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Virulence

Virulence may be defined as the pathogen-induced host
mortality rate or as the decrease in host fitness produced
by a pathogen (but see Poulin and Combes*® and Weiss3").
Early models of parasite virulence assumed that virulence
would co-vary with transmissibility; utilization of host
resources for replication would lead both to debilitation of
the host and to the formation of infectious propagules.
Replication of parasites within a host, however, is only one
cause of virulence. Virulence may also be caused by patho-
gen-produced toxins, by the growth of pathogens in critical
organs, by secondary infections, and by the immune response
of the host;?”>32 for all of these reasons, virulence is only
indirectly related to pathogen fitness. Moreover, the viru-
lence of a pathogen may differ greatly in different hosts.
Finally, although host infertility also decreases host fitness, it
has different consequences for the pathogen than does death
of the host, as parasites may continue to be transmitted from
infertile hosts. All of these factors have complicated the
development of comprehensive theories for the evolution of
virulence.??

Conclusions

The transmissibility and virulence of pathogens may be
thought of as properties of the pathogen populations rather
than as properties of their constituent microorganisms. Ana-
lysis of the life histories of pathogen populations comple-
ments the traditional focus on the properties of host
populations; together, these two perspectives provide a
fuller understanding of the natural histories of infectious
diseases.
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