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Abstract

Abstract: We extend Kreps andWilson’s concept of sequential equilibrium to games

with infinite sets of signals and actions. A strategy profile is a conditional -equilibrium

if, for any of a player’s positive probability signal events, his conditional expected util-

ity is within  of the best that he can achieve by deviating. With topologies on action

sets, a conditional -equilibrium is full if strategies give every open set of actions pos-

itive probability. Such full conditional -equilibria need not be subgame perfect, so

we consider a non-topological approach. Perfect conditional -equilibria are defined by

testing conditional -rationality along nets of small perturbations of the players’ strate-

gies and of nature’s probability function that, for any action and for almost any state,

make this action and state eventually (in the net) always have positive probability.

Every perfect conditional -equilibrium is a subgame perfect -equilibrium, and, in fi-

nite games, limits of perfect conditional -equilibria as → 0 are sequential equilibrium

strategy profiles. But limit strategies need not exist in infinite games so we consider

instead the limit distributions over outcomes. We call such outcome distributions per-

fect conditional equilibrium distributions and establish their existence for a large class

of regular projective games. Nature’s perturbations can produce equilibria that seem

unintuitive and so we augment the game with a net of permissible perturbations.

1 Introduction

We define perfect conditional -equilibrium and perfect conditional equilibrium distributions

for multi-stage games with infinite signal sets and infinite action sets and prove their existence

for a large class of games.
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Kreps and Wilson (1982), henceforth KW, defined sequential equilibrium for any finite

game in which nature’s states all have positive probability, henceforth standard finite games.

But rigorously defined extensions to infinite games have been lacking. Various formulations

of “perfect Bayesian equilibrium” (defined for standard finite games in Fudenberg and Tirole

1991) have been used for infinite games, but no general existence theorem for infinite games

is available.1

Harris, Stinchcombe and Zame (2000) provided important examples that illustrate some

of the difficulties that arise in infinite games and they also introduced a methodology for the

analysis of infinite games by way of nonstandard analysis, an approach that they showed is

equivalent to considering limits of a class of sufficiently rich sequences (nets, to be precise)

of finite game approximations.

It may seem natural to try to define sequential equilibria of an infinite game by taking

limits of sequential equilibria of finite games that approximate it. The difficulty is that no

general definition of “good finite approximation” has been found. Indeed, it is easy to define

sequences of finite games that seem to be converging to an infinite game (in some sense) but

have limits of equilibria that seem wrong (e.g., Example 2.1).

Instead, we work directly with the infinite game itself. We define a strategy profile to

be a conditional -equilibrium if, given the strategies of the other players, each player’s

continuation strategy is -optimal conditional on any positive probability set of signals.2

In standard finite games, it is not hard to see (although we have not seen it previously

pointed out) that a strategy profile is part of a sequential equilibrium if and only if for every

  0 there is an arbitrarily close completely mixed strategy profile that is a conditional -

equilibrium. It is this finite-game characterization of sequential equilibrium strategy profiles,

without any reference to systems of beliefs, that we will extend to infinite games.

The central challenge in infinite games is how to test whether the players’ behavior is

rational off the equilibrium path of play. As we have just noted, in standard finite games

the sequential equilibrium concept tests the players’ rationality by checking whether, for any

  0 there is an arbitrarily close completely mixed strategy profile that is a conditional

-equilibrium.

In infinite games, there are two serious difficulties with this approach to testing behavior

off the equilibrium path. The first difficulty is that, with uncountably-infinite action spaces,

we cannot make all actions have positive probability at the same time, no matter how we

perturb the players’ strategies. A possible response to this difficulty is to introduce separable

topologies on action spaces and to test the players’ behavior conditional on each signal event

1Watson (2017) proposed a new definition of perfect Bayesian equilibrium for standard finite games, and

discussed how one might try to extend that definition to infinite games.
2See Radner (1980) for a study of -rationality in finitely repeated games.
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that has positive probability under strategy profiles that have full support. A case for

this approach is given in Section 5. But despite testing for rationality on a rich class of

events, such a topological approach does not test for rationality everywhere, and so it can

allow equilibria that fail to be subgame perfect (Example 5.3). So we emphasize a different

approach.

The second difficulty is that, with uncountably many states of nature, nature’s probability

function must give all but countably many states probability zero. So even if rationality could

be tested by perturbing the players’ strategies, the players’ resulting conditional probabilities

over histories would be biased so as to explain, whenever possible, any probability zero event

as being the result of a deviation by some player instead of perhaps being the result of the

occurrence of a state of nature that had prior probability zero. This bias can be so severe

that it rules out all but strictly dominated strategies (Example 6.1).

Our solution to these difficulties makes use of generalized sequences, i.e., nets. If  is any

strategy profile and  is nature’s probability function, we define a net {( )} of strategy-
profile/nature-perturbation pairs to be admissible for ( ) if two conditions are satisfied.

First, the history-dependent probabilities on action-events specified in the net {} must
converge uniformly to those of  and the history-dependent probabilities on state-events

specified in the net {} must converge uniformly to those of . Second, for each history of
play, any feasible action for any player given that history must receive positive probability

under  for all large enough  and almost-any state of nature that can occur given that

history of play must receive positive probability under  for all large enough .3

Admissible nets play the role in infinite games of convergent sequences of completely

mixed strategies in finite games. Indeed, the strategies in an admissible sequence (hence,

net) of any finite game are eventually all completely mixed. Importantly, admissible nets

avoid the two serious difficulties described above because, first, for every feasible action,

admissible nets eventually always give that action positive probability, and second, for almost

any state of nature, admissible nets eventually always give that state positive probability

thereby allowing zero probability events to be explained as the occurrence of a state of nature

that has prior probability zero.4

A strategy profile  is defined to be a perfect conditional -equilibrium if there is a net

of strategy-profile/nature-perturbation pairs that is admissible for ( ) such that for each

pair ( ) in the net,  is a conditional -equilibrium in the game with nature’s perturbed

3“Perturbations” are not synonymous with “mistakes.” See KW, pp. 373-374.
4In standard finite games, all states of nature have strictly positive prior probability, which is why Kreps

and Wilson (1982) did not need to perturb nature. (But note that their theory would have been unchanged

even had they perturbed nature, because nature’s strictly positive probabilities would swamp the infinitesimal

perturbations.)
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probability function . A perfect conditional equilibrium distribution is defined as the limit

of perfect conditional -equilibrium distributions on outcomes of the game as → 0.5

Nets of perfect conditional -equilibria as → 0 need not have convergent subnets even

in very nice games, which is why we only consider their limit distributions on outcomes. As

noted by Milgrom and Weber (1985), Van Damme (1987), Börgers (1991), and Harris et.

al. (1995), the difficulty is that the randomized signals upon which players coordinate their

actions along the sequence can, in the limit, have distributions that degenerate to a point,

leaving the players without access to the necessary coordination device.

Our solution concept, perfect conditional -equilibrium, does not include systems of be-

liefs. In Section 6.4, we show that any perfect conditional -equilibrium generates a finitely

consistent conditional belief system with respect to which it is sequentially -rational. These

concepts extend to infinite games the concepts of consistency of beliefs and sequential ratio-

nality introduced in KW. Some difficulties with finite consistency are also discussed.

Perfect conditional -equilibria and perfect conditional equilibrium distributions are shown

to exist for a large class of regular projective games (Theorems 9.3 and 9.5), and are shown to

have other attractive properties. First, every perfect conditional -equilibrium strategy pro-

file is a subgame perfect -equilibrium, and therefore also an -Nash equilibrium (Theorems

6.9 and 6.10). Second, if two players have the same information, they must behave, in any

perfect conditional -equilibrium, as if they have the same beliefs about the history of play

(Section 6.4). Third, in any standard finite game, a strategy profile is part of a sequential

equilibrium if and only if it is the limit of perfect conditional -equilibria as → 0 (Theorem

6.4). So in standard finite games, the perfect conditional equilibrium distributions defined

here are precisely the distributions over outcomes that arise from sequential equilibria.

The remainder of the paper is organized as follows. Section 2 provides an example

that motivates why we do not use finite-game approximations of the infinite game to de-

fine our solution. Section 3 introduces the multi-stage games that we study and provides

some preliminary notation and concepts. Section 4 introduces our most basic equilibrium

concept, conditional -equilibrium. Section 5 considers a topological approach to the prob-

lem of perfection in infinite games. Section 6 contains the definition of a perfect conditional

-equilibrium strategy profile as well as the definition of a perfect conditional equilibrium dis-

5We use the term “perfect” to indicate that behavior is tested for rationality everywhere (i.e., at every

event both on and off the equilibrium path).

Simon and Stinchcombe (1995) and Bajoori, Flesch, and Vermuelen (2013, 2016) use a topological full-

support condition in defining, for infinite normal form games, solutions that they call “perfect.” Such topolog-

ical restrictions on the supports of strategies are used in Section 5 to refine perfect conditional -equilibrium,

but we call the refined solution “full.” The word “perfect” in English comes from a Latin word meaning

“complete,” and so it seems more appropriate for the condition of testing rationality everywhere versus test-

ing rationality conditional only on sets that have positive probability under a full-support strategy profile,

which, as already mentioned, need not even yield behavior that is subgame perfect.
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tribution. This section also establishes several properties of perfect conditional -equilibria

(e.g., that they are subgame perfect -equilibria), and introduces systems of beliefs and the

concepts of finite consistency and sequential -rationality. Section 7 applies our definitions

to several examples. Section 8 augments the game with a permissible net of nature pertur-

bations to avoid unintuitive equilibria that can arise with arbitrary nature-perturbations.

Section 9 introduces the class of “regular projective games” for which we can prove existence

of perfect conditional -equilibria and perfect conditional equilibrium distributions. Section

10 provides some final remarks. The proof of our main existence result is in Section 11. All

other proofs are in Myerson and Reny (2019).

2 Problems with Finite Approximations of Infinite Games

In this section, we provide an example that illustrates why we do not use finite approxi-

mating games as a basis for defining sequential equilibrium in infinite games. Despite many

attempts, we have not found any method for providing “good” finite approximations of

arbitrary multi-stage games. Instead, our solutions are based on strategies that are approxi-

mately conditionally optimal among all of the infinitely many strategies in the original game.

To show just one of the ways that things can go wrong, the finite approximations used in

this next example seem natural but lead to unacceptable results.

Example 2.1 Spurious signaling in naïve finite approximations.

• On date 1, nature chooses  ∈ {1 2} with ( = 1) = 14, and player 1 chooses  ∈ [0 1]
• On date 2, player 2 observes the signal  =  and chooses  ∈ {1 2}.
• Payoffs (1 2) are as follows:

 = 1  = 2

 = 1 (1 1) (0 0)

 = 2 (1 0) (0 1)

Consider subgame perfect equilibria of any finite approximate version of the game where

player 1 chooses  in some finite subset of [0 1] that includes at least one interior point. We

shall argue that player 1’s expected payoff must be 14

Player 1 can obtain an expected payoff of at least 14 by choosing the largest feasible

̄  1, as 2 should choose  = 1 when  = ̄  ̄2 indicates  = 1. (In this finite

approximation, player 2 has perfect information after the history  = 1  = ̄)

Player 1’s expected payoff cannot be more than 14, as 1’s choice of the smallest 0    1

in his equilibrium support would lead player 2 to choose  = 2 when  = 2   indicates

 = 2.
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But such a scenario cannot be even an approximate equilibrium of the original infinite

game, because player 1 could get an expected payoff at least 34 by deviating to
√
̄ ( ̄)

In fact, by reasoning analogous to that in the preceding two sentences, player 1 must

receive an expected payoff of 0 in any Nash equilibrium of the infinite game, and so also in

any sensibly defined “sequential equilibrium.”

Hence, approximating this infinite game by restricting player 1 to any large but finite

subset of his actions, would produce subgame perfect equilibria (and hence also sequential

equilibria) that are all far from any sensible equilibrium of the original infinite game. ¨
We next formally introduce the class of games that we study.

3 Multi-Stage Games

For ease of exposition, we restrict our analysis to a large class of extensive-form games

called multi-stage games. A multi-stage game is played in a finite sequence of dates.6 At

each date , each player receives a private “signal,” about the history of play. Each player

then simultaneously chooses an action from his set of available date- actions, and nature

simultaneously chooses a date- state whose distribution can depend on the entire history of

play. Perfect recall is assumed.7

Formally, a multi-stage game Γ = (  MΦ   ) consists of the following items.

Γ.1.  is the finite set of players, 0 ∈ . Let ∗ =  ∪ {0} where 0 denotes nature (chance).
The finite set of dates of play is {1  }. Let  =  × {1  } denote the set of
dated players, let ∗ = ∗ × {1  } and write  for ( )

Γ.2.  = ×∈ where  is the set of possible signals received by player  at date ;

1 = {∅} for all  ∈ 

Γ.3. For  ∈   is the set of all possible date- actions for player , and 0 is the set of

all possible date- states of nature.

Γ.4.  ⊆ ×∈∗ is the set of possible outcomes of the game. (Additional restrictions on

 are given below.)

6A countable infinity of dates can be accommodated with some additional notation.
7Multi-stage games include Bayesian games, signaling games, principal-agent games, games with perfect

information, games with almost perfect information, finitely-repeated games with and without private moni-

toring, and finite-horizon stochastic games. But if we define precedence by saying that one signal (information

set) in the game precedes another when there is a path of play along which the one signal is generated first

and the other signal is generated second, then the class of multi-stage games excludes all games in which the

transitive closure of this binary relation fails to be acyclic. We restrict attention to multi-stage games only

because they are notationally simple to describe. But there is no real difficulty in extending our definitions

to games with perfect recall outside this class. See Myerson and Reny (2019).
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The subscript,  , indicates the projection onto dates before , and ≤  weakly before.

For example, for any  ∈ ×∈∗,  = ()∈∗ So if  ∈  then  is the associated

date- history, i.e., the partial sequence of actions and states before date  and  =

∪∈{} = {date- histories} (1 = {∅} +1 = ) We also use  to denote a

typical element of  without necessarily specifying an outcome in  whose projection onto

dates before  is equal to 

Γ5 The mappingM(·) specifies sigma-algebras (closed under complements and countable
intersections) of measurable subsets for each   and 0, as well as for any of

their finite products. So for example, M() is the set of measurable subsets of 

All one-point sets are measurable, product sets are given their product sigma-algebras,

and subsets of measurable spaces are given their relative sigma algebras. Assume that

 ∈M(×∈∗) and that  ∈M(×∈∗) for each date  ≤ 

Γ.6. Player ’s date  information is determined by a measurable and onto signal function

 :  → .
8 Since, for every  ∈  1 = 1 = {∅} we define 1(∅) = ∅ Assume

perfect recall: ∀ ∈ , ∀  , there are measurable functions Ψ̄ :  →  and

̄ :  →  such that Ψ̄(()) = () and ̄(()) =  ∀ ∈ 

The game’s signal function is  = ()∈

Γ7 For  ∈ ,  ∈  and  ∈  Φ() ∈ M() is the set of all feasible date-

 actions for player  given the signal , where Φ1(∅) = 1 (so on date  = 1

every action in 1 is feasible for player ) Assume that for any  ∈  the set

{ ∈  :  ∈ Φ()} is measurable. For any date  ≤  and for any  ∈ ×∈∗

assume that +1 ∈ +1 iff for every player  ∈  and for every date  ≤   ∈
Φ(()) So the set  of outcomes of the game is the set of all paths along which

the players’ actions are feasible given any history.

Let ∆() denote the set of countably additive probability measures on the measurable

subsets of . For any two measurable spaces  and  a mapping  :  → ∆() is a

transition probability iff for every measurable  ⊆  (|) is a measurable real-valued
function of  on 

Γ.8.  = (1   ) is nature’s probability function where, for each date   :  → ∆(0)

is a transition probability.

Γ.9. Each player  has a bounded measurable utility function  : → R, and  = ()∈ 

8It is without loss of generality to assume, for every    that  does not depend on the date- signal

of any player since earlier signals depend on even earlier states and actions.
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At each date  ∈ {1  } starting with date  = 1 and after any date- history  ∈ 

each player  is privately informed of his date- signal,  = () after which each player

 simultaneously chooses an action from his set of feasible date- actions Φ() ⊆  and

nature chooses a date- state 0 ∈ 0 according to (·|) The game then proceeds to
the next date. After  dates of play this leads to an outcome  ∈  and the game ends with

player payoffs ()  ∈ .

In the next two subsections, we formally introduce strategies, outcome distributions,

payoffs, and conditional payoffs.

3.1 Strategies and Induced Outcome Distributions

A strategy for dated player  ∈  is any transition probability  :  → ∆() that satisfies

(Φ()|) = 1 for every  ∈ 

Let  denote ’s set of strategies and let  = ×∈ denote ’s (behavior) strategies.

Perfect recall ensures that there is no loss in restricting attention to  for each player  Let

 = ×∈ denote the set of all strategy profiles.

For any date  let · = ×∈ denote the set of date- strategy vectors with typical

element · = ()∈  Let · = ×∈∗ Each · ∈ · determines a transition probability

 from  toM(·) such that, for any measurable product set  = ×∈∗ ⊆ ×∈∗

and for any  ∈ ,

(| ·) = (0|)Π∈(|()) (3.1)

For any  ∈  we inductively define measures (·|) in ∆() so that 1({∅}|) = 1
and, for all  ∈ {1  } and for all measurable  ⊆ +1,

+1(|) =
Z

({· : ( ·) ∈ }| ·)(|) (3.2)

(Notice that (·|) depends only on )

Let  (·|) = +1(·|) be the probability measure on outcome events inM() that is

induced by  The dependence of  (·|) on nature’s probability function  will sometimes be
made explicit by writing  (·|; )
For any  ∈ , we inductively define transition probabilities from  to ∆(≥) so that

≥ (·|  ) =  (·|  · ) and for any date    and any measurable  ⊆ ≥

≥(| ) =
Z

≥+1({≥+1 : (· ≥+1) ∈ }|+1 )(·| ·)

(Notice that ≥(·| ) does not depend on )
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At any date  the conditional expected utility for player  with strategies  given history

 is,

(|) =
Z

( ≥)≥(≥| )

(notice that (|) does not depend on ) and, player ’s ex-ante expected utility is

() =

Z
() (|) =

Z
(|+1)+1(+1|)

3.2 Conditional Probabilities

For any  ∈  for any  ∈  and for any  ∈M(), define

(|) = (
−1
 ()|) = ({ : () ∈ }|)

Then (|) is the probability that ’s date  signal is in  under the strategy profile  The
dependence of (·|) on nature’s probability function  will sometimes be made explicit by
writing (·|; )
For any  ∈  and for any measurable  ⊆  if (|)  0, we may define: conditional

probabilities,

(| ) = ( ∩ −1 ()|)(|) ∀ ∈M()

and,

 (| ) =  ({ ∈  : () ∈ |)(|) ∀ ∈M()

and conditional expected payoffs,

(|) =
Z


() (| )

(Notice that (·| ) is the marginal of  (·| ) on ) The dependence of  (·| )
and (·|) on nature’s probability function  will sometimes be made explicit by writing

 (·| ; ) and (·|; )
The concepts that we will define in the rest of the paper are all based on the idea that

players must choose strategies that are approximately optimal among all of their feasible

strategies in the game Γ One might think that strategies that are fully optimal can be

obtained by taking limits of approximately optimal strategies, but this is not the case.

The difficulty with exact optimality arises through a phenomenon that we call “strategic

entanglement,” where a sequence of strategy profiles yields randomized play that includes

histories with fine details used by later players to correlate their independent actions. When
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these fine details are lost in the limit, there may be no strategy profile that produces the

limit outcome distribution.9 In fact, Harris et. al. (1995) give an example in which this

problem is so severe that it precludes the existence of a subgame perfect equilibrium in a

two-stage game with compact action sets and continuous payoff functions.10 Consequently,

for much of what follows we consider strategies in which all players are -optimizing. But see

Section 6.2 where we consider the limits, as  → 0 of the outcome distributions produced

by such -optimal strategies.

We next introduce a basic solution concept that, like Nash equilibrium, only disciplines

behavior in positive probability events.

4 Conditional -Equilibrium

For any  ∈  and for any  ∈  say that  ∈  is a date- continuation of  if  = 

for all   

Definition 4.1 For any  ≥ 0 a strategy profile  ∈  is a conditional -equilibrium iff

for every  ∈  for every measurable  ⊆  satisfying (|)  0 and for every date-

continuation  of 

( −|) ≤ (|) +  (4.1)

Every conditional -equilibrium is an -Nash equilibrium, which only requires inequality

(4.1) to be satisfied when  = . But the converse can fail because, in an -Nash equilibrium

a player may be able to improve his conditional payoff in some observable event by more

than  if the conditioning event occurs with sufficiently small probability in equilibrium.

Conditional -equilibrium ensures that no player could expect significant gains by uni-

laterally deviating from the equilibrium after any event that has positive probability in

the equilibrium, and so predicted behavior will satisfy approximate rationality in all such

positive-probability events. One might hope that we could ignore any possibility of irrational

behavior in events that have zero probability in equilibrium, since they are unlikely to occur!

But for any event that would be observable by some player , if this event could get positive

probability when some player  deviated from the equilibrium, then ’s predicted behavior

in this event may be used in the calculation of ’s expected payoffs from this deviation. So

9Milgrom and Weber (1985) provided the first example of this kind. See also Van Damme (1987) and

Börgers (1991).
10The nonexistence of a strategy supporting the limit outcome distribution can sometimes be remedied

by adding an appropriate correlation device between periods as in Harris et. al. (1995). Manelli (1996)

considers the problem of strategic entanglement in signaling games and restores existence there by adding

cheap talk to the sender’s message. Both of these remedies can add equilibria that are not -equilibria of

the original game.
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if ’s predicted behavior in this event would not be even approximately rational, then the

calculation of ’s incentive to deviate in inequality (4.1) could be flawed. Thus we need to

strengthen conditional -equilibrium so as to verify the rationality of players’ behavior in

any observable event that could get positive probability if players deviated from equilibrium,

even if the event has zero probability in the equilibrium itself.

For a finite extensive-form game, the problem can be avoided by considering conditional

-equilibria in which each player at each information set assigns at least some small positive

probability to every feasible action. Such a completely mixed strategy would give positive

probability to every event that could get positive probability after any strategic deviations by

the players in the finite game. So for finite games, Kreps and Wilson could define sequential

equilibria as limits (as → 0) of completely mixed conditional -equilibria.

But in infinite games where players have uncountably infinite sets of actions, any be-

havioral strategy profile must leave many actions with zero probability. Then a deviation

to such zero-probability actions could lead to events where our definition of conditional -

equilibrium does not test the rationality of players’ behavior. Thus, we will need to consider

perturbations of the conditional -equilibrium, to test rationality in these events, unless we

can find some reasonable way to restrict the set of strategic deviations that must be consid-

ered. This latter possibility is explored in the next section, where we restrict consideration

to a dense set of deviations, using a topology on action spaces.

5 Full Conditional -Equilibrium

Although it may be impossible to give positive probability to all actions for a player in an

infinite game, the player may have behavioral strategies that assign positive probability to

every neighborhood of every action, under some suitable topology on . So for a multistage

game Γ as in Section 3, let us suppose now that, for each  ∈ , the action set  is a

separable metric space, and the measurable setsM() are the Borel sets. For simplicity,

in this section we assume that each player’s set of feasible actions is history independent, so

that Φ() = , for all  ∈  and for all  ∈ 

We say that a strategy profile  has full support iff, for all  ∈  and for all  ∈ 

we have (|)  0 for every  that is a nonempty open subset of Φ() = .
11

Full-support strategies exist, by the assumption that the topology on each  is separable,

as each dated player has a countable dense set of actions that could all be given positive

11Such strategies have been defined for various games with history-independent action sets. For signaling

games, Mansuwe et. al. (1997) call such strategies pointwise completely mixed. For Bayesian games, Bajoori,

Flesh, and Vermuelen (2016) call them completely mixed behavior strategies. For a class of extensive games,

Jung (2018) calls them fully mixed. In normal form games, Simon and Stinchcombe (1995), and Bajoori,

Flesch, and Vermuelen (2013) have used mixed strategies with full support to refine Nash equilibrium.
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probability. Furthermore, any strategy profile  can be closely approximated by full support

strategy profiles, because (1− ) + ̂ has full support whenever 0    1 and ̂ has full

support.

Definition 5.1 Say that  is a full conditional -equilibrium iff  is a conditional -equilibrium

that has full support.

With full-support strategies, any feasible action for any player has arbitrarily small neigh-

borhoods that will get positive probability under the player’s strategy after any possible

signal. Using this property, we can now construct a dense set of deviations under which the

problem of zero-probability events does not arise for a full conditional -equilibrium.

Let us define a tremble profile to be any  = ()∈ such that each  :  ×  →
∆() is a transition probability that satisfies (Φ()| ) = 1, for all  ∈  and

for all  ∈  For any tremble profile  and any strategy profile  ∈ , let  ∗ denote the
strategy profile ( ∗ )∈ ∈  where, for each  ∈   ∗  ∈  is defined by,

[ ∗ ](|) =
Z

(| )(|) ∀ ∈M() ∀ ∈  ∀ ∈ 

The tremble profile  is -local iff (B()| ) = 1, for all  ∈  for all  ∈ 

and for all  ∈  where B() is the ball of radius  around .

So a -local tremble profile  describes a model in which, when any player  intends

to choose some action  after observing some signal , the player would tremble slightly

and would really choose some nearby action, within distance  from , according to the

probability distribution (·| ). If the players’ intended actions were generated by the
strategy profile , then their realized actions would depend on their signals according to the

strategy profile  ∗ . By taking  to 0, we can guarantee that each player’s realized actions
with a -local tremble will always be arbitrarily close to his intended actions.

The following theorem tells us that, for any full conditional -equilibrium , we can

construct arbitrarily small local trembles that do not change  and are such that, for any

intended deviations by any players, the corresponding deviations with trembles do not lead to

any positive-probability events in which the rationality of the full conditional -equilibrium

has not already been tested. A proof is in Myerson and Reny (2019).12

Theorem 5.2 Suppose that  is a strategy profile with full support. Then for any   0

there is a -local tremble profile  such that  ∗  =  and, for every ̂ ∈  and every

 ∈M() if  (|̂ ∗ )  0 then  (|)  0
12The idea is to partition each action space into measurable sets , each of which is contained in a ball of

radius 2 and has a nonempty interior, so that it gets positive probability under  with full support. Then

for any intended action  in the partition element , we can let (| ) = ( ∩ |)(|)
for all  ∈M() So (·| ) imitates (·|) within a small set of actions that are -close to .
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Full conditional -equilibria exist in a large class of (regular projective) games (Theorem

9.3 and Remark 9.4), but can fail to be subgame perfect, as the next example shows.

Example 5.3 Failure of subgame perfection for a full conditional -equilibrium.

• On date 1, nature chooses  uniformly from [0 1]

• On date 2, player 1 observes the signal 1 =  and chooses  ∈ [0 1]
• On date 3, player 2 observes the signal 2 = ( ) and chooses  ∈ [0 1]
• Payoffs are 1 = 2 = 1 if  =  =  and 1 = 2 = 0 otherwise.

13

• Full-support strategies are defined with the usual topology on [0 1] as a subset of the real
number line.

In this game, each player wants both players to match nature’s choice of . Since both

players observe the past history when it is their turn to move, this game has perfect infor-

mation. In any subgame-perfect equilibrium, player 2 must be expected to choose  = 

whenever  = , and so player 1 should choose  = , so that both players get a payoff

of 1. With any   0, there exist full conditional -equilibria in which this outcome event

{ =  = } has arbitrarily high probability (with each player having a small probability of
choosing an action from a full-support distribution on [0 1]).

However, we can also find full conditional -equilibria in which the players’ expected

payoffs are 0. For example, consider strategies where each player’s action would be chosen

from a uniform distribution on [0 1] independently of the observed history. Player 2 would

strictly prefer to choose  =  in the event { = }, but conditional -equilibrium does not

require rationality of 2’s response in this event because it has probability 0 when player 1

chooses  independently of . ¨
If in the above zero-payoff imperfect equilibrium player 1 understood that player 2 would

rationally respond to  =  by choosing  = , then player 1 would certainly prefer to

choose  = . But this argument depends on the implicit assumption that player 1 can

choose  exactly equal to , without any small local tremble. If player 1’s intended choice

of  =  would lead to the realized  actually being drawn from a uniform distribution over

the interval of [ −   + ], for some small   0, then player 1 could not force the exact

match { = } to have positive probability even if he tried, and so the failure of subgame
perfection in this event would not actually matter. It is in this sense that Theorem 5.2 tells

us that any failures of sequential rationality in a full conditional -equilibrium could become

irrelevant if players’ choices are subject to arbitrarily small local trembles.

13These payoff functions are discontinuous. A similar example with continuous payoffs can be obtained by

adding more stages. Discontinuities for early players then arise because the behavior of later players is not

continuous in the actions of the early players.
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This interpretation of the zero-payoff imperfect full conditional -equilibrium relies on the

possibility that players might be unable to even approximately optimize since local trembles

must preclude at least one of the players from matching nature’s choice of  even when the

other player matches  Next, we develop an approach to the problem of perfection in which

all players are assumed always to approximately optimize over their entire set of feasible

strategies.

6 Perfect Conditional -Equilibrium

From Example 5.3, we see that subgame perfection cannot be guaranteed without testing

rationality of players’ responses to all possible deviations (not just some dense set of devia-

tions). Thus, we now develop our concept of perfect conditional -equilibrium by considering

nets of perturbations of the players’ strategies and nets of perturbed probability functions

for nature that eventually (in the net) give all player actions and almost all states of na-

ture positive probability, and along which the players -optimize conditional on all positive

probability events.

Our next example motivates why we must perturb both nature’s probability function and

the players’ strategies when we require that rationality be tested with positive probability

at each signal. The example shows that such a requirement can be incompatible with the

existence of equilibrium if we perturb only the players’ strategies.

Example 6.1 Nonexistence of equilibrium when only strategies are perturbed in rationality

tests.

• On date 1, Nature chooses  uniformly from [0 1] and player 1 chooses  ∈ {−1} ∪ [0 1]
• On date 2, player 2 observes the signal  where  =  if  ∈ [0 1] and  =  if  = −1
and then chooses  ∈ {−1 1}.

• Payoffs are 1 = − 2 = (+ 12)

In this game, player 2 observes a number  ∈ [0 1] but she does not know whether the
number she observes was chosen by player 1 (which will be the case when  ∈ [0 1]) or was
chosen by nature (which will be the case when  = −1).
The strategy  = −1 is strictly dominant for player 1 and player 2 wants to choose

 = −1 if and only if  = −1 So this game has an essentially unique Nash equilibrium in

which player 1 chooses  = −1 and player 2 chooses  = −1 for Lebesgue almost every signal
 ∈ [0 1] that she observes.
However, if we required that, for any signal  ∈ [0 1], player 2’s equilibrium behavior

should pass a conditional rationality test in slightly perturbed strategies that give this signal

14



positive probability (so that conditional payoffs can be computed), then there would be no

equilibrium at all. Indeed, for any  ∈ [0 1], the event { = } can have positive probability,
but only if positive probability is given to  = , because the event { = } has probability
0. So in any scenario where { = } has positive probability, conditional rationality would
require player 2 to choose  = 1 when she observes  =  since the resulting conditional

probability of the event { ∈ [0 1]} is one. Applying this same argument to every signal
 ∈ [0 1] would imply that player 2 must choose  = 1 after every signal. But, for   0

small enough, this strategy is not even an -best reply for player 2 against player 1’s strictly

dominant choice of  = −1 ¨
To see the problem another way, consider any possible value of 2’s signal ̂ ∈ [0 1]. We

could try to estimate what player 2 should believe is the conditional probability of player

1 having chosen  = −1 given that 2 has observed  = ̂ by taking the limit of what this

Bayesian belief probability would be for strategies in a net of strategies which converge to 1’s

unique equilibrium strategy and which (eventually) give positive probability to the event of 2

observing { = ̂} (so that we can apply Bayes rule). But these Bayesian belief probabilities
must all be 0, because the event of 2 observing  = ̂ can have positive probability only

when player 1 gives some small positive probability to the event { = ̂ ≥ 0}, since the event
{ = ̂} must have probability 0 as long as we do not perturb nature’s behavior. Now this
argument can be applied for every ̂ in [0 1]. Thus, when we try to compute conditional belief

probabilities from a net of perturbations of 1’s equilibrium strategy, we find that player 2

must assign belief probability 0 to the event { = −1} conditional on every individual
signal in [0 1]. But before observing this signal, knowing only that  ∈ [0 1], player 2 must
understand that the event { = −1} has probability 1 in equilibrium.
This problem arises here because, when only the players’ strategies are perturbed, the

positive probability rationality test biases player 2’s conditional beliefs toward explaining

prior probability-zero events as always being the result of a deviation by player 1 instead of

perhaps being the result of the occurrence of a probability-zero state of nature.

To avoid such biased beliefs, and to steer clear of the problem encountered here, we

perturb both the players’ strategies and nature’s probability function in our tests for rational

behavior.

We next introduce our main solution concept which, unlike both conditional -equilibrium

and full conditional -equilibrium, tests for rational behavior even at events that have prob-

ability zero in equilibrium.

15



6.1 Perfect Conditional -Equilibrium

Let T denote the set of  = ( 1   ) such that each   :  → ∆(0) is a transition

probability. Thus T is the set of alternative probability functions for nature in the game

Γ Notice that nature’s probability function  is in T  For any  ∈ T  let Γ() denote the
perturbed game in which nature’s probability function is  instead of 

For any    0 ∈ T  define k 0 − k = sup | 0(|)−  (|)|  where the supremum
is over all  ≤   ∈  and  ∈ M(0) For any 0  ∈  define k0 − k =
sup |0(|)− (|)|  where the supremum is over all  ∈   ∈  and  ∈M()

Sequences of completely mixed strategies play a critical role in defining sequential equilib-

rium in finite games but are unavailable in infinite games when any player has a continuum

of actions. So we extend to infinite games the concept of a sequence of completely mixed

strategies by using instead nets of strategies whose tails give every action positive probabil-

ity.14

For any  ∈  say that the net {} of strategy profiles is admissible for  iff lim k − k =
0 15 and, for every  ∈  for every  ∈  and for every  ∈ Φ() there is an index

̄ in the directed index set such that ({}|)  0 for every  ≥ ̄

Notice that in any finite game, if a sequence (and therefore a net) of strategy profiles

is admissible for some strategy profile, then the sequence of strategies converges to that

strategy profile and, far enough out in the sequence, all strategies always give all available

actions positive probability. So admissible sequences of strategies in finite games correspond

exactly to the kinds of sequences that are required to define sequential equilibria there.

For any  ∈  it is easy to construct a net that is admissible for  as follows. Let

 = ×∈ denote the set of action profiles. The index set for our net will be the set, Ω

of all ordered pairs (  ) such that  is any positive integer and  is any nonempty finite

subset of   This index set is a directed set when we partially order its elements by saying

that (0  0) is at least as large as (  ) iff 0 ≥  and  0 ⊇  For any (  ) ∈ Ω let 

be the projection of  onto 

For any (  ) ∈ Ω for any  ∈  and for any  ∈  define ̃

 (·|) to be uniform

on  ∩Φ() if this intersection is nonempty, and define ̃

 (·|) = (·|) otherwise.16

Define 

 (·|) =

¡
1− 1



¢
(·|) + 1


̃

 (·|) Then, the action-probabilities assigned by



 are always within 1


of those assigned by  and 


 (·|) gives positive probability to

14All nets will be indexed by superscripts, e.g., {} It will always be implicit that the net’s set of indices
comes equipped with a partial order that makes the index set a directed set, i.e., for every pair of indices,

there is another index that is weakly greater than both.
15This limit means that, for every   0 there exists an index ̄ in the net’s directed index set such that

k − k   for every  ≥ ̄
16The multi-stage game measurability condtion on Φ specified in Γ.7 ensures that ̃


 has the measur-

ability property required of a transition probability.
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every action in ∩Φ() In particular, for any  ∈ Φ() 

 ({}|)  0 whenever

 contains  These properties of each 

 imply that the net {}( )∈Ω is admissible

for 

We next define admissible nets of perturbations of nature’s probability function . For

these nets, we require only that almost every state of nature (as opposed to every state)

receive positive tail-probability, as formalized below. This allows one to capture the idea

that after some out of equilibrium history, it is common knowledge among the players that

some states that could explain that history are nevertheless impossible — e.g., states that are

outside the support of nature’s distribution. The simplest way to ensure that players always

consider a state (with prior probability zero) to be impossible is to give it probability zero

in every element of a net of perturbations.17

For any date , for any  ⊆ 0 ×  and for any  ∈  let  = {0 ∈ 0 :

(0 ) ∈ } be the slice of  through 

Given nature’s probability function,  say that a net {} of nature perturbations is
admissible for  iff lim k − k = 0 and, for any date  there is a measurable subset  of

0 × such that for any  ∈  (|) = 1 and, for any 0 ∈  there is an

index ̄ in the directed index set such that  ({0}|)  0 for every  ≥ ̄18

For any  ∈  say that a net {( )} of strategy profiles and nature perturbations is
admissible for ( ) iff {} is admissible for  and {} is admissible for 19
We can now state one of our central definitions.

Definition 6.2 For any   0 a strategy profile  ∈  is a perfect conditional -equilibrium

iff there is a net {( )} of player strategies and nature perturbations that is admissible
for ( ) such that for every ,  is a conditional -equilibrium of the game Γ() The net

{( )} is then called an -test net (for ( ))

In a perfect conditional -equilibrium, behavior is -rational in all events given positive

probability in the tail of an admissible net, which should be interpreted to mean in all events

outside a “strategically irrelevant” set. The next definition makes this precise.

Say that a measurable subset  of  is negligible iff  ( |) = 0 for every  ∈  So a

negligible set is strategically irrelevant because, in positive probability events, it cannot be

given positive probability by any strategy profile.

17For example, the “canonical” nets of nature perturbations defined in Section 8.1 eventually (in their tail)

give probability zero to states outside the support of  See footnote 42.
18Like admissible nets of strategies, admissible nets of nature perturbations are easily constructed.
19Notice that if {} is admissible for  and {} is admissible for  then defining (() ()) = (  )

for each  and  and partially ordering ( ) pairs coordinatewise, i.e., (0 0) ≥ ( ) iff 0 ≥  and 0 ≥ 

we obtain that the net {(() ())} is admissible for ( )
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We can now state the following result, which says that every outcome in the game outside

a negligible set receives positive probability in the tail of any admissible net of strategies and

nature-perturbations. A proof is in Myerson and Reny (2019).20

Theorem 6.3 If {( )} is admissible for ( ) then there is a negligible set of outcomes
 ⊆  such that, for every  ∈ \ there is an index ̄ such that  ({}|; )  0 for

every  ≥ ̄

In standard finite multi-stage games, we can relate perfect conditional -equilibria to

strategy profiles that are part of a sequential equilibrium, henceforth sequential equilibrium

strategy profiles. A proof is in Myerson and Reny (2019).

Theorem 6.4 In any standard finite multi-stage game, the following conditions are equiv-

alent.

(a)  ∈  is a sequential equilibrium strategy profile.

(b)  ∈  is a perfect conditional -equilibrium for every   0 and

(c)  ∈  is the limit as → 0 of a sequence of perfect conditional -equilibria.

Given this result, it would be natural to extend the definition of sequential equilibrium

to infinite games by defining  ∈  to be a “perfect conditional equilibrium” if and only

if it is a perfect conditional -equilibrium for every   0 or, if and only if it is the limit

as  → 0 of a sequence of perfect conditional -equilibria. But such strategy profiles need

not exist, even in very well-behaved infinite games.21 So in the next section, we instead

consider sequences (nets) of perfect conditional -equilibria and the limits of their outcome

distributions as → 0

6.2 Perfect Conditional Equilibrium Distributions

We now define a “perfect conditional equilibrium distribution” as a limit of perfect condi-

tional -equilibrium distributions on outcomes as → 0.

20The idea of the proof is as follows. By admissibility, for any date  there is  ∈ M(0 × )

such that for every  ∈  (


|) = 1 and, for every 0 ∈ 


there is an index ̄ such that

 ({0}|)  0 for every  ≥ ̄ Let  be the union of 1    where  = { ∈  : (0 ) ∈ }
Then  is negligible because each  is negligible (by the definitions in Section 3.1).
21See, e.g., Example 2 in Milgrom and Weber (1985), Van Damme (1987), Börgers (1991), and Section 2

in Harris et. al. (1995).
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Definition 6.5 A mapping  :M() → [0 1] is a perfect conditional equilibrium distribu-

tion iff there is a net {} of perfect conditional -equilibria such that lim  = 0 and,

() = lim


 (|) for every  ∈M()22 (6.1)

It follows immediately from (6.1) that if  is a perfect conditional equilibrium distribution,

then  is a finitely additive probability measure onM()23 The next result is an immediate

consequence of the equivalence of (a) and (c) in Theorem 6.4.

Theorem 6.6 In any standard finite multi-stage game, the set of perfect conditional equi-

librium distributions is precisely the set of distributions over outcomes induced by the set

of sequential equilibria.

The existence of perfect conditional -equilibria is taken up in Section 9.1. We record

here the simpler result, based on Tychonoff’s theorem, that a perfect conditional equilibrium

distribution exists so long as perfect conditional -equilibria always exist. A proof is in

Myerson and Reny (2019).

Theorem 6.7 If for each   0 there is at least one perfect conditional -equilibrium, then

a perfect conditional equilibrium distribution exists.

If (6.1) holds, then so long as  is bounded and measurable (as we have assumed),

lim


Z


() (|) =
Z


()() (6.2)

and so we define ’s equilibrium expected payoff (at ) byZ


()()

Sometimes  is only finitely additive, not countably additive (e.g., the leading example

in Harris et. al., 1995). Even so, in many practical settings there is a natural countably

additive probability measure over outcomes that is induced by 

Definition 6.8 Suppose that  is a normal topological space andM() is its Borel sigma-

algebra.24 We say that ̇ is the regular countably additive distribution induced by  iff

22The directed index set can always be chosen so that each element is of the form  = (F) where  is
any positive real number, F is any finite collection of measurable subsets of  and smaller values of  and

more inclusive finite collections F correspond to larger indices.
23For any disjoint sets  ∈M() (6.1) and lim  ( ∪|) = lim[ (|) +  (|)] imply that

( ∪) = () + ()
24Recall that a topological space is normal if any pair of disjoint closed sets can be separated by disjoint

open sets.
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̇ is a regular countably additive probability measure on M() such that
R
()̇() =R

()() for all bounded continuous  : → R25

In most applications, e.g., whenever  is a compact Hausdorff space with its Borel

sigma algebra of measurable sets,  induces a regular countably additive distribution ̇26

In this case, player ’s equilibrium expected payoff (at ) namely
R

()() is equal toR


()̇() whenever  : → R is a continuous function.27

6.3 Other Properties

The next result states that every perfect conditional -equilibrium is a conditional -equilibrium,

and therefore also an -Nash equilibrium. A proof is in Myerson and Reny (2019).28 The

proof uses the fact that signal-event-probabilities in a perfect conditional -equilibrium are

well-approximated by the -test net.

Theorem 6.9 Every perfect conditional -equilibrium is a conditional -equilibrium and

therefore, a fortiori, an -Nash equilibrium

Given perfect recall, we may say that a date- history  ∈  is a subgame of Γ iff

−1 (()) = {} for all  ∈ 

For any   0 say that a strategy profile  ∈  is a subgame perfect -equilibrium of Γ

iff there is a negligible subset  of  such that for every  ∈ \ and for every date  if

 is a subgame then,

sup
∈

( −|) ≤ (|) +  for every  ∈  (6.3)

Our next result states that perfect conditional -equilibria induce -Nash equilibria in

all subgames outside a strategically irrelevant set. A proof is in Myerson and Reny (2019).

The result is a consequence of the fact that, in an -test net for a perfect conditional -

equilibrium, every outcome, and so also every subgame, outside a negligible set eventually

has positive probability. So conditional on all such subgames, play must be -optimal.

25There can be at most one such Borel measure ̇ since, by Theorem IV.6.2 in Dunford and Schwartz

(1988), any two such measures must agree on all closed sets. Then, by Corollary 1.6.2 in Cohn (1980), the

two measures must agree on all Borel sets since the set of closed sets is closed under finite intersections and

generates the Borel sigma algebra
26This follows from the Riesz representation theorem, an observation for which we are grateful to a referee.
27When the outcome distribution ̇ can not be supported by any strategy profile, it can sometimes be

supported by a correlated strategy (as happens in the examples listed in footnote 21). Whether this is true

in general is not known.
28It is also straightforward to show that the set of perfect conditional -equilibria is closed under the || · ||-

norm on  and the set of perfect conditional equilibrium distributions is compact in the product topology

on [0 1]M() We omit the straightforward proofs.
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Theorem 6.10 Every perfect conditional -equilibrium is a subgame perfect -equilibrium.

Our perfect conditional -equilibrium concept does not specify beliefs for the players.

Instead, the players’ beliefs are implicitly specified through a net of perturbations that tests

for -optimal behavior. Next, we provide one way to define systems of beliefs so that KW’s

consistency condition for standard finite games extends to infinite games.

6.4 Conditional Belief Systems and Sequential -Rationality

For any  ∈  and for any  ∈M() say that  is observable iff there is  ∈  such that

(|)  0 A player’s behavior conditional on any signal event that is not observable is

irrelevant since, in positive probability events, no behavior can make an unobservable event

have positive probability.

Definition 6.11 A conditional belief system  specifies, for every  ∈  and for every

observable  ∈M() a finitely additive probability measure (·|) on the measurable
subsets of  such that (

−1
 ()|) = 129

So a conditional belief system specifies, for any observable set of signals and for any dated

player, a finitely additive probability measure over histories that gives probability one to the

set of all histories that generate signals in the given set.

Definition 6.12 For any  ∈  and for any conditional belief system  say that ( ) is

Bayes consistent iff for all  ∈  for all  ∈M() and for all measurable  ⊆  such

that (|)  0 (|) = (| )

So Bayes’ consistency disciplines beliefs only on signal events that have positive proba-

bility under the given strategy profile. If ( ) is Bayes consistent then we also say that 

is Bayes consistent (with ).

One way to extend to infinite games KW’s definition of a belief system that is consistent

with a given strategy profile is the following.

Definition 6.13 For any  ∈  and for any conditional belief system  say that ( ) is

finitely consistent iff there is a net {( )} in  ×T that is admissible for ( ) such that
for every  ∈  and for every observable  ∈M()

(|) = lim


(| ; ) ∀ ∈M()
30 (6.4)

29The set −1 () is nonempty because, in a multi-stage game, each signal function  :  →  is

onto, i.e., its range is 
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If ( ) is finitely consistent then we can also say that  is finitely consistent with 

Importantly, for any  ∈  there is a conditional belief system  that is finitely consistent

with .31 Moreover, if ( ) is finitely consistent then it is Bayes’ consistent and  exhibits

many additional consistency properties.32

We next extend KW’s definition of sequential rationality to infinite games.

Definition 6.14 For any  ≥ 0 for any  ∈  and for any conditional belief system  say

that ( ) is sequentially -rational iff for every  ∈  and for every observable  ∈M()Z
( −|)(|) ≤

Z
(|)(|) +  for every  ∈ 

It is easy to verify that if ( ) is Bayes consistent and sequentially -rational, then  is a

conditional -equilibrium. We also have the following result, whose proof is in Myerson and

Reny (2019). The proof uses an -test net for  to construct beliefs  as in (6.4). Sequential

-rationality then follows by continuity given that each element of the test-net is a conditional

-equilibrium.

Theorem 6.15 If  ∈  is a perfect conditional -equilibrium, then there is a belief system

 such that ( ) is finitely consistent and sequentially -rational.

But the converse fails. That is, ( ) can be finitely-consistent and sequentially -rational

even though  is not a perfect conditional -equilibrium (see Example 1 in Myerson and Reny

2019).

A well-known property of consistent beliefs in standard finite games is that players with

the same information must have the same beliefs about the history of play. This property

extends to infinite games and finitely consistent beliefs. Indeed, and even more generally,

suppose that at any date  two players can each distinguish between the measurable set of

histories  and its complement, i.e., for each player, no date- history outside  generates

the same signal as any history in . Suppose also that  can have positive probability

30An implication of Theorem 6.3 is that, because  is observable and {( )} is admissible for ( ),
there is ̄ such that (|; )  0 for every  ≥ ̄ See Myerson and Reny (2019), Corollary to Theorem

6.3. So the conditional probability on the right-hand side of (6.4) is well-defined.
31For example, let {( )} be any net that is admissible for ( ). Then (see footnote 30),

{((| ; ))∈∈M()∈M()} is a net taking values in a space that is an infinite product
of the compact set [0 1] By Tychonoff’s theorem this space is compact and so a convergent subnet can be

extracted to define beliefs as in (6.4).
32For example, for all  ∈  for all  ∈M() and for all  ∈M()

(
−1
 ( )|)( ∩ −1 ()| ) = (

−1
 ()| )( ∩ −1 ( )|)
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under some strategy profile. Then, for any finitely consistent beliefs, the two players must

have the same beliefs over  conditional on each of their signal sets that is generated by


33 Because this holds in particular when, for each player,  generates a single signal,

we may conclude in addition that with finitely consistent beliefs, whenever any two players

have the same information about the history of play, they must have the same beliefs.

Since for any perfect conditional -equilibrium  there are conditional beliefs  such

that ( ) is finitely consistent and sequentially -rational, the discussion in the previous

paragraph implies that, in any perfect conditional -equilibrium, any two players with the

same information about any observable event behave as if they have the same beliefs.

Despite having some good properties, finitely consistent beliefs can sometimes seem para-

doxical. Indeed, returning to Example 6.1, consider any || · ||-convergent net {( )} in
× such that  =  is constant and equal to nature’s probability function and such that

for each   0 and for each action of player 1, player 1’s net of strategies eventually always

gives that action positive probability and eventually always gives the strictly dominant ac-

tion  = −1 probability at least 1− Any such net defines a net of belief systems that has a
limit point (by Tychonoff’s theorem). Moreover, each limit point is finitely consistent. But,

as we have seen, these finitely consistent beliefs would put probability 0 on the event that

player 1’s action is  = −1 conditional on each of player 2’s signals, even though this event
should get probability 1 conditional on player 2’s entire set of signals.

Thus, with only finite consistency, beliefs on one-point signal events may not be sufficient

to determine beliefs more generally. In particular, the probability assigned to any set of

histories conditional on any given signal event need not be a convex combination of the

probabilities assigned to that set of histories conditional on each element of an arbitrary

partition of that signal event. However, that probability can always be obtained as a convex

combination of the conditional probabilities given each element of any finite partition of that

event.

Much applied work on signaling games (for example) has relied on an implicit assump-

tion that beliefs conditional on one-point signal events should be sufficient to characterize

beliefs for all larger observable events. When beliefs computed pointwise are not sufficient

to evaluate the sequential rationality of a strategy, this beliefs-based approach can become

more difficult and so perhaps less useful.

33This is because their signal sets are observable events (since  can have positive probability), and

because, by equation (6.4), if signal sets  and  satisfy  = −1 () = −1 () then for every
 ∈M() (|) = (|) = lim ( ∩|; )(|; )
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7 Illustrative Examples

In this section we present two examples showing that perturbations of nature can sometimes

lead to perfect conditional -equilibria that may seem unintuitive.34

Example 7.1 Unintuitive consequences of non-independent perturbations of independent

states of nature.

• On date 1, nature chooses  = (1 2) uniformly from the square [−1 3]× [−1 3]
• On date 2, player 1 observes 1 and chooses  ∈ {−1 1}
• On date 3, player 2 observes  and chooses  ∈ {−1 1}
• Payoffs are: 1 =  and 2 = 2

Since no player receives any information about 2 and E(2)  0 player 2 should choose

 = 1 regardless of the action of player 1 that she observes. But then player 1 should also

choose  = 1 regardless of the value of 1 that he observes. Hence, the intuitively natural

equilibrium expected payoff vector is (1 2) = (1 1)

But consider the pure strategy profile (12 23) where 12(1) = [−1] if 1  −1, 12(−1) =
[1], and 23() = [−]35
This strategy profile yields the expected payoff vector (1 2) = (−1 1) but it is nonethe-

less a perfect conditional -equilibrium for any   0 because it can be supported by a per-

turbation of nature that puts small positive probability on the event {1 = 2 = −1}. With
this perturbation of nature it would be sequentially rational for player 2 to choose  = −1
when she observes  = 1 because she would attribute this observation to the occurrence of

the positive probability event {1 = 2 = −1} and therefore would expect the value of 2 to
be −136 ¨
This perfect conditional -equilibrium may seem unintuitive because 2 is observed by no

one and is independent of everything in the game, yet, nature’s supporting perturbation leads

both players to believe that observing 1 = −1 informs them that 2 = −1 (player 1 observes
1 = −1 directly; player 2 infers from 1’s perturbed strategy that 1 = −1 when she observes
 = 1) Thus, the perturbations of nature that support perfect conditional -equilibria can

34The two examples considered here are infinite games. Perturbations of nature can also have dramatic

effects in non-standard finite games, i.e., finite games in which some of nature’s states have prior probability

zero. This is because, when states with prior-probability zero receive positive probability in some perturba-

tion, they suddenly become “possible” and therefore can explain events that could otherwise be explained

only through a deviation by some player. See the discussion following Example 6.1 as well as Section 4.8 in

Myerson (1991).
35Here and in the next example, the notation [] denotes the probability measure that puts probability 1

on the action 
36In contrast, because full conditional -equilibrium does not require nature-perturbations, the only full

conditional -equilibrium outcome in the limit as → 0 is (1 1)
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influence the informational content of nature’s states in important, but perhaps unintended,

ways.

When the game specifies that  = (1 2) is uniform on [−1 3] × [−1 3] the modeler
might intend for this to mean that neither one of nature’s two coordinates, 1 and 2 can

ever be informative about the other, even in zero-probability events. But, formally, the joint

distribution only determines the distribution of, say 2 conditional on 1 for almost every

value of 1. In particular, the distribution of 2 conditional on 1 = −1 can be defined
to assign all mass to 2 = −1 as in the perturbation of nature in the present example.37
The perturbations of nature in perfect conditional -equilibria fill in these indeterminacies

that are present in, but are irrelevant for, standard probability theory. But because the way

these indeterminacies are filled in can be crucial in a game-theoretic context, we may wish

to better control how they are resolved. For example, the unintuitive equilibrium above can

be eliminated if 1 and 2 are perturbed independently. See Section 8 for a general class

of such restricted nature perturbations. Alternatively, we could apply the concept of full

conditional -equilibrium from Section 5, which would exclude the perverse equilibrium for

this example and the next one.

Example 7.2 Unintuitive consequences of large perturbations of nature even with small

probability.

• On date 1, nature chooses  = (1 2) ∈ [0 1]2 With probability 12, the coordinates are
independent and uniform on [0 1], and with probability 12 the coordinates are equal and

uniform on [0 1].

• On date 2, player 1 observes 12 = 1 and chooses  ∈ {−1 1}
• On date 3, player 2 observes 23 =  and chooses  ∈ {−1 1}.
• Payoffs are: 1 =  and 2 = (13 + 2 − 1)

Thus, player 2 should choose  = 1 if she expects 2 − 1 to be greater than −13 and
she should choose  = −1 otherwise. Player 1 wants to choose an action that player 2 will
match.

Since for almost every 1, 2 is equally likely to be equal to 1 (in which case 2−1 = 0)

as to be uniform on [0 1] (in which case E(2 − 1|1) = 12 − 1), player 2 should expect

37Notice that this would not be true if 2 were chosen after 1 Then, the distribution of 2 would be

specified by nature’s transition probability function for any possible value of 1 In this case, the game model

could specify that 2 is uniform on [−1 3] for every possible 1 which would eliminate the problem in this

example. However, even then, the same problem would arise in a modified example with two additional

players, 3 and 4, who, separately from players 1 and 2, play the same game, with player 3 playing the role of

player 1 and player 4 playing the role of player 2, and where the roles of 1 and 2 are reversed, i.e., player 3

observes 2 and player 4’s payoff depends on 1 In this modified game, the problem cannot be eliminated

by specifying the temporal order in which 1 and 2 occur because each would have to occur before the

other. But the refinements introduced in Sections 8 and 5 can eliminate the problem even in this modified

example.
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2 − 1 to be no smaller than −14, regardless of 1’s strategy. So player 2 should choose
 = 1.

Thus, it seems that all sensible equilibria involve strategies that give probability 1 to

( ) = (1 1).

But consider the strategy profile (12 23) where 12(1) = [−1] if 1 6= 1 12(1) = [1]

and 23() = [−].38 This profile gives probability 1 to ( ) = (−1 1), and is supported in
a perfect conditional -equilibrium by the perturbation of nature that does not perturb 2

but that with small positive probability perturbs the distribution of 1 so that it is a mass

point on 1 = 1. With this perturbation of nature it is conditionally rational for player 2 to

choose  = −1 when she observes  = 1 because she attributes this observation to 1 being
a mass point on 1 and therefore expects the value of 2 − 1 to be −1239 ¨
Once again, we have an unintuitive equilibrium that can result because the joint dis-

tribution of nature’s state coordinates determines the conditionals only almost everywhere.

This unintuitive equilibrium can be eliminated if nature’s states can be perturbed only to

nearby states so as to approximately maintain the informativeness of each coordinate 1 and

2 about the other (see the next section), or, if we apply the concept of full conditional

-equilibrium from Section 5.

8 Augmenting a Game with a Net of Admissible Nature-

Perturbations

Unintuitive perfect conditional -equilibria such as in Examples 7.1 and 7.2 can be eliminated

if we augment a game by including in its specification a net of admissible perturbations of

nature.

If {} is admissible for nature’s probability function  in the multi-stage game Γ then

we say that a perfect conditional -equilibrium  of Γ is compatible with {} iff there is net
{( )} of strategy profiles and nature-perturbations that is admissible for ( ) such that
{} is a subnet of {} and, for each   is a conditional -equilibrium of the game Γ()
For any multi-stage game Γ, its specified net of admissible nature-perturbations {}

should be thought of as an additional element in the structure of the game and that ex-

presses common knowledge aspects of how players update their beliefs about nature in zero-

probability events. No additional topological structure is needed to augment a game with an

admissible net of nature-perturbations. However, in most applications, the various spaces

38See footnote 35.
39In contrast, because full conditional -equilibrium does not require nature-perturbations, the limit as

→ 0 of full conditional -equilibria gives probability 1 to the action profile ( ) = (1 1)
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come equipped with natural topologies. We next define canonical nets of admissible nature

perturbations that can be used in a wide variety of such applications.

8.1 Canonical Nets of Admissible Nature-Perturbations

We need to add something to the structure of the game because nature’s probability func-

tion  may not tell us enough about what information could be inferred from observing the

state of nature to be in some set that had probability 0. As Examples 7.1 and 7.2 demon-

strated, even when two random variables are independent according to the prior probability

distribution , we may need some additional structure if we want to stipulate that even the

observation of a probability-0 event defined by one of these random variables would still

not convey any information about the other random variable. More generally, we may want

to express nature’s state at any date  as being composed of several different coordinates

0 = (0)∈ (for some index set ), so that we can stipulate that the inference from ob-

serving a probability-0 event that is defined by any one coordinate 0 should not go beyond

the range of what could be inferred from any positive-probability events that are defined by

this random variable 0.

We might also want to specify some partition on the possible values of any coordinate 0,

so that we can stipulate that the inference from an observation of 0 taking a value in any

partition element should not go beyond the range of what could be inferred from observing

0 in positive-probability subsets of this partition element. Further, with a topology on the

set of possible values of 0, we may also want to specify that the players’ inferences from

the observation of a probability-0 value of 0 must be a limit of what could be inferred from

observing 0 to be in arbitrarily small positive-probability neighborhoods of this observed

value.

So let Γ be any multi-stage game with probability function for nature  ∈ T  But suppose
that there is a finite index set,  with # ≥ 1 such that, for any date  nature’s set of date
 states is written as 0 = ×∈0 where each 0 is a separable metric space with its

Borel sigma algebra of measurable sets. Suppose also that, for each  ∈  there is a finite or

countably infinite partition 0 of 0 into measurable sets, and denote by 0(0) the

element of 0 that contains 0 ∈ 0

With this structure, we can define a canonical net of nature-perturbations {} for  as

follows.40 Let 0 = ×≤0 be nature’s state space. The index set for our net will be the

set, Ω of all ordered pairs (  ) such that  is any positive integer and  is any nonempty

finite subset of 0 This index set is a directed set when we partially order its elements by

40Different partitions, 0  will give different canonical nets. The possibility of controlling the perturba-

tions in the net by choosing particular partitions 0 can be useful, as in our proof of Theorem 9.3.
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saying that (0  0) is at least as large as (  ) iff 0 ≥  and  0 ⊇  For any (  ) ∈ Ω

for any date  and for any  ∈  let 0 be the projection of  onto 0

For any (  ) ∈ Ω for any date  and for any  ∈  define the transition probability



 : 0 → ∆(0) so that, for every 0 ∈ 0 if no point in 0 ∩ 0(0) is

within distance 1

of 0 then 


 ({0}|0) = 1 Otherwise,  ({0}|0) = 1− 1


and



 (·|0) distributes the remaining probability 1


uniformly over the finite set of points in

0 ∩0(0) that are within distance
1

of 0.

For any (  ) ∈ Ω define the perturbation of nature,   as follows. For every date

 ≤  for every  ∈  and for every  = ×∈ ∈ ×∈M(0)



 (|) =

Z
0

Π∈

 (|0)(0|) (8.1)

The perturbation  works as follows. At each date  and after any history  ∈  a

provisional state 0 is first drawn according to nature’s date- probability measure (·|)
Then, independently for each coordinate  ∈  the actual -th coordinate of the date- state

is drawn according to the distribution 

 (·|0) depending only on the -th coordinate of

the provisional state.41 42

So for large (  ) ∈ Ω each perturbation  in a canonical net perturbs nature’s

coordinates independently to nearby values, and only rarely. Perturbing nature’s coordinates

independently and to nearby values ensures that observation of any coordinate value can

only convey information that could be available from events in small neighborhoods of that

value. Perturbing nature only rarely ensures that, at each date, the anticipation of future

perturbations of nature will not affect future expected values in the limit as →∞ and as

 expands to include all of nature’s states. We can state the following result. A proof is in

Myerson and Reny (2019).43

Theorem 8.1 If {} is a canonical net of nature-perturbations, then {} is admissible
for 

41In particular, for each date  

 (·|·) is a Blackwell garbling of (·|·)

42By the definition of the 

 mappings, for any 0 in the support of 


 (·|) there is 00 in the

support of (·|) such that 0 is within distance 1 of 00 for each  Consequently, any 0 outside

the support of (·|) is given probability zero by  (·|) for all large enough 
43The idea of the proof is as follows. Since the support of a measure (i.e., the smallest closed set with

measure-zero complement) is well-defined in a separable metric space, for any date  we can let  =

{(0 ) : 0 is in the support of (· ∩ 0(0)|)} where 0(0) is the element of ×∈0 that
contains 0 Then, for any  ∈  (



|) = 1 where 


is the slice of  through Moreover,

for any ̄0 ∈ 

, and for any ( ) ∈ Ω with ̄0 ∈  (8.1) implies that 


 ({̄0}|)  0 because there

is a small enough open set  containing ̄0 such that Π∈

 ({̄0}|0)  0 for every 0 ∈  ∩0(̄0)

and ( ∩0(̄0)|)  0 (the latter since ̄0 ∈ 


is in the support of (· ∩0(̄0)|))
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To eliminate the unintuitive perfect conditional equilibria in example 7.1, we should set

 = {1 2} and let 011 = 012 = [−1 3] Then  = (1 2) ∈ 011 × 012 and in any

perturbation of nature from the canonical net, the coordinates 1 and 2 of nature’s state

 will be perturbed independently. Moreover, in any perturbation from the canonical net

in which some state ̄ = (̄1 ̄2) receives positive probability, the conditional distribution of

1 given 2 = ̄2 will be uniformly close to a uniform distribution on [−1 3] Consequently,
with this specification of the coordinates of nature, the unintuitive equilibrium fails to be

a perfect conditional -equilibrium that is compatible with the canonical net of nature-

perturbations. For finite games with a discrete topology on chance moves, there would be

a positive distance between any two alternative moves by nature, and so every canonical

net of nature-perturbations is eventually (in the net) constant and equal to nature’s original

probability function. So compatibility with the canonical net effectively rules out any nature-

perturbation at all.

9 Regular Projective Games

In this section we introduce a large class of games — regular projective games — for which we

can prove the existence of a perfect conditional -equilibrium which has full support and is

compatible with the canonical net of nature perturbations, for any   0.

Definition 9.1 Let Γ = (  MΦ   ) be a multi-stage game. Then Γ is a regular

projective game iff there is a finite index set  and, for all (  ) ∈ ∗ ×  ×  there are

sets  such that, for every  ∈ 

R.1.  = ×∈ Φ() =  for every  ∈  and 0 = ×∈0

R.2. if   1 then there is a nonempty set  ⊂ ∗ × {1      − 1} ×  such that

 ⊆ ×∈
 and () = ()∈

∀ ∈  is a projection map; that

is, ’s signal at date   1 is just a list of state coordinates and action coordinates from

dates up to  (define 1 = ∅ and recall that 1 = {∅} in a multi-stage game)

R.3.  and 0 are nonempty compact metric spaces ∀ ∈  and all product spaces are

given their product topologies, all subspaces are given their relative topologies, and

the measurable subsets of all spaces are their Borel subsets,

R.4.  : → R is continuous,

R.5. nature’s date- probability function satisfies (|) =
R

(0|)[×∈0](0)

∀ ∈M(0) ∀ ∈  where 0 ∈ ∆(0) has full support ∀ ∈  and where
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 : 0× → [0∞) is continuous and the subset of 0× on which  is strictly

positive is closed

If Γ satisfies R.1 and R.2, we may say that Γ is a projective game or a game with projected

signals.

Remark 9.2 (1) One can always reduce the cardinality of  to (+1)# or less by grouping,

for any  ∈ ∗, the variables {}∈ according to the #-vector of dates at which the
players observe them, if ever.

(2) Since distinct players can observe the same 0 nature’s probability function in a

regular projective multi-stage game need not satisfy the information diffuseness assumption

of Milgrom-Weber (1985). Nevertheless, the form of  assumed in R.5 of Definition 9.1 is

reminiscent of the Milgrom-Weber assumption, and a recent counterexample to the existence

of an (ex-ante) -Nash equilibrium in a Bayesian game due to Simon and Tomkowicz (2017)

shows that some such assumption is necessary for the existence of even a conditional -

equilibrium.

(3) Continuity of  implies that the subset of 0× on which  is strictly positive is

open. Hence, condition R.5 implies that points of zero density are topologically isolated from

points of strictly positive density. This is a restrictive condition, but it is always true for

finite games with the discrete topology and for games with each  strictly positive. Without

a condition of this kind, likelihood ratios can become unbounded in ways that our proof

technique cannot handle.

Examples of regular projective games include the following.

1. All Finite multi-stage games. Any finite multi-stage game (i.e., finite state, action,

and signal sets endowed with their discrete topologies) can be modeled as a regular

projective game simply by letting each player’s signal be a coordinate of the state.

2. Compact and Continuous Multi-Stage Games. The following compact and con-

tinuous games (i.e., all state, action and signals sets are compact metric spaces, payoff

functions are continuous, nature moves only on date 1 with a date-1 probability func-

tion that is absolutely continuous with respect to the product of its marginals and with

a continuous and positive Radon-Nikodym derivative) are regular projective games.

(i) Bayesian games. In an  -player Bayesian game (Harsanyi model), there are two

dates. On date 1, nature chooses a state vector with  coordinates. On date 2, each

player  observes only the -th coordinate of nature’s date 1 state and chooses a feasible

action. Payoffs can depend on all actions and on nature’s state vector.
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(ii) Finite-Horizon Multi-Stage Games with Observed Actions. In an-player

 -stage game with observed actions, all players have perfect recall. On date 1, nature

chooses a state vector with  coordinates. On date 2, each player  observes only the

-th coordinate of nature’s date 1 state and chooses a feasible action. On any date

 ∈ {3  } player  observes the actions taken by all players on the previous date
and then chooses a feasible action. Payoffs can depend on all actions taken by all

players on all dates and on nature’s date-1 state vector.

(iii) Signaling Games. In a signaling game, there are three dates. On date 1, nature

chooses a state. On date 2, player 1 (the “sender”) observes nature’s date-1 state

and chooses a feasible (“message”). On date 3, player 2 (the “receiver”) observes the

action chosen by player 1 and then chooses a feasible action. Payoffs can depend on

the actions of both players and on nature’s state.

3. Stochastic Games. Any finite-horizon stochastic game (which includes all finitely-

repeated games) in which nature’s transition probability depends on the history only

through a continuous and positive conditional density function. (We can take # = 1

since players observe the entire past history on each date.)

9.1 Existence

We can now state our main existence result, whose proof is in Section 11. It states that,

in regular projective games, for every   0 there is strategy profile that is a perfect condi-

tional -equilibrium, and that, in addition, has full support (and so by Remark 9.4 is a full

conditional -equilibrium) and is compatible with a canonical net of nature perturbations.

Theorem 9.3 Let Γ be a regular projective game. Then for any   0, Γ has a perfect

conditional -equilibrium that has full support and that is compatible with a canonical net

of nature-perturbations.

Remark 9.4 By Theorem 6.10 and Theorem 9.3, every regular projective game has a sub-

game perfect -equilibrium for every   044 By Theorem 6.9 and Theorem 9.3, every regular

projective game has a full conditional -equilibrium.

An immediate consequence of Theorem 9.3 and Theorem 6.7 is the following.

Theorem 9.5 Every regular projective game Γ has a perfect conditional equilibrium distri-

bution .

44See Chakrabarti (1999) for an existence result concerning a related concept, subgame perfect approximate

equilibria, for a different class of games.
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10 Conclusion

In order to ensure that all off-path behavior (outside a negligible set) is rational in an infinite

game, we have been led to perturb not only the players’ strategies (as in KW), but to perturb

nature’s probability function as well. Although the effects of nature’s perturbations can

sometimes seem unintuitive, the strategy profiles that arise as perfect conditional -equilibria

satisfy two fundamental properties. For any finite set of outcomes in the game (outside a

negligible set) (i) (finite consistency) all players can agree on a common perturbation of

nature’s probability function and on a common perturbation of the players’ equilibrium

strategies that together give positive probability to — and so can explain the occurrence of —

any of those outcomes, and (ii) (conditional -optimality) if any player were ever to observe

a signal on the path to any of those outcomes, then the common explanation of the outcomes

that generate that signal would make his equilibrium continuation behavior given that signal

-optimal.

In a topological approach to the problem of rationality in extensive form games, it is

natural to consider conditional -equilibria that have full support (with the given topologies).

This full conditional -equilibrium concept is attractive because it does not require any

perturbations of nature. However, as we have seen (Example 5.3), to obtain properties like

subgame perfection, we need to consider nets of perturbations of the players’ strategies and

of nature’s probability function, as in our perfectness concept.

In standard finite games, the sets of conditional -equilibria with full support and perfect

conditional -equilibria are essentially equivalent, and their limits yield the set of sequential

equilibrium strategy profiles.45 The fact that this coincidence of perfectness and fullness does

not extend to infinite games is a basic reason why it has been so difficult to define sequential

equilibria for infinite games. An uncountable infinity of outcomes cannot all get positive

probability from one strategy profile, and so one must either let the strategy profile satisfy a

weaker topological condition of full support, or one must consider a net of perturbations of

the players’ strategies and of nature that can test rationality in all events but may yield only

finite additivity in the limit. We have emphasized the latter approach as a general solution,

but both approaches may be worth considering in particular applications.

45Specifically, let Γ be any standard finite multi-stage game. Any full conditional -equilibrium (with the

discrete topology on the finite ) of Γ is a perfect conditional -equilibrium. Conversely, if  is a perfect

conditional -equilibrium of Γ, then for all   0 and for all 0   there is a full conditional 0-equilibrium
0 with k0 − k ≤ .
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11 Proof of Theorem 9.3.

Outline.

The proof is broken into four parts. Part 1 constructs a sufficiently fine finite partition

of the space of outcomes. Part 2 uses the finite partition from part 1 to define a finite

approximating game played by agents  ∈  and fixes one of its Nash equilibria, a full-

support strategy profile ̂ in the original infinite game. Part 3 constructs a net {( )} of
strategy profiles and nature- perturbations that is admissible for  where the net of nature-

perturbations is canonical. Part 4 shows that every strategy profile  in the net is a perfect

conditional -equilibrium in perturbed game Γ() Altogether, these steps show that the

full-support strategy profile ̂ is a perfect conditional -equilibrium of Γ that is compatible

with a canonical perturbation of nature.

Preliminaries.

Recall that in any multi-stage game, 1 = 1 = {∅} for every  ∈  So 1 = ∅ for any
 ∈ 

The set of Borel subsets of any metric space  will be denoted by B()
Let Γ be a regular projective game, i.e., Γ satisfies the conditions R.1-R.5 of Definition

9.1, henceforth simply R.1-R.5.

Henceforth, we will write  for any ( ) ∈ ∗ × 

For any  ∈ ∗ ×  and for any  ∈  let B() denote the -ball centered at

 ( is a metric space by R.3).

If  is any subset of  for each  ∈ ∗ ×  and if  is any subset of ∗ ×  then

let  = ×∈ and let  = ()∈ denote a typical element of  

Recall by R.2 that for every  ∈  the subset  of 
∗ × {1  − 1} ×  is the set of

history-coordinates that player  observes at date  Hence, () = 
for every  ∈ 

and  = 
 Throughout the proof we will often denote player ’s set of signals by 

and we will often denote a typical signal for player  at date  by 
∈ 

 By convention,

we define ∅ = {∅} ∅ = ∅ and 1 = ∅ for every  ∈ .

Let 0 = (01  0 ) where, for each date  0 = ×∈0 is the product carrying

measure for nature’s date  state as specified in R.5. Then 0 is an element of T  the set of
alternative probability functions for nature in the game Γ

If  :  → ∆( ) and  :  → ∆( ) are any pair of transition probabilities, then define

the transition probability ∗ :  → ∆( ) so that for every  ∈  and for every measurable

subset  of 

[ ∗ ](|) =
Z


(|)(|) (11.1)

Fix any positive real number  for the remainder of the proof. The steps below establish
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the existence of a strategy profile with full support that is a perfect conditional -equilibrium

of Γ that is compatible with a canonical net of nature-perturbations..

Part 1. (construct a sufficiently fine finite partition of the space of outcomes)

We shall construct a finite partition of the space of outcomes so that, within each element

of the partition, the players’ utilities have sufficiently small variation and so that nature’s

density function has bounded relative likelihoods on each partition element that can have

positive probability.

Since in a multi-stage game each  is bounded, we may choose ̄  0 so that

max
0∈

(()− (
0)) ≤ ̄ ∀ ∈  (11.2)

The set of outcomes in the regular projective game Γ is the product set  = ×∈∗×

For every  ∈  define

() = Π≤(0|) (11.3)

define

() =

(
()

1

if ()  0

if () = 0
(11.4)

define

() =

(
1

0

if ()  0

if () = 0
(11.5)

and define

() = Π≤0({00 ∈ 0 : (
0
0|)  0}) (11.6)

Consequently, for every  ∈ 

() = ()() (11.7)

Since  is continuous and somewhere positive on the compact set 0 × it achieves

a maximum, ̄  0 say, on 0 × Hence, for any  ∈ 

0({00 ∈ 0 : (
0
0|)  0} =

Z
{00∈0:(00|)0}

0(0)

≥
Z

(0|)
̄

0(0)

= 1̄

 0 (11.8)

Consequently, () is bounded away from zero for  ∈  Notice also that, being a product

of probabilities, () ≤ 1 for  ∈ 
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Since, by R.5, the set of outcomes on which  is strictly positive is closed, and since, by

continuity, the set of outcomes on which  is zero is closed,  is continuous on  Since  is

strictly positive it therefore achieves a positive minimum on the compact set  So because

 is positive and bounded away from zero on , we may choose  ∈ (0 1) and   0 so

that,

2 + (1− (1− ) (#))̄ ≤ 

µ
inf
∈

()()

¶
 (11.9)

For any nonempty sets 1   and for any partitions P1 of 1 P of   let

P1 ⊗  ⊗ P denote the (product) partition of 1 ×  ×  defined by P1 ⊗  ⊗ P =

{1 × × :  ∈ P ∀}
We claim that we may choose a finite product partition,  = ⊗∈∗× of composed

of Borel measurable partitions  of  ∀ ∈ ∗ ×  such that for any  0 ∈  in the

same element of the partition 

|()()− (
0)(0)|   for every player  ∈  and (11.10)

(0|)  0⇔ (
0
0|0)  0 for every date  (11.11)

Let us justify this claim. For each  ∈   is continuous on the compact set  and

so  is uniformly continuous on  The compactness of the  sets ensures that, for any

positive diameter, we can partition each  into finitely many measurable sets each with

that diameter or less. If that diameter is sufficiently small, then the uniform continuity of 

on  implies that (11.10) will be satisfied. To see that (11.11) must also be satisfied for some

sufficiently small diameter, notice that otherwise there would be a date  and two sequences

of points in 0 × that approach one another such that along one of the sequences  is

strictly positive and along the other  is zero. By compactness, we may assume that both

sequences converge, and hence they converge to the same point. But the assumption that 

is strictly positive on a closed set would then imply that  is strictly positive at the limit

point, and the fact (by continuity) that  is zero on a closed set would imply that  is zero

at the limit point, yielding a contradiction and establishing the claim.

For any  ∈ ∗ ×  and for any  ∈  let () denote the element of the

partition  that contains  and let  = ⊗∈ be the finite partition of  that is

generated by the partitions   ∈  We henceforth assume that  = ⊗∈∗≤∈

satisfies (11.10) and (11.11).

Part 2. (define a finite approximating game played by agents  ∈  and fix one of its

equilibria)
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For each  ∈  and for each  ∈  let us choose  ∈ ∆() so that for each element

of the finite partition  of   gives positive probability to every point in a dense

subset of that partition element. Such a  exists since, by R.3,  is a compact metric

space and therefore every partition element has a countable dense subset, to each element of

which  can give positive probability. In particular,  gives positive probability to every

open subset of  For each  ∈  let  denote the history-independent strategy in 

in which player  at date  chooses from  according to the product probability ×∈

regardless of the date- signal that he observes.

Given the   0 chosen in (11.9), for every  ∈ ×  define the transition probability

Λ :  → ∆() as follows. For any  ∈  and for any  ∈ B()

Λ(|) = (1− )(|()) + ()

where (|()) = (∩())(()) is the conditional -probability

of  given () (Recall that (())  0 for every  ∈ ) So for any  ∈
 Λ(·|) chooses an element from  according to (·|()) with probability

1−  and according to  with probability 

Then (see (11.1)), for any  ∈   ∗Λ is the date- strategy for player  that, given

any signal 
∈ 

 first chooses a provisional  ∈  according to (·|
) and then,

independently for each coordinate  chooses the actual coordinate- action according to

(·|()) with probability 1− and according to  with probability  In particular,
because there is positive probability that all of the coordinate- actions are chosen according

to   ∗ Λ gives positive probability to each element of the finite partition  of 

and gives positive probability to every open subset of  no matter what signal player 

observes at date  This last fact implies that, for any  ∈  the strategy profile ( ∗Λ)∈

has full support in the game Γ

Define the probability function for nature ̃ = (̃1  ̃ ) ∈ T so that for every date 

for every  ∈  and for every  ∈ B(0)

̃(|) = 0( ∩ {0 : (0|)  0})
0({0 : (0|)  0})

 (11.12)

where the denominator is strictly positive by (11.8).

There are two important facts to note about ̃. First, ̃(|·) is measurable with respect to
the product partition  (and so, in particular, ̃ :  → ∆(0) is a transition probability).

Indeed, if 0 00 ∈  are in the same element of  then by (11.11), {0 : (0|0)  0} =
{0 : (0|00)  0} and so ̃(|0) = ̃(|00) (This same argument implies also that
(0) = (00) i.e., that  is -measurable, a fact that we will use below.) Second, given
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the probability function ̃ and after any date- history  the distribution of nature’s

date  state conditional on any positive probability element 0 = ×∈0 ⊆ 0 of the

partition 0 = ⊗∈0 is given by the history-independent product measure 0(·|0) =
×∈0(·|0), where 0(·|0) denotes the conditional of 0 given 0 = ×∈0 and

similarly for 0(·|0) This is because, if ̃(0|)  0 then by (11.11) 0 ⊆ {0 :
(0|)  0} and so (11.12) implies that ̃(∩0|)̃(0|) = 0(∩0)0(0)
Let  : →  be measurable with respect to  (i.e., constant on each partition element)

and such that, for every  ∈  () is in the same element of the partition  as 

For every  ∈  and for every  ∈  define () = ()()()

Let the game Γ◦(̃) be identical to Γ except that, for each  ∈  player ’s payoff function

is (()) = (())(())(()) instead of () and nature’s probability function is ̃

instead of 

Notice that (()) = () because, as observed in the paragraph following (11.12), 

is -measurable. Consequently, because 0 ≤  ≤ 1 (11.10) implies that for every  ∈ 

|(())(())(())− ()()()|   for every player  ∈ . (11.13)

For each  ∈ × select precisely one action from each element of the partition  of

 and let the finite set of all of the selected actions be denoted by ̄ Let ̄ = ×∈̄

Let Γ◦Λ(̃) denote the agent normal form of Γ◦(̃) in which each dated player  ∈ 

is a separate agent and is restricted to strategies  ∈  of the form  = ̃ ∗Λ for some

̃ ∈  that is measurable with respect to  and that assigns probability 1 to the finite set

̄

For any strategy  that is feasible for an agent  in Γ◦Λ(̃) and for any  = ()∈ ∈
 the conditional distribution of  given  is the product measure ×∈(·|) So
the coordinates of ’s actions are always chosen conditionally independently. Also, for any

signal 
∈ 

 the probability measure (·|
) chooses an action in  according to

Π∈ with probability at least 
#  0 Consequently, every strategy profile  ∈  that

is feasible in Γ◦Λ(̃) has full support in the original game Γ

The -measurability condition means that for any  ∈ ∗ ×  and for any signal

coordinate  ∈  that a player observes in the original (regular projective) infinite

game, he observes (can condition on) in Γ◦Λ(̃) only the partition element in  that

contains . Hence, in Γ◦Λ(̃), for any date   1 a signal  for agent  ∈  is any

×∈
, where  ∈  ∀ ∈ 

46 Let  denote the finite set of ’s signals in

the game Γ◦Λ(̃) Then  = ⊗∈
 is a finite partition of player ’s date- signal

space 
in the original infinite game Γ

46For  = 1 agent ’s signal in the game Γ◦Λ(̃) is always equal to the null signal, ∅.
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Together, the measurability condition and the fact that the support of each agent’s

strategy in Γ◦Λ(̃) is always a subset of a fixed finite set of actions, imply that Γ◦Λ(̃) is

a finite game.

Let ̂ ∈  be a Nash equilibrium of the finite game Γ◦Λ(̃) played by agents  ∈ .

Then, in particular, ̂ is of the form (̃ ∗ Λ)∈ for some ̃ ∈  and ̂ is a full-support

strategy profile in the original game Γ.

The remainder of the proof will establish that the full-support strategy profile ̂ is a perfect

conditional -equilibrium of Γ that is compatible with a canonical net of perturbations.

Part 3. (define a net {( )} that is admissible for (̂ ) and where {} is a subnet of
a canonical net for  given the partition  = ⊗≤∈0 of ×≤∈0)

The index set for our net will be the set, Ω of all ordered pairs (  ) such that  is

any positive integer and  is any nonempty finite subset  This index set is a directed set

when we partially ordered its elements by saying that (0  0) is at least as large as (  ) iff

0 ≥  and  0 ⊇  For any (  ) ∈ Ω and for any  ∈ ∗ let  be the projection of 

onto 

For any index (  ) ∈ Ω and for any  ∈ ∗× define the transition probability 

 :

 → ∆() so that, for every  ∈  if no point in  ∩() is within distance

1

of  then 


 ({}|) = 1 Otherwise, 


 ({}|) = 1 − 1


and 


 (·|)

distributes the remaining probability 1

uniformly over the finite set of points in  ∩

(0) that are within distance
1

of 0.

For any index (  ) and for any  ∈ ∗ define the transition probability 

 :  →

∆() so that for every  = ×∈ ∈ ×∈M() and for every  ∈ , 

 (|) =

Π∈

 (|)

Define a net of strategy profiles and nature perturbations {(   )} as follows. For
every index (  ) ∈ Ω and for every  ∈  define 


 = ̂∗ and define 


 = ∗0 

Then (see Section 8.1), {}( )∈Ω is a subnet of a canonical net of perturbations of  and
so, by Theorem 8.1, {} is admissible for 47 We next show that {}( )∈Ω is admissible
for ̂ from which we can conclude that {(   )} is admissible for (̂ )
Since 


 = ̂∗ we have

°°° − ̂
°°° ≤ 1


for every index (  ) and so lim( )

°°° − ̂
°°° =

0 since lim( )  = +∞ Fix any  ∈  fix any  ∈  and fix any  ∈ Φ() To

show that {} is admissible for ̂ we must show that there is an index (̄ ̄ ) such that


 (|)  0 for every (  ) ∈ Ω such that  ≥ ̄ and  ⊇ ̄  Choose (̄ ̄ ) so that  ∈
̄ for every  ∈  and let (  ) be any index such that  ≥ ̄ and  ⊇ ̄  Hence,  ∈ 

47For any (  ) ∈ Ω let 0 be the projection of  onto nature’s states ×≤0. The net { } defined
here is a subnet of the canonical net because  is equal to the canonical perturbation of nature defined

in Section 8.1 for the canonical index ( 0).

38



for every  ∈  Also, 

 ({}|0)  0 for any 0 ∈ () that is within distance

1

of

 But since the product measure ×∈ is absolutely continuous with respect to ̂(·|)
(by the definition of ̂) and since each  gives positive probability to each action in a dense

subset of () ̂(·|) gives positive probability to every action in a dense subset of
×∈() In particular, ̂(·|) gives positive probability to some 00 ∈ ×∈()

such that for every  ∈  00 ∈ (0) is within distance
1

of 0 which implies that

Π∈

 ({0}|00)  0 Since 


 ({0}|) ≥ Π∈


 ({0}|00)̂({0}|) we may

conclude that 

 ({0}|)  0 as desired. Hence, {} is admissible for ̂

Having established that {(   )} is admissible for (̂ ) where {} is a subnet of
a canonical net for  let us note an important property of each   For every  ∈  for

every  ∈  and for every  ∈ , 

 (|) is equal to 1 if  ∈  and is equal to 0

otherwise. Therefore,



 (|

) = ̂(|
) (11.14)

So no matter what signal 
is observed by agent  


 (·|

) generates the same

distribution over the elements of the finite partition  as does ̂(·|
)

Part 4 (show that for each index (  ) ∈ Ω  is a conditional -equilibrium of the

perturbed game Γ( ))

To simplify the notation, we use  to denote a typical element (  ) of the directed

index set Ω constructed in Part 3 above. So the net {(   )}( )∈Ω constructed in Part
3 will be denoted by {( )}∈Ω for the remainder of the proof.
In this part of the proof it will be useful to make explicit the dependence of the outcome

distribution and of the players’ expected utilities on the probability function for nature that

is in effect. For example,  (·|; ) is the probability distribution over outcomes under the
strategy profile  in the game Γ() i.e., in the game Γ when nature’s probability function

is  ∈ T instead of 
Fix any index  ∈ Ω fix any  ∈  fix anymeasurable  ⊆ 

such that (|; ) 
0 and fix any date- continuation  of 


  To complete the final step of the proof we must

show that,

( 

−|; ) ≤ (

|; ) +  (11.15)

Recall that is a finite partition of  and the elements of are the signals for agent

 in the finite approximating game Γ◦Λ(̃) Without loss of generality, we may assume

that there is  ∈ such that  ⊆  (since otherwise we could consider separately each

 ∩ that has positive probability in Γ() under  where  varies over all elements of

the finite partition )

If  ∈ T is any perturbation of nature, define  ∗0 ∈ T to be the perturbation of nature
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such that, for every date  ≤ 

[ ∗ 0 ] =   ∗ 0

Then, we may define ̃ ∈ T by

̃ = ̃ ∗ 0  (11.16)

Hence, for any date  ̃ :  → ∆(0) is a transition probability that, like ̃ is measurable

with respect to  (see the paragraph following (11.12)).

Because  = , and by the definition of ̃ in (11.12), we have that for every  ∈  and

for every  ∈ B()

 (|; ) =  (|;  ∗ 0 )
=

Z


() (|; 0 ∗ 0 )

=

Z


()() (|; 0 ∗ 0 )

=

Z


()()

µ
()

()

¶
 (|; 0 ∗ 0 )

=

Z


()() (|; ̃ ∗ 0 )

=

Z


()() (|; ̃) (11.17)

where the fourth equality follows because ()  0 for every  ∈  and the fifth equality

follows because, for every  ∈ B()

 (|; ̃ ∗ 0 ) =
Z


(()()) (|; 0 ∗ 0 )

Therefore, for any  ∈  and for any  ∈ B()Z


() (|; ) =
Z


()()() (|; ̃) (11.18)

Because  and  agree on dates before  and because date- signal event probabilities

depend only on the player’s strategies on dates before , (|( −); ) = (|; )
So, because () = ()()() (11.18) gives,

48

48Notice that, by (11.17),  (·|; ) is absolutely continuous with respect to  (·|; ̃) for any  ∈  So

in particular, (|; )  0 implies (|; ̃)  0
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( 

−|; ) =

R
{:

∈} () (|( −); )
(|; )

=

R
{:

∈} () (|( −); ̃)
(|; ̃)

(|; ̃)
(|; )

=

µZ
() (| ( −); ̃)

¶
(|; ̃)
(|; )  (11.19)

By (11.13) and because {() :  ∈ } ⊆  for every  ∈  we may bound the integral

in parentheses on the right-hand side of (11.19) as follows:Z
() (| ( −); ̃) ≤

Z
(()) (| ( −); ̃) +  (11.20)

Also, by (11.17), we may bound the ratio of probabilities (|; ̃)(|; ) on
the right-hand side of (11.19) as follows:

(|; ̃)
(|; ) =

R
{:

∈}  (|; ̃)R
{:

∈} ()() (|; ̃)

≤
R
{:

∈}  (|; ̃)R
{:

∈} (inf∈ ()()) (|; ̃)

=
1

inf∈ ()()
 (11.21)

(Recall from Part 1 above that inf∈ ()()  0)

We next adjust the deviation  so that it becomes measurable with respect to  without

changing the value of the integral on the right-hand side of (11.20). This is possible because

 ◦  − and ̃ are all measurable with respect to  and so any achievable expected value

of  ◦  by  is achievable with a strategy for  that is -measurable.
For any  ∈  recall from Part 3 above that the finite subset ̄ of  contains

precisely one action from each element of the finite partition  of , and that for any

 ∈  () is the element of  that contains 

For any date    recall from Section 3 the perfect recall map Ψ̄ :  →  in Γ6 of

the definition of a multi-stage game. When  =  define Ψ̄ :  →  to be the identity

map.

Define the strategy ̃ ∈  as follows. For any date    let ̃ =  (= ) For

any date  ≥  for any  ∈  for any 
∈  and for any  ∈ ̄ if ( ∩
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Ψ̄−1()|( −); ̃)  0 then let

̃({}|
) =

Z
(()|)(| ∩ Ψ̄−1() ( −); ̃) (11.22)

but if ( ∩ Ψ̄−1 ()|( −); ̃) = 0 then let ̃({}|
) = 1(#̄)

For each date  ≥  ̃ ∈  is measurable with respect to  and, for each  ∈ 

and for each 
∈  ̃(̄|

) = 1 Consequently, ̃ ∗ Λ is feasible for agent 

in the finite game Γ◦Λ(̃) Moreover, (11.22) implies that for every date  ≥  for every

 ∈ such that ( ∩ Ψ̄−1()|( −); ̃)  0 and for every  ∈ 

̃(|) =

Z
(|)(| ∩ Ψ̄−1() ( −); ̃) (11.23)

and so ̃ conditional on  induces the same distribution over the elements of  as does

 conditional on  and 

In the game Γ◦(̃) and under the strategy profile  for each date  and for any

 ∈ ∗ ( may be a player or nature), the distribution of the -th coordinate of ’s date-

action/state conditional on any element  of the finite partition  of  is indepen-

dent of any of the other coordinates of ’s date- action and is independent of the date-

history (for  = 0 see the paragraph following (11.12)). Consequently, because  and ̃

are measurable with respect to  the occurrence of  and the occurrence of any  ∈  are

independent events conditional on  Therefore, because  ⊆ 

 (| ; ̃) =  (| 
; ̃) for every  ∈  (11.24)

In particular, (| ; ̃) = (| 
; ̃) for every element  of the finite par-

tition  = ⊗∈∗×: of  Therefore, since changing ’s behavior at dates  ≥ 

does not affect the probability of any date- history event,

(| (̃ ); ̃) = (| (̃ 

−); ̃

) for every  ∈  (11.25)

A consequence of (11.25), of (11.23) for  ≥ , and of the -measurability of ̃ 

 and

̃ for all  6=  and all  ≥  is that,

 (| ( −); ̃) =  (| (̃ 

−); ̃

) for every  ∈  (11.26)
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Therefore, since (()) is measurable with respect to Z
(()) (| ( −); ̃) =

Z
(()) (| (̃ 


−); ̃

) (11.27)

Recall that ̂ ∈  is a Nash equilibrium of the agent normal form game Γ◦Λ(̃) played

by agents in  For every date  ≤  ̂ is a feasible strategy for agent  in the game

Γ◦Λ(̃)

Define ̆ ∈  as follows. For each date    let ̆ = ̂ and for each date  ≥  let

̆ = ̃ ∗ Λ Then, for every date  ≤  ̆ is feasible for agent  in Γ◦Λ(̃)

Because changing ’s behavior at dates  ≥  does not affect the probability of any date-

history event, we have (|(̃ −); ̃) = (|; ̃) because ̃ =  for    and we

have (|(̆ −); ̃) = (|(̂ −); ̃) because ̆ = ̂ for    Also, by (11.14),

we have (|; ̃) = (|(̂ −); ̃) because  is a union of elements of  and

because both  and ̃ are -measurable. Hence, we may conclude that

(|(̃ −); ̃) = (|(̆ −); ̃) (11.28)

By the definition of ̆ there is probability at least (1−)(−+1)(#) that for every  ≥ 

̆ gives each element of  the same probability as does ̃ regardless of the history of

play. Consequently, by (11.28), (11.2), the measurability of (()) with respect to  and

because  is a union of elements of  we haveZ
(()) (| (̃ 


−); ̃

) ≤
Z

(()) (| (̆ 

−); ̃

) + (1− (1− ) (#))̄

(11.29)

where we have used the fact that (1− (1− )(−+1)(#))̄ ≤ (1− (1− ) (#))̄

For every date  for every  ∈  and for every 0 ∈ 0 the product Π∈

0(0|0)

is equal to 1 if 0 ∈ 0 and is equal to 0 otherwise. Therefore,

̃ (0|) = ̃(0|) (11.30)

So no matter what is the date- history, ̃ generates the same distribution over the elements

of the finite partition 0 of 0 as does ̃

Together, (11.30) and (11.14) imply that (|̂; ̃) = (|; ̃)Hence, (|̂; ̃) 
0 because (|; ̃) ≥ (|; ̃)  0. And since ̆ agrees with ̂ on dates before

 (|(̆ ̂−); ̃) = (|̂; ̃)  0 Therefore, (11.30) and (11.14) together with the
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measurability of ̆ 

− and ̃ with respect to  imply that,Z

(()) (| (̆ 

−); ̃

) =

Z
(()) (| (̆ ̂−); ̃) (11.31)

Together, (11.20), (11.27), (11.29), and (11.31) imply that,Z
(()) (| ( −); ̃) ≤

Z
(()) (| (̆ ̂−); ̃) + (1− (1− ) (#))̄

Consequently,Z
() (| ( −); ̃) ≤

Z
(()) (| (̆ ̂−); ̃) +  + (1− (1− ) (#))̄

≤
Z

(()) (| (̆ ̂−); ̃) +  + (1− (1− ) (#))̄

≤
Z

(()) (| ̂; ̃) +  + (1− (1− ) (#))̄

=

Z
(()) (| 

; ̃) +  + (1− (1− ) (#))̄

=

Z
(()) (| ; ̃) +  + (1− (1− ) (#))̄

≤
Z

() (| ; ̃) + 2 + (1− (1− ) (#))̄ (11.32)

where the second inequality follows from the one-shot deviation principle for finite games

with perfect recall because ̆ = ̂ for    and ̂ gives  positive probability (see

the paragraph following (11.30)) and is an equilibrium of the agent normal form of the

perfect recall game Γ◦Λ(̃) when played by separate agents  ∈ . The first equality

follows because, by (11.14) and (11.30),  (·| ̂; ̃) and  (·| 
; ̃) generate the same

distribution over the elements of  The second equality follows from (11.24), and the final

inequality follows from (11.13).

Multiplying both sides of (11.32) by (|; ̃)(|; ) and using (11.19), (11.21),
and (11.9) gives,
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( 

−|; ) ≤

µZ
() (| ; ̃)

¶
(|; ̃)
(|; ) + 

=

R
{:

∈} ()()() (|; ̃)
(|; ̃)

(|; ̃)
(|; ) + 

=

R
{:

∈} ()()() (|; ̃)
(|; ) + 

=

R
{:

∈} () (|; )
(|; ) + 

= (
|; ) + 

where the third equality follows from (11.17), proving (11.15). Q.E.D.
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